-
Abstract: AbstractFlexible electronics have attracted extensive attention across a wide range of fields due to their potential for preventive medicine and early disease detection. Microfiber-based textiles, encountered in everyday life, have emerged as promising platforms with integrated sensing capabilities. Microfluidic technology has been recognized as a promising avenue for the development of flexible conductive microfibers and has made significant achievements. In this review, we provide a comprehensive overview of the state-of-the-art advancements in microfiber-based flexible electronics fabricated using microfluidic platforms. Firstly, the fundamental strategies of the microfluidic fabrication of conductive microfibers with different structures and morphologies are introduced. Subsequently, attention is then directed towards the diverse applications of these microfibers in bioelectronics. Finally, we offer a forward-looking perspective on the future challenges about microfluidic-derived microfibers in flexible bioelectronics.
-
Key words:
- microfluidics /
- conductive microfibers /
- sensing /
- flexible bioelectronics
-
Figure 3. (a) Schematics of the wet-spinning apparatus by directly injecting the homogeneously dispersed phase into a coagulation bath reproduced from [70]. CC BY 4.0; (b) schematic illustration of the microfluidic fabrication process with in situ polymerization. [101] John Wiley & Sons. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim; (c) schematic of the microfluidic fabrication of microfibers with gridded structures. Reprinted with permission from [98]. Copyright (2021) American Chemical Society; (d) microfluidic integration with 3D printing for constructing 3D scaffold structures. Reproduced from [112], with permission from Springer Nature.
Figure 4. (a) Core-shell microfibers fabricated using microfluidic spinning combined with a coating technique. Reproduced with permission from [103]. CC BY-NC-ND 4.0; (b) hollow-channel microfibers created using coaxial spinning involving a sacrificial inner layer. Reproduced from [123]. CC BY 4.0; (c) conductive microfibers with enhanced mechanical properties fabricated using coaxial spinning combined with a stretching-drying-buckling process. [105] John Wiley & Sons. © 2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim; (d) core-shell microfibers with a PEDOT:PSS core produced entirely through microfluidic spinning. [106] John Wiley & Sons. © 2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim; (e) ultra-elastic microfibers integrated with liquid metal, manufactured using microfluidic coaxial microfluidic spinning. Reprinted from [107], © 2020 Science China Press. Published by Elsevier B.V. and Science China Press. All rights reserved.
Figure 5. (a) Single-step fabrication of multicomponent carbon nanotubes microfiber by multi-channel co-flow microfluidics. Reprinted from [109], © 2020 Elsevier B.V. All rights reserved; (b), (c) helical microfibers. [110] John Wiley & Sons. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim and MXene encapsulated core-shell helical microfibers from microfluidics by using the rope-coil effect. Reproduced from [111]. CC BY 4.0; (d), (e)spindle-knot. Reprinted from [97], © 2022 Elsevier B.V. All rights reserved and hemline-shaped microfibers from piezoelectric microfluidics. Reproduced from [95], with permission from Springer Nature.
Figure 6. (a) Flexible graphene fiber supercapacitor integration [149]. John Wiley & Sons. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim; (b) carbon nanotube microfiber for energy storage. Reprinted from [109], © 2020 Elsevier B.V. All rights reserved; (c) wearable self-powered device with flexible supercapacitor. Reproduced from [150], with permission from Springer Nature.
Figure 8. (a) Fiber-based wrist bending detection and facial muscle monitoring. Reprinted from [163], © 2024 Published by Elsevier B.V; (b) spiral fibers embedded within flexible films for joint monitoring. Reproduced from [164]. CC BY 4.0; (c) addition of graphene oxide on the outer layer for simultaneous temperature and motion monitoring. Reproduced with permission from [103]. CC BY-NC-ND 4.0; (d) utilization of 3D-printed grid-like structure for joint sensing. Reprinted with permission from [98]. Copyright (2021) American Chemical Society.
Figure 9. (a) A smart drug-release suture incorporates a core made of conductive fiber strain sensors and a thermoresponsive polymer shell containing medications. Reproduced from [170] with permission from the Royal Society of Chemistry; (b) schematic of the diagnosis, treatment, and monitoring suture applicable to various tissues, capable of transmitting signals from infarcted heart tissue and delivering drugs on demand. Reproduced from [123]. CC BY 4.0.
Table 1. Summary of different fiber types from microfluidics and their applications.
Fiber type Materials Configuration Applications References Single fiber Na-Alg/AAM/MXene Gridded microfibers Joint monitoring [98] Single fiber Fibroin Woven fabric Sensing hazardous situations, human-machine interfaces [70] Single fiber CNT/ MXene/PU/ AuCNS Microfiber Multifunctional sensing and energy harvesting [99] Single fiber GO/NIPAM/Alginate Microfiber Electro-responsive sensor [100] Single fiber PANI/MCNTs-rGO/TPU Microfiber bundles Supercapacitor [101] Single fiber CNBs/TPU Woven fabric Chemical sensors [71] Core-shell fiber Inner: MXene Outer: Na-Alg/PVA Gridded microfibers Motion monitoring and gesture recognition [102] Core-shell fiber Inner: Na-Alg Outer: GO Stretchable film Gesture recognition [103] Core-shell fiber Inner: PEDOT/PSS Outer: PU/Graphine Woven fabric Temperature Monitoring [104] Core-shell fiber Inner: PEDOT/PSS/PBP Outer: TPE Microfiber Stretchable conductors [105] Core-shell fiber Inner: PEDOT/PSS Outer: Alg Stretchable film Bending detection [106] Core-shell fiber Inner: liquid metal Outer: PU Woven fabric Wearable electronics [107] Core-shell fiber Inner: liquid metal Outer: PVDF-HFP-TFE/PEGDA Woven fabric Self-powered sensing [108] Hierarchical microfibers Inner: CNTS Outer: PU Woven fabric Supercapacitor [109] Helical fiber Alginate Microfiber Mechanical sensors [110] Core-shell helical fiber Inner: Mxene Outer: Alg Flexible film Motion monitoring [111] Spindle-knot microfiber GO/NIPAM Microfiber Water manipulation [97] Hemline-shaped microfiber PEGDA Microfiber Water transportation [95] -
[1] Yang Y, Gao W 2019 Wearable and flexible electronics for continuous molecular monitoring Chem. Soc. Rev. 48 1465-91 doi: 10.1039/C7CS00730B [2] Tricoli A, Nasiri N, De S 2017 Wearable and miniaturized sensor technologies for personalized and preventive medicine Adv. Funct. Mater. 27 1605271 doi: 10.1002/adfm.201605271 [3] Dunn J, Runge R, Snyder M 2018 Wearables and the medical revolution Pers. Med. 15 429-48 doi: 10.2217/pme-2018-0044 [4] Bonato P 2010 Wearable sensors and systems IEEE Eng. Med. Biol. Mag. 29 25-36 doi: 10.1109/MEMB.2010.936554 [5] Dong R, et al 2024 Stretchable, self-rolled, microfluidic electronics enable conformable neural interfaces of brain and vagus neuromodulation ACS Nano 18 1702-13 doi: 10.1021/acsnano.3c10028 [6] Nightingale A M, Leong C L, Burnish R A, Hassan S-U, Zhang Y, Clough G F, Boutelle M G, Voegeli D, Niu X 2019 Monitoring biomolecule concentrations in tissue using a wearable droplet microfluidic-based sensor Nat. Commun. 10 2741 doi: 10.1038/s41467-019-10401-y [7] Zhong B, et al 2024 Interindividual-and blood-correlated sweat phenylalanine multimodal analytical biochips for tracking exercise metabolism Nat. Commun. 15 624 doi: 10.1038/s41467-024-44751-z [8] Li F, Xue H, Lin X, Zhao H, Zhang T 2022 Wearable temperature sensor with high resolution for skin temperature monitoring ACS Appl. Mater. Interfaces 14 43844-52 doi: 10.1021/acsami.2c15687 [9] Kwon K, et al 2021 An on-skin platform for wireless monitoring of flow rate, cumulative loss and temperature of sweat in real time Nat. Electron. 4 302-12 doi: 10.1038/s41928-021-00556-2 [10] Gao W, et al 2016 Fully integrated wearable sensor arrays for multiplexed in situ perspiration analysis Nature 529 509-14 doi: 10.1038/nature16521 [11] Pu Z, Zhang X, Yu H, Tu J, Chen H, Liu Y, Su X, Wang R, Zhang L, Li D 2021 A thermal activated and differential self-calibrated flexible epidermal biomicrofluidic device for wearable accurate blood glucose monitoring Sci. Adv. 7 eabd0199 doi: 10.1126/sciadv.abd0199 [12] Luan H, et al 2021 Complex 3D microfluidic architectures formed by mechanically guided compressive buckling Sci. Adv. 7 eabj3686 doi: 10.1126/sciadv.abj3686 [13] Chung H U, et al 2020 Skin-interfaced biosensors for advanced wireless physiological monitoring in neonatal and pediatric intensive-care units Nat. Med. 26 418-29 doi: 10.1038/s41591-020-0792-9 [14] Romano C, Schena E, Formica D, Massaroni C 2022 Comparison between chest-worn accelerometer and gyroscope performance for heart rate and respiratory rate monitoring Biosensors 12 834 doi: 10.3390/bios12100834 [15] Zhu P, Peng H, Rwei A Y 2022 Flexible, wearable biosensors for digital health Med. Novel Technol. Devices 14 100118 doi: 10.1016/j.medntd.2022.100118 [16] Tang L, Yang J, Wang Y, Deng R 2023 Recent advances in cardiovascular disease biosensors and monitoring technologies ACS Sens. 8 956-73 doi: 10.1021/acssensors.2c02311 [17] Shetti N P, Mishra A, Basu S, Mascarenhas R J, Kakarla R R, Aminabhavi T M 2020 Skin-patchable electrodes for biosensor applications: a review ACS Biomater. Sci. Eng. 6 1823-35 doi: 10.1021/acsbiomaterials.9b01659 [18] Zini M, Baù M, Nastro A, Ferrari M, Ferrari V 2023 Flexible passive sensor patch with contactless readout for measurement of human body temperature Biosensors 13 572 doi: 10.3390/bios13060572 [19] Su Y, et al 2020 Printable, highly sensitive flexible temperature sensors for human body temperature monitoring: a review Nanoscale Res. Lett. 15 1-34 doi: 10.1186/s11671-020-03428-4 [20] Rachim V P, Chung W-Y 2019 Multimodal wrist biosensor for wearable cuff-less blood pressure monitoring system Sci. Rep. 9 7947 doi: 10.1038/s41598-019-44348-3 [21] Crepaldi P C, Pimenta T C, Moreno R L, Rodriguez E C 2011 A low power CMOS voltage regulator for a wireless blood pressure biosensor IEEE Trans. Instrum. Meas. 61 729-39 doi: 10.1109/TIM.2011.2172121 [22] Phan D T, Phan T T V, Huynh T C, Park S, Choi J, Oh J 2022 Noninvasive, wearable multi biosensors for continuous, long-term monitoring of blood pressure via internet of things applications Comput. Electr. Eng. 102 108187 doi: 10.1016/j.compeleceng.2022.108187 [23] Wu C-H, Ma H J H, Baessler P, Balanay R K, Ray T R 2023 Skin-interfaced microfluidic systems with spatially engineered 3D fluidics for sweat capture and analysis Sci. Adv. 9 eadg4272 doi: 10.1126/sciadv.adg4272 [24] Ma X, et al 2023 A monolithically integrated in-textile wristband for wireless epidermal biosensing Sci. Adv. 9 eadj2763 doi: 10.1126/sciadv.adj2763 [25] Wang L, Wang L, Zhang Y, Pan J, Li S, Sun X, Zhang B, Peng H 2018 Weaving sensing fibers into electrochemical fabric for realtime health monitoring Adv. Funct. Mater. 28 1804456 doi: 10.1002/adfm.201804456 [26] Yang D S, Ghaffari R, Rogers J A 2023 Sweat as a diagnostic biofluid Science 379 760-1 doi: 10.1126/science.abq5916 [27] Li R, Nie B, Digiglio P, Pan T 2014 Microflotronics: a flexible, transparent, pressuresensitive microfluidic film Adv. Funct. Mater. 24 6195-203 doi: 10.1002/adfm.201401527 [28] Gao B, Liao J, Guo M, Liu H, He B, Gu Z 2019 Biomimetic metastructured electromicrofluidics Adv. Funct. Mater. 29 1906745 doi: 10.1002/adfm.201906745 [29] Zhang B, et al 2024 A three-dimensional liquid diode for soft, integrated permeable electronics Nature 628 84-92 doi: 10.1038/s41586-024-07161-1 [30] Zhang K, et al 2024 Design and fabrication of wearable electronic textiles using twisted fiber-based threads Nat. Protocols 19 1-33 doi: 10.1038/s41596-024-00956-6 [31] Wang L, Fu X, He J, Shi X, Chen T, Chen P, Wang B, Peng H 2020 Application challenges in fiber and textile electronics Adv. Mater. 32 1901971 doi: 10.1002/adma.201901971 [32] Yu L, Yeo J C, Soon R H, Yeo T, Lee H H, Lim C T 2018 Highly stretchable, weavable, and washable piezoresistive microfiber sensors ACS Appl. Mater. Interfaces 10 12773-80 doi: 10.1021/acsami.7b19823 [33] Zeng W, Shu L, Li Q, Chen S, Wang F, Tao X-M 2014 Fiberbased wearable electronics: a review of materials, fabrication, devices, and applications Adv. Mater. 26 5310-36 doi: 10.1002/adma.201400633 [34] Ye L, et al 2024 A rechargeable calcium-oxygen battery that operates at room temperature Nature 626 313-8 doi: 10.1038/s41586-023-06949-x [35] Hu X, et al 2024 Wearable and regenerable electrochemical fabric sensing system based on molecularly imprinted polymers for realtime stress management Adv. Funct. Mater. 34 2312897 doi: 10.1002/adfm.202312897 [36] Wang C, Xia K, Wang H, Liang X, Yin Z, Zhang Y 2019 Advanced carbon for flexible and wearable electronics Adv. Mater. 31 1801072 doi: 10.1002/adma.201801072 [37] He H, Qin Y, Zhu Z, Jiang Q, Ouyang S, Wan Y, Qu X, Xu J, Yu Z 2023 Temperature-arousing self-powered fire warning E-textile based on p-n segment coaxial aerogel fibers for active fire protection in firefighting clothing Nano-Micro Lett. 15 226 doi: 10.1007/s40820-023-01200-8 [38] Yin J, et al 2023 Smart textiles for self-powered biomonitoring Med-X 1 3 doi: 10.1007/s44258-023-00001-3 [39] Li J H, Chen J H, Xu F 2018 Sensitive and wearable optical microfiber sensor for human health monitoring Adv. Mater. Technol. 3 1800296 doi: 10.1002/admt.201800296 [40] Chen J, He T, Du Z, Lee C 2023 Review of textile-based wearable electronics: from the structure of the multi-level hierarchy textiles Nano Energy 117 108898 doi: 10.1016/j.nanoen.2023.108898 [41] Wei L, Wang S, Shan M, Li Y, Wang Y, Wang F, Wang L, Mao J 2023 Conductive fibers for biomedical applications Bioact. Mater. 22 343-64 doi: 10.1016/j.bioactmat.2022.10.014 [42] Liang H, Wang Y, Kan L, Xu K, Dong T, Wang W, Gao B, Jiang C 2022 Wearable and multifunctional self-mixing microfiber sensor for human health monitoring IEEE Sens. J. 23 2122-7 doi: 10.1109/JSEN.2022.3225196 [43] Yang W, et al 2024 Single body-coupled fiber enables chipless textile electronics Science 384 74-81 doi: 10.1126/science.adk3755 [44] Shi X, et al 2021 Large-area display textiles integrated with functional systems Nature 591 240-5 doi: 10.1038/s41586-021-03295-8 [45] He J, et al 2021 Scalable production of high-performing woven lithium-ion fibre batteries Nature 597 57-63 doi: 10.1038/s41586-021-03772-0 [46] He Q, Wang Z, Wang Y, Wang Z, Li C, Annapooranan R, Zeng J, Chen R, Cai S 2021 Electrospun liquid crystal elastomer microfiber actuator Sci. Robot. 6 eabi9704 doi: 10.1126/scirobotics.abi9704 [47] Kong B, Liu R, Guo J, Lu L, Zhou Q, Zhao Y 2023 Tailoring micro/nano-fibers for biomedical applications Bioact. Mater. 19 328-47 doi: 10.1016/j.bioactmat.2022.04.016 [48] Xu Z, Wu M, Ye Q, Chen D, Liu K, Bai H 2022 Spinning from nature: engineered preparation and application of high-performance bio-based fibers Engineering 14 100-12 doi: 10.1016/j.eng.2021.06.030 [49] Liu X, et al 2024 Magnetic soft microfiberbots for robotic embolization Sci. Robot. 9 eadh2479 doi: 10.1126/scirobotics.adh2479 [50] He Q, Wang Z, Yan Y, Zheng J, Cai S 2016 Polymer nanofiber reinforced double network gel composite: strong, tough and transparent Extreme Mech. Lett. 9 165-70 doi: 10.1016/j.eml.2016.06.004 [51] Kwon I K, Kidoaki S, Matsuda T 2005 Electrospun nano-to microfiber fabrics made of biodegradable copolyesters: structural characteristics, mechanical properties and cell adhesion potential Biomaterials 26 3929-39 doi: 10.1016/j.biomaterials.2004.10.007 [52] Du X Y, Li Q, Wu G, Chen S 2019 Multifunctional micro/nanoscale fibers based on microfluidic spinning technology Adv. Mater. 31 1903733 doi: 10.1002/adma.201903733 [53] Yu Y, Shang L, Guo J, Wang J, Zhao Y 2018 Design of capillary microfluidics for spinning cell-laden microfibers Nat. Protocols 13 2557-79 doi: 10.1038/s41596-018-0051-4 [54] Shang L, Yu Y, Liu Y, Chen Z, Kong T, Zhao Y 2019 Spinning and applications of bioinspired fiber systems ACS Nano 13 2749-72 doi: 10.1021/acsnano.8b09651 [55] Xie R, Xu P, Liu Y, Li L, Luo G, Ding M, Liang Q 2018 Necklacelike microfibers with variable knots and perfusable channels fabricated by an oilfree microfluidic spinning process Adv. Mater. 30 1705082 doi: 10.1002/adma.201705082 [56] Wu R, Kim T 2021 Review of microfluidic approaches for fabricating intelligent fiber devices: importance of shape characteristics Lab Chip 21 1217-40 doi: 10.1039/D0LC01208D [57] Yang C, et al 2024 Flexible liquid-diode microtubes from multimodal microfluidics Proc. Natl. Acad. Sci. 121 e2402331121 doi: 10.1073/pnas.2402331121 [58] Guo J, et al 2021 Microfluidics for flexible electronics Mater. Today 44 105-35 doi: 10.1016/j.mattod.2020.08.017 [59] Xiao Y, et al 2023 Strong and tough biofibers designed by dual crosslinking for sutures Adv. Funct. Mater. 34 2313131 doi: 10.1002/adfm.202313131 [60] Ghahremani Honarvar M, Latifi M 2017 Overview of wearable electronics and smart textiles J. Text. Inst. 108 631-52 doi: 10.1080/00405000.2016.1177870 [61] Weigel N, Li Y, Thiele J, Fery A 2023 From microfluidics to hierarchical hydrogel materials Curr. Opin. Colloid Interface Sci. 64 101673 doi: 10.1016/j.cocis.2022.101673 [62] Liu Z, et al 2015 Hierarchically buckled sheath-core fibers for superelastic electronics, sensors, and muscles Science 349 400-4 doi: 10.1126/science.aaa7952 [63] Shi Y, Wei X, Wang K, He D, Yuan Z, Xu J, Wu Z, Wang Z L 2021 Integrated all-fiber electronic skin toward self-powered sensing sports systems ACS Appl. Mater. Interfaces 13 50329-37 doi: 10.1021/acsami.1c13420 [64] Kang M, Kim T-W 2021 Recent advances in fiber-shaped electronic devices for wearable applications Appl. Sci. 11 6131 doi: 10.3390/app11136131 [65] Morimoto Y, Kiyosawa M, Takeuchi S 2018 Three-dimensional printed microfluidic modules for design changeable coaxial microfluidic devices Sens. Actuators B 274 491-500 doi: 10.1016/j.snb.2018.07.151 [66] Nunes J, Tsai S S H, Wan J, Stone H A 2013 Dripping and jetting in microfluidic multiphase flows applied to particle and fibre synthesis J. Phys. D: Appl. Phys. 46 114002 doi: 10.1088/0022-3727/46/11/114002 [67] Zhu P, Wang L 2022 Microfluidics-Enabled Soft ManufactureSpringer [68] Shang L, Cheng Y, Zhao Y 2017 Emerging droplet microfluidics Chem. Rev. 117 7964-8040 doi: 10.1021/acs.chemrev.6b00848 [69] Ding T, Chan K H, Zhou Y, Wang X-Q, Cheng Y, Li T, Ho G W 2020 Scalable thermoelectric fibers for multifunctional textile-electronics Nat. Commun. 11 6006 doi: 10.1038/s41467-020-19867-7 [70] Lu H, et al 2024 Intelligent perceptual textiles based on ionic-conductive and strong silk fibers Nat. Commun. 15 3289 doi: 10.1038/s41467-024-47665-y [71] Chen Q-L, Wu X, Cheng H, Li Q, Chen S 2019 Facile synthesis of carbon nanobranches towards cobalt ion sensing and high-performance micro-supercapacitors Nanoscale Adv. 1 3614-20 doi: 10.1039/C9NA00181F [72] Golecki H M, Yuan H, Glavin C, Potter B, Badrossamay M R, Goss J A, Phillips M D, Parker K K 2014 Effect of solvent evaporation on fiber morphology in rotary jet spinning Langmuir 30 13369-74 doi: 10.1021/la5023104 [73] Yeh C-H, Lin P-W, Lin Y-C 2010 Chitosan microfiber fabrication using a microfluidic chip and its application to cell cultures Microfluid. Nanofluidics 8 115-21 doi: 10.1007/s10404-009-0485-7 [74] Song Y, Yu X Q, Chen S 2024 Recent advances in microfluidic fiberspinning chemistry J. Polym. Sci. 62 447-62 doi: 10.1002/pol.20230527 [75] Khan M, et al 2021 A study on microfluidic spinning technology (MST) used for micro fibre fabrication Adv. Res. Text. Eng. 6 1065 doi: 10.26420/advrestexteng.2021.1065 [76] Xu F, Wang S, Cao C, Ma W, Zhang X, Du J, Sun W, Ma Q 2022 Microfluidic generation of multifunctional core-shell microfibers promote wound healing Colloids Surf. B 219 112842 doi: 10.1016/j.colsurfb.2022.112842 [77] Ding X, Zhuge W, Zhang Y, Ding S, Wang J, Zhou G 2023 Microfluidic generation of bioinspired core-shell structured microfibers for cultured meat Chem. Eng. J. 478 147467 doi: 10.1016/j.cej.2023.147467 [78] Meng Z-J, Wang W, Xie R, Ju X-J, Liu Z, Chu L-Y 2016 Microfluidic generation of hollow Ca-alginate microfibers Lab Chip 16 2673-81 doi: 10.1039/c6lc00640j [79] Pham U H, Hanif M, Asthana A, Iqbal S M 2015 A microfluidic device approach to generate hollow alginate microfibers with controlled wall thickness and inner diameter J. Appl. Phys. 117 214703 doi: 10.1063/1.4919361 [80] Tian Y, Wang Z, Wang L 2021 Hollow fibers: from fabrication to applications Chem. Commun. 57 9166-77 doi: 10.1039/D1CC02991F [81] Gao C, Wang X, Du Q, Tang J, Jiang J 2019 Generation of perfusable hollow calcium alginate microfibers with a double co-axial flow capillary microfluidic device Biomicrofluidics 13 064108 doi: 10.1063/1.5116225 [82] Liu H, Wang Y, Yu Y, Chen W, Jiang L, Qin J 2019 Simple fabrication of inner chitosancoated alginate hollow microfiber with higher stability J. Biomed. Mater. Res. B 107 2527-36 doi: 10.1002/jbm.b.34343 [83] Ranjan V D, Zeng P, Li B, Zhang Y 2020 In vitro cell culture in hollow microfibers with porous structures Biomater. Sci. 8 2175-88 doi: 10.1039/C9BM01986C [84] Nguyen T P T, Tran B M, Lee N Y 2018 Microfluidic approach for the fabrication of cell-laden hollow fibers for endothelial barrier research J. Mater. Chem. B 6 6057-66 doi: 10.1039/C8TB02031K [85] Cheng Y, Yu Y, Fu F, Wang J, Shang L, Gu Z, Zhao Y 2016 Controlled fabrication of bioactive microfibers for creating tissue constructs using microfluidic techniques ACS Appl. Mater. Interfaces 8 1080-6 doi: 10.1021/acsami.5b11445 [86] Ma W, Liu Y, Ling S, Chen Z, Xu J 2023 Generation of helical multi-functional microfiber motors based on modified microfluidic spinning method Chem. Eng. Sci. 282 119339 doi: 10.1016/j.ces.2023.119339 [87] Jia L, Han F, Yang H, Turnbull G, Wang J, Clarke J, Shu W, Guo M, Li B 2019 Microfluidic fabrication of biomimetic helical hydrogel microfibers for bloodvesselonachip applications Adv. Healthcare Mater. 8 1900435 doi: 10.1002/adhm.201900435 [88] Wang Y, Wang Z, Sun H, Lyu T, Ma X, Guo J, Tian Y 2024 Multi-functional nano-doped hollow fiber from microfluidics for sensors and micromotors Biosensors 14 186 doi: 10.3390/bios14040186 [89] Shao L, Gao Q, Zhao H, Xie C, Fu J, Liu Z, Xiang M, He Y 2018 Fiberbased mini tissue with morphologycontrollable GelMA microfibers Small 14 1802187 doi: 10.1002/smll.201802187 [90] Zhu P, Tang X, Wang L 2016 Droplet generation in co-flow microfluidic channels with vibration Microfluid. Nanofluidics 20 1-10 doi: 10.1007/s10404-016-1717-2 [91] Zhu P, Wang L 2017 Passive and active droplet generation with microfluidics: a review Lab Chip 17 34-75 doi: 10.1039/C6LC01018K [92] Yang C, Yu Y, Zhao Y, Shang L 2023 Bioinspired jellyfish microparticles from microfluidics Research 6 0034 doi: 10.34133/research.0034 [93] Mak S Y, Li Z, Frere A, Chan T C, Shum H C 2014 Musical interfaces: visualization and reconstruction of music with a microfluidic two-phase flow Sci. Rep. 4 6675 doi: 10.1038/srep06675 [94] Li Z, Mak S Y, Sauret A, Shum H C 2014 Syringe-pump-induced fluctuation in all-aqueous microfluidic system implications for flow rate accuracy Lab Chip 14 744-9 doi: 10.1039/c3lc51176f [95] Yang C, Yu Y, Shang L, Zhao Y 2024 Flexible hemline-shaped microfibers for liquid transport Nat. Chem. Eng. 1 87-96 doi: 10.1038/s44286-023-00001-5 [96] Yang C, Yu Y, Wang X, Shang L, Zhao Y 2022 Programmable knot microfibers from piezoelectric microfluidics Small 18 2104309 doi: 10.1002/smll.202104309 [97] Yang C, Yu Y, Wang X, Zu Y, Zhao Y, Shang L 2023 Bioinspired stimuli-responsive spindle-knotted fibers for droplet manipulation Chem. Eng. J. 451 138669 doi: 10.1016/j.cej.2022.138669 [98] Guo J, Yu Y, Zhang H, Sun L, Zhao Y 2021 Elastic MXene hydrogel microfiber-derived electronic skin for joint monitoring ACS Appl. Mater. Interfaces 13 47800-6 doi: 10.1021/acsami.1c10311 [99] Lan L, Jiang C, Yao Y, Ping J, Ying Y 2021 A stretchable and conductive fiber for multifunctional sensing and energy harvesting Nano Energy 84 105954 doi: 10.1016/j.nanoen.2021.105954 [100] Peng L, Liu Y, Gong J, Zhang K, Ma J 2017 Continuous fabrication of multi-stimuli responsive graphene oxide composite hydrogel fibres by microfluidics RSC Adv. 7 19243-9 doi: 10.1039/C7RA01750B [101] Tong Y L, Xu B, Du X-F, Cheng H-Y, Wang C-F, Wu G, Chen S 2018 Microfluidicspinningdirected conductive fibers toward flexible microsupercapacitors Macromol. Mater. Eng. 303 1700664 doi: 10.1002/mame.201700664 [102] Wang J, Qi Y, Gui Y, Wang C, Wu Y, Yao J, Wang J 2024 Ultrastretchable Eskin based on conductive hydrogel microfibers for wearable sensors Small 20 2305951 doi: 10.1002/smll.202305951 [103] Yu Y, Guo J, Zhang H, Wang X, Yang C, Zhao Y 2022 Shear-flow-induced graphene coating microfibers from microfluidic spinning Innovation 3 100209 doi: 10.1016/j.xinn.2022.100209 [104] Fan W, et al 2023 An antisweat interference and highly sensitive temperature sensor based on Poly (3, 4-ethylenedioxythiophene)-Poly (styrenesulfonate) fiber coated with polyurethane/graphene for real-time monitoring of body temperature ACS Nano 17 21073-82 doi: 10.1021/acsnano.3c04246 [105] Zhou J, Tian G, Jin G, Xin Y, Tao R, Lubineau G 2020 Buckled conductive polymer ribbons in elastomer channels as stretchable fiber conductor Adv. Funct. Mater. 30 1907316 doi: 10.1002/adfm.201907316 [106] Guo J, Yu Y, Wang H, Zhang H, Zhang X, Zhao Y 2019 Conductive polymer hydrogel microfibers from multiflow microfluidics Small 15 1805162 doi: 10.1002/smll.201805162 [107] Yu Y, Guo J, Ma B, Zhang D, Zhao Y 2020 Liquid metal-integrated ultra-elastic conductive microfibers from microfluidics for wearable electronics Sci. Bull. 65 1752-9 doi: 10.1016/j.scib.2020.06.002 [108] Zheng L, Zhu M, Wu B, Li Z, Sun S, Wu P 2021 Conductance-stable liquid metal sheath-core microfibers for stretchy smart fabrics and self-powered sensing Sci. Adv. 7 eabg4041 doi: 10.1126/sciadv.abg4041 [109] Guo J, Yu Y, Sun L, Zhang Z, Zhao Y, Chai R, Shi K 2020 Bio-inspired multicomponent carbon nanotube microfibers from microfluidics for supercapacitor Chem. Eng. J. 397 125517 doi: 10.1016/j.cej.2020.125517 [110] Yu Y, Fu F, Shang L, Cheng Y, Gu Z, Zhao Y 2017 Bioinspired helical microfibers from microfluidics Adv. Mater. 29 1605765 doi: 10.1002/adma.201605765 [111] Guo J, Yu Y, Zhang D, Zhang H, Zhao Y 2021 Morphological hydrogel microfibers with MXene encapsulation for electronic skin Research 2021 7065907 doi: 10.34133/2021/7065907 [112] Hui Y, Yao Y, Qian Q, Luo J, Chen H, Qiao Z, Yu Y, Tao L, Zhou N 2022 Three-dimensional printing of soft hydrogel electronics Nat. Electron. 5 893-903 doi: 10.1038/s41928-022-00887-8 [113] Shin S-J, Park J-Y, Lee J-Y, Park H, Park Y-D, Lee K-B, Whang C-M, Lee S-H 2007 “On the fly” continuous generation of alginate fibers using a microfluidic device Langmuir 23 9104-8 doi: 10.1021/la700818q [114] Cuadros T R, Skurtys O, Aguilera J M 2012 Mechanical properties of calcium alginate fibers produced with a microfluidic device Carbohydrate Polym. 89 1198-206 doi: 10.1016/j.carbpol.2012.03.094 [115] Sun T, Li X, Shi Q, Wang H, Huang Q, Fukuda T 2018 Microfluidic spun alginate hydrogel microfibers and their application in tissue engineering Gels 4 38 doi: 10.3390/gels4020038 [116] Yamada M, Seki M 2018 Multiphase microfluidic processes to produce alginate-based microparticles and fibers J. Chem. Eng. Japan 51 318-30 doi: 10.1252/jcej.17we328 [117] Su J, Zheng Y, Wu H 2009 Generation of alginate microfibers with a roller-assisted microfluidic system Lab Chip 9 996-1001 doi: 10.1039/B813518E [118] Wang X, Jia J, Niu M, Li W, Zhao Y 2023 Living Chinese herbal scaffolds from microfluidic bioprinting for wound healing Research 6 0138 doi: 10.34133/research.0138 [119] Wang X, Yu Y, Yang C, Shang L, Zhao Y, Shen X 2022 Dynamically responsive scaffolds from microfluidic 3D printing for skin flap regeneration Adv. Sci. 9 2201155 doi: 10.1002/advs.202201155 [120] Wang X, Yu Y, Yang C, Shao C, Shi K, Shang L, Ye F, Zhao Y 2021 Microfluidic 3D printing responsive scaffolds with biomimetic enrichment channels for bone regeneration Adv. Funct. Mater. 31 2105190 doi: 10.1002/adfm.202105190 [121] Qing H, Ji Y, Li W, Zhao G, Yang Q, Zhang X, Luo Z, Lu T J, Jin G, Xu F 2019 Microfluidic printing of three-dimensional graphene electroactive microfibrous scaffolds ACS Appl. Mater. Interfaces 12 2049-58 doi: 10.1021/acsami.9b17948 [122] Meng Y, Jin L, Cai B, Wang Z 2017 Facile fabrication of flexible core-shell graphene/conducting polymer microfibers for fibriform supercapacitors RSC Adv. 7 38187-92 doi: 10.1039/C7RA06641D [123] Xue F, et al 2024 Two way workable microchanneled hydrogel suture to diagnose, treat and monitor the infarcted heart Nat. Commun. 15 864 doi: 10.1038/s41467-024-45144-y [124] Wang P, Zhou J, Xu B, Lu C, Meng Q, Liu H 2020 Bioinspired antiPlateau-Rayleighinstability on dual parallel fibers Adv. Mater. 32 2003453 doi: 10.1002/adma.202003453 [125] Ma W, Liu D, Ling S, Zhang J, Chen Z, Lu Y, Xu J 2021 High-throughput and controllable fabrication of helical microfibers by hydrodynamically focusing flow ACS Appl. Mater. Interfaces 13 59392-9 doi: 10.1021/acsami.1c20720 [126] Ma W, Ling S, Zhang J, Chen Z, Xu J 2022 Microfluidic fabrication of calcium alginate helical microfibers for highly stretchable wound dressing J. Polym. Sci. 60 1741-9 doi: 10.1002/pol.20220041 [127] Yu Y, Shang L, Gao W, Zhao Z, Wang H, Zhao Y 2017 Microfluidic lithography of bioinspired helical micromotors Angew. Chem. 129 12295-9 doi: 10.1002/ange.201705667 [128] Dong Y, Wang L, Wang J, Wang S, Wang Y, Jin D, Chen P, Du W, Zhang L, Liu B-F 2020 Graphene-based helical micromotors constructed by ‘microscale liquid rope-coil effect’ with microfluidics ACS Nano 14 16600-13 doi: 10.1021/acsnano.0c07067 [129] Liu J D, Du X Y, Chen S 2021 A phase inversionbased microfluidic fabrication of helical microfibers towards versatile artificial abdominal skin Angew. Chem., Int. Ed. 60 25089-96 doi: 10.1002/anie.202110888 [130] Shang L, Fu F, Cheng Y, Yu Y, Wang J, Gu Z, Zhao Y 2017 Bioinspired multifunctional spindleknotted microfibers from microfluidics Small 13 1600286 doi: 10.1002/smll.201600286 [131] Liu Y, Yang N, Li X, Li J, Pei W, Xu Y, Hou Y, Zheng Y 2020 Water harvesting of bioinspired microfibers with rough spindleknots from microfluidics Small 16 1901819 doi: 10.1002/smll.201901819 [132] He X-H, Wang W, Liu Y-M, Jiang M-Y, Wu F, Deng K, Liu Z, Ju X-J, Xie R, Chu L-Y 2015 Microfluidic fabrication of bio-inspired microfibers with controllable magnetic spindle-knots for 3D assembly and water collection ACS Appl. Mater. Interfaces 7 17471-81 doi: 10.1021/acsami.5b05075 [133] Zhu P, Wang L 2022 Microfluidic spinning of symmetric microfibers Microfluidics-Enabled Soft ManufactureSpringer 137-56 [134] Wang S, Zhu L, Yu D, Han X, Zhong L, Hou Y, Zheng Y 2023 Bioinspired robust helicalgroove spindleknot microfibers for largescale water collection Adv. Funct. Mater. 33 2305244 doi: 10.1002/adfm.202305244 [135] Tian Y, Zhu P, Tang X, Zhou C, Wang J, Kong T, Xu M, Wang L 2017 Large-scale water collection of bioinspired cavity-microfibers Nat. Commun. 8 1080 doi: 10.1038/s41467-017-01157-4 [136] Yang C, Li W, Zhao Y, Shang L 2024 Flexible liquid-diode microtubes from multimodal microfluidics Proc. Natl Acad. Sci. 121 e2402331121 doi: 10.1073/pnas.2402331121 [137] Sharifi F, Patel B B, McNamara M C, Meis P J, Roghair M N, Lu M, Montazami R, Sakaguchi D S, Hashemi N N 2019 Photo-cross-linked poly (ethylene glycol) diacrylate hydrogels: spherical microparticles to bow tie-shaped microfibers ACS Appl. Mater. Interfaces 11 18797-807 doi: 10.1021/acsami.9b05555 [138] Shi X, Ostrovidov S, Zhao Y, Liang X, Kasuya M, Kurihara K, Nakajima K, Bae H, Wu H, Khademhosseini A 2015 Microfluidic spinning of cellresponsive grooved microfibers Adv. Funct. Mater. 25 2250-9 doi: 10.1002/adfm.201404531 [139] Zhao M, Liu H, Zhang X, Wang H, Tao T, Qin J 2021 A flexible microfluidic strategy to generate grooved microfibers for guiding cell alignment Biomater. Sci. 9 4880-90 doi: 10.1039/D1BM00549A [140] Zamarayeva A M, Ostfeld A E, Wang M, Duey J K, Deckman I, Lechêne B P, Davies G, Steingart D A, Arias A C 2017 Flexible and stretchable power sources for wearable electronics Sci. Adv. 3 e1602051 doi: 10.1126/sciadv.1602051 [141] Dubal D P, Chodankar N R, Kim D-H, Gomez-Romero P 2018 Towards flexible solid-state supercapacitors for smart and wearable electronics Chem. Soc. Rev. 47 2065-129 doi: 10.1039/c7cs00505a [142] Zhang H, Cao Y, Chee M O L, Dong P, Ye M, Shen J 2019 Recent advances in micro-supercapacitors Nanoscale 11 5807-21 doi: 10.1039/C9NR01090D [143] Chen D, Jiang K, Huang T, Shen G 2020 Recent advances in fiber supercapacitors: materials, device configurations, and applications Adv. Mater. 32 1901806 doi: 10.1002/adma.201901806 [144] Qiu H, Cheng H, Meng J, Wu G, Chen S 2020 Magnetothermal microfluidicassisted hierarchical microfibers for ultrahighenergydensity supercapacitors Angew. Chem. 132 8008-17 doi: 10.1002/ange.202000951 [145] Qiu Y, Ren Y, Jia X, Li H, Zhang M 2023 Microfluidic construction of polypyrrole-coated core-sheath polyaniline/graphene hybrid fibers with excellent properties for wearable supercapacitors ACS Appl. Energy Mater. 6 11189-98 doi: 10.1021/acsaem.3c02056 [146] Wu X, Wu G, Tan P, Cheng H, Hong R, Wang F, Chen S 2018 Construction of microfluidic-oriented polyaniline nanorod arrays/graphene composite fibers for application in wearable micro-supercapacitors J. Mater. Chem. A 6 8940-6 doi: 10.1039/C7TA11135E [147] Sun H, Zhang Y, Zhang J, Sun X, Peng H 2017 Energy harvesting and storage in 1D devices Nat. Rev. Mater. 2 1-12 doi: 10.1038/natrevmats.2017.23 [148] Peng H, Peng H 2015 Fiber-shaped supercapacitor Fiber-Shaped Energy Harvesting and Storage DevicesSpringer 117-45 [149] Wu G, Tan P, Wu X, Peng L, Cheng H, Wang C-F, Chen W, Yu Z, Chen S 2017 Highperformance wearable microsupercapacitors based on microfluidicdirected nitrogendoped graphene fiber electrodes Adv. Funct. Mater. 27 1702493 doi: 10.1002/adfm.201702493 [150] Zhou L, et al 2024 Phase inversion-based microfluidic-fiber-spinning assembly of self-supported rGO/PEDOT fiberfabrics towards wearable supercapacitors Adv. Fiber Mater. 6 1-12 doi: 10.1007/s42765-024-00373-0 [151] Wu M, Yao K, Li D, Huang X, Liu Y, Wang L, Song E, Yu J, Yu X 2021 Self-powered skin electronics for energy harvesting and healthcare monitoring Mater. Today Energy 21 100786 doi: 10.1016/j.mtener.2021.100786 [152] Du X, Zhang K 2022 Recent progress in fibrous high-entropy energy harvesting devices for wearable applications Nano Energy 101 107600 doi: 10.1016/j.nanoen.2022.107600 [153] Ning C, Dong K, Cheng R, Yi J, Ye C, Peng X, Sheng F, Jiang Y, Wang Z L 2021 Flexible and stretchable fibershaped triboelectric nanogenerators for biomechanical monitoring and humaninteractive sensing Adv. Funct. Mater. 31 2006679 doi: 10.1002/adfm.202006679 [154] Yang Y, et al 2018 Liquid-metal-based super-stretchable and structure-designable triboelectric nanogenerator for wearable electronics ACS Nano 12 2027-34 doi: 10.1021/acsnano.8b00147 [155] Wang Z L, Zhu G, Yang Y, Wang S, Pan C 2012 Progress in nanogenerators for portable electronics Mater. Today 15 532-43 doi: 10.1016/S1369-7021(13)70011-7 [156] Ding W, Wang A C, Wu C, Guo H, Wang Z L 2019 Human-machine interfacing enabled by triboelectric nanogenerators and tribotronics Adv. Mater. Technol. 4 1800487 doi: 10.1002/admt.201800487 [157] Yuan Z, Han S-T, Gao W, Pan C 2021 Flexible and stretchable strategies for electronic skins: materials, structure, and integration ACS Appl. Electron. Mater. 4 1-26 doi: 10.1021/acsaelm.1c00025 [158] Lin S, Yang W, Zhu X, Lan Y, Li K, Zhang Q, Li Y, Hou C, Wang H 2024 Triboelectric micro-flexure-sensitive fiber electronics Nat. Commun. 15 2374 doi: 10.1038/s41467-024-46516-0 [159] Zou K, et al 2024 A highly selective implantable electrochemical fiber sensor for real-time monitoring of blood homovanillic acid ACS Nano 18 7485-95 doi: 10.1021/acsnano.3c11641 [160] Lee J, et al 2021 Stretchable and suturable fibre sensors for wireless monitoring of connective tissue strain Nat. Electron. 4 291-301 doi: 10.1038/s41928-021-00557-1 [161] Herbert R, Lim H-R, Rigo B, Yeo W-H 2022 Fully implantable wireless batteryless vascular electronics with printed soft sensors for multiplex sensing of hemodynamics Sci. Adv. 8 eabm1175 doi: 10.1126/sciadv.abm1175 [162] Wang L, et al 2020 Functionalized helical fibre bundles of carbon nanotubes as electrochemical sensors for long-term in vivo monitoring of multiple disease biomarkers Nat. Biomed. Eng. 4 159-71 doi: 10.1038/s41551-019-0462-8 [163] Chen N, Wei W, Ning N, Wu H, Tian M 2024 All-Polymeric stretchable conductive fiber with versatile intelligent wearable applications via microfluidic spinning technology Chem. Eng. J. 487 150741 doi: 10.1016/j.cej.2024.150741 [164] Yu Y, Guo J, Sun L, Zhang X, Zhao Y 2019 Microfluidic generation of microsprings with ionic liquid encapsulation for flexible electronics Research 2019 6906275 doi: 10.34133/2019/6906275 [165] Ding X, Yu Y, Shang L, Zhao Y 2022 Histidine-triggered GO hybrid hydrogels for microfluidic 3D printing ACS Nano 16 19533-42 doi: 10.1021/acsnano.2c09850 [166] Taylor L, et al 2023 Smart sutures Advanced Technologies and Polymer Materials for Surgical SuturesElsevier 129-48 [167] Kalidasan V, et al 2021 Wirelessly operated bioelectronic sutures for the monitoring of deep surgical wounds Nat. Biomed. Eng. 5 1217-27 doi: 10.1038/s41551-021-00802-0 [168] Alsaedi M K, Riccio R E, Sharma A, Xia J, Owyeung R E, Romero L M, Sonkusale S 2023 Smart sensing flexible sutures for glucose monitoring in house sparrows Analyst 148 5714-23 doi: 10.1039/D3AN01488F [169] Li Y, et al 2023 Advances, challenges, and prospects for surgical suture materials Acta Biomater. 168 78-112 doi: 10.1016/j.actbio.2023.07.041 [170] Lee Y, et al 2021 A multifunctional electronic suture for continuous strain monitoring and on-demand drug release Nanoscale 13 18112-24 doi: 10.1039/D1NR04508C