留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Microfluidics-derived microfibers in flexible bioelectronics

Chaoyu Yang Xingyu Hou Li Zhang

Chaoyu Yang, Xingyu Hou, Li Zhang. Microfluidics-derived microfibers in flexible bioelectronics[J]. Materials Futures, 2024, 3(3): 032401. doi: 10.1088/2752-5724/ad667b
Citation: Chaoyu Yang, Xingyu Hou, Li Zhang. Microfluidics-derived microfibers in flexible bioelectronics[J]. Materials Futures, 2024, 3(3): 032401. doi: 10.1088/2752-5724/ad667b
Topical Review •
OPEN ACCESS

Microfluidics-derived microfibers in flexible bioelectronics

doi: 10.1088/2752-5724/ad667b
  • Figure  1.  Overview of the microfluidic-derived functional microfibers and their applications in flexible bioelectronics.

    Figure  2.  Schematics of the typical preparation process for (a) single, (b) core-shell, (c) helical, and (d) hemline-shaped microfibers using microfluidics.

    Figure  3.  (a) Schematics of the wet-spinning apparatus by directly injecting the homogeneously dispersed phase into a coagulation bath reproduced from [70]. CC BY 4.0; (b) schematic illustration of the microfluidic fabrication process with in situ polymerization. [101] John Wiley & Sons. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim; (c) schematic of the microfluidic fabrication of microfibers with gridded structures. Reprinted with permission from [98]. Copyright (2021) American Chemical Society; (d) microfluidic integration with 3D printing for constructing 3D scaffold structures. Reproduced from [112], with permission from Springer Nature.

    Figure  4.  (a) Core-shell microfibers fabricated using microfluidic spinning combined with a coating technique. Reproduced with permission from [103]. CC BY-NC-ND 4.0; (b) hollow-channel microfibers created using coaxial spinning involving a sacrificial inner layer. Reproduced from [123]. CC BY 4.0; (c) conductive microfibers with enhanced mechanical properties fabricated using coaxial spinning combined with a stretching-drying-buckling process. [105] John Wiley & Sons. © 2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim; (d) core-shell microfibers with a PEDOT:PSS core produced entirely through microfluidic spinning. [106] John Wiley & Sons. © 2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim; (e) ultra-elastic microfibers integrated with liquid metal, manufactured using microfluidic coaxial microfluidic spinning. Reprinted from [107], © 2020 Science China Press. Published by Elsevier B.V. and Science China Press. All rights reserved.

    Figure  5.  (a) Single-step fabrication of multicomponent carbon nanotubes microfiber by multi-channel co-flow microfluidics. Reprinted from [109], © 2020 Elsevier B.V. All rights reserved; (b), (c) helical microfibers. [110] John Wiley & Sons. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim and MXene encapsulated core-shell helical microfibers from microfluidics by using the rope-coil effect. Reproduced from [111]. CC BY 4.0; (d), (e)spindle-knot. Reprinted from [97], © 2022 Elsevier B.V. All rights reserved and hemline-shaped microfibers from piezoelectric microfluidics. Reproduced from [95], with permission from Springer Nature.

    Figure  6.  (a) Flexible graphene fiber supercapacitor integration [149]. John Wiley & Sons. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim; (b) carbon nanotube microfiber for energy storage. Reprinted from [109], © 2020 Elsevier B.V. All rights reserved; (c) wearable self-powered device with flexible supercapacitor. Reproduced from [150], with permission from Springer Nature.

    Figure  7.  Utilization of sheath-core microfibers/fabrics for self-powered sensor deployment.

    Figure  8.  (a) Fiber-based wrist bending detection and facial muscle monitoring. Reprinted from [163], © 2024 Published by Elsevier B.V; (b) spiral fibers embedded within flexible films for joint monitoring. Reproduced from [164]. CC BY 4.0; (c) addition of graphene oxide on the outer layer for simultaneous temperature and motion monitoring. Reproduced with permission from [103]. CC BY-NC-ND 4.0; (d) utilization of 3D-printed grid-like structure for joint sensing. Reprinted with permission from [98]. Copyright (2021) American Chemical Society.

    Figure  9.  (a) A smart drug-release suture incorporates a core made of conductive fiber strain sensors and a thermoresponsive polymer shell containing medications. Reproduced from [170] with permission from the Royal Society of Chemistry; (b) schematic of the diagnosis, treatment, and monitoring suture applicable to various tissues, capable of transmitting signals from infarcted heart tissue and delivering drugs on demand. Reproduced from [123]. CC BY 4.0.

    Table  1.   Summary of different fiber types from microfluidics and their applications.

    Fiber typeMaterialsConfigurationApplicationsReferences
    Single fiberNa-Alg/AAM/MXeneGridded microfibersJoint monitoring[98]
    Single fiberFibroinWoven fabricSensing hazardous situations, human-machine interfaces[70]
    Single fiberCNT/ MXene/PU/ AuCNSMicrofiberMultifunctional sensing and energy harvesting[99]
    Single fiberGO/NIPAM/AlginateMicrofiberElectro-responsive sensor[100]
    Single fiberPANI/MCNTs-rGO/TPUMicrofiber bundlesSupercapacitor[101]
    Single fiberCNBs/TPUWoven fabricChemical sensors[71]
    Core-shell fiberInner: MXene Outer: Na-Alg/PVAGridded microfibersMotion monitoring and gesture recognition[102]
    Core-shell fiberInner: Na-Alg Outer: GOStretchable filmGesture recognition[103]
    Core-shell fiberInner: PEDOT/PSS Outer: PU/GraphineWoven fabricTemperature Monitoring[104]
    Core-shell fiberInner: PEDOT/PSS/PBP Outer: TPEMicrofiberStretchable conductors[105]
    Core-shell fiberInner: PEDOT/PSS Outer: AlgStretchable filmBending detection[106]
    Core-shell fiberInner: liquid metal Outer: PUWoven fabricWearable electronics[107]
    Core-shell fiberInner: liquid metal Outer: PVDF-HFP-TFE/PEGDAWoven fabricSelf-powered sensing[108]
    Hierarchical microfibersInner: CNTS Outer: PUWoven fabricSupercapacitor[109]
    Helical fiberAlginateMicrofiberMechanical sensors[110]
    Core-shell helical fiberInner: Mxene Outer: AlgFlexible filmMotion monitoring[111]
    Spindle-knot microfiberGO/NIPAMMicrofiberWater manipulation[97]
    Hemline-shaped microfiberPEGDAMicrofiberWater transportation[95]
    下载: 导出CSV
  • [1] Yang Y, Gao W 2019 Wearable and flexible electronics for continuous molecular monitoring Chem. Soc. Rev. 48 1465-91 doi: 10.1039/C7CS00730B
    [2] Tricoli A, Nasiri N, De S 2017 Wearable and miniaturized sensor technologies for personalized and preventive medicine Adv. Funct. Mater. 27 1605271 doi: 10.1002/adfm.201605271
    [3] Dunn J, Runge R, Snyder M 2018 Wearables and the medical revolution Pers. Med. 15 429-48 doi: 10.2217/pme-2018-0044
    [4] Bonato P 2010 Wearable sensors and systems IEEE Eng. Med. Biol. Mag. 29 25-36 doi: 10.1109/MEMB.2010.936554
    [5] Dong R, et al 2024 Stretchable, self-rolled, microfluidic electronics enable conformable neural interfaces of brain and vagus neuromodulation ACS Nano 18 1702-13 doi: 10.1021/acsnano.3c10028
    [6] Nightingale A M, Leong C L, Burnish R A, Hassan S-U, Zhang Y, Clough G F, Boutelle M G, Voegeli D, Niu X 2019 Monitoring biomolecule concentrations in tissue using a wearable droplet microfluidic-based sensor Nat. Commun. 10 2741 doi: 10.1038/s41467-019-10401-y
    [7] Zhong B, et al 2024 Interindividual-and blood-correlated sweat phenylalanine multimodal analytical biochips for tracking exercise metabolism Nat. Commun. 15 624 doi: 10.1038/s41467-024-44751-z
    [8] Li F, Xue H, Lin X, Zhao H, Zhang T 2022 Wearable temperature sensor with high resolution for skin temperature monitoring ACS Appl. Mater. Interfaces 14 43844-52 doi: 10.1021/acsami.2c15687
    [9] Kwon K, et al 2021 An on-skin platform for wireless monitoring of flow rate, cumulative loss and temperature of sweat in real time Nat. Electron. 4 302-12 doi: 10.1038/s41928-021-00556-2
    [10] Gao W, et al 2016 Fully integrated wearable sensor arrays for multiplexed in situ perspiration analysis Nature 529 509-14 doi: 10.1038/nature16521
    [11] Pu Z, Zhang X, Yu H, Tu J, Chen H, Liu Y, Su X, Wang R, Zhang L, Li D 2021 A thermal activated and differential self-calibrated flexible epidermal biomicrofluidic device for wearable accurate blood glucose monitoring Sci. Adv. 7 eabd0199 doi: 10.1126/sciadv.abd0199
    [12] Luan H, et al 2021 Complex 3D microfluidic architectures formed by mechanically guided compressive buckling Sci. Adv. 7 eabj3686 doi: 10.1126/sciadv.abj3686
    [13] Chung H U, et al 2020 Skin-interfaced biosensors for advanced wireless physiological monitoring in neonatal and pediatric intensive-care units Nat. Med. 26 418-29 doi: 10.1038/s41591-020-0792-9
    [14] Romano C, Schena E, Formica D, Massaroni C 2022 Comparison between chest-worn accelerometer and gyroscope performance for heart rate and respiratory rate monitoring Biosensors 12 834 doi: 10.3390/bios12100834
    [15] Zhu P, Peng H, Rwei A Y 2022 Flexible, wearable biosensors for digital health Med. Novel Technol. Devices 14 100118 doi: 10.1016/j.medntd.2022.100118
    [16] Tang L, Yang J, Wang Y, Deng R 2023 Recent advances in cardiovascular disease biosensors and monitoring technologies ACS Sens. 8 956-73 doi: 10.1021/acssensors.2c02311
    [17] Shetti N P, Mishra A, Basu S, Mascarenhas R J, Kakarla R R, Aminabhavi T M 2020 Skin-patchable electrodes for biosensor applications: a review ACS Biomater. Sci. Eng. 6 1823-35 doi: 10.1021/acsbiomaterials.9b01659
    [18] Zini M, Baù M, Nastro A, Ferrari M, Ferrari V 2023 Flexible passive sensor patch with contactless readout for measurement of human body temperature Biosensors 13 572 doi: 10.3390/bios13060572
    [19] Su Y, et al 2020 Printable, highly sensitive flexible temperature sensors for human body temperature monitoring: a review Nanoscale Res. Lett. 15 1-34 doi: 10.1186/s11671-020-03428-4
    [20] Rachim V P, Chung W-Y 2019 Multimodal wrist biosensor for wearable cuff-less blood pressure monitoring system Sci. Rep. 9 7947 doi: 10.1038/s41598-019-44348-3
    [21] Crepaldi P C, Pimenta T C, Moreno R L, Rodriguez E C 2011 A low power CMOS voltage regulator for a wireless blood pressure biosensor IEEE Trans. Instrum. Meas. 61 729-39 doi: 10.1109/TIM.2011.2172121
    [22] Phan D T, Phan T T V, Huynh T C, Park S, Choi J, Oh J 2022 Noninvasive, wearable multi biosensors for continuous, long-term monitoring of blood pressure via internet of things applications Comput. Electr. Eng. 102 108187 doi: 10.1016/j.compeleceng.2022.108187
    [23] Wu C-H, Ma H J H, Baessler P, Balanay R K, Ray T R 2023 Skin-interfaced microfluidic systems with spatially engineered 3D fluidics for sweat capture and analysis Sci. Adv. 9 eadg4272 doi: 10.1126/sciadv.adg4272
    [24] Ma X, et al 2023 A monolithically integrated in-textile wristband for wireless epidermal biosensing Sci. Adv. 9 eadj2763 doi: 10.1126/sciadv.adj2763
    [25] Wang L, Wang L, Zhang Y, Pan J, Li S, Sun X, Zhang B, Peng H 2018 Weaving sensing fibers into electrochemical fabric for realtime health monitoring Adv. Funct. Mater. 28 1804456 doi: 10.1002/adfm.201804456
    [26] Yang D S, Ghaffari R, Rogers J A 2023 Sweat as a diagnostic biofluid Science 379 760-1 doi: 10.1126/science.abq5916
    [27] Li R, Nie B, Digiglio P, Pan T 2014 Microflotronics: a flexible, transparent, pressuresensitive microfluidic film Adv. Funct. Mater. 24 6195-203 doi: 10.1002/adfm.201401527
    [28] Gao B, Liao J, Guo M, Liu H, He B, Gu Z 2019 Biomimetic metastructured electromicrofluidics Adv. Funct. Mater. 29 1906745 doi: 10.1002/adfm.201906745
    [29] Zhang B, et al 2024 A three-dimensional liquid diode for soft, integrated permeable electronics Nature 628 84-92 doi: 10.1038/s41586-024-07161-1
    [30] Zhang K, et al 2024 Design and fabrication of wearable electronic textiles using twisted fiber-based threads Nat. Protocols 19 1-33 doi: 10.1038/s41596-024-00956-6
    [31] Wang L, Fu X, He J, Shi X, Chen T, Chen P, Wang B, Peng H 2020 Application challenges in fiber and textile electronics Adv. Mater. 32 1901971 doi: 10.1002/adma.201901971
    [32] Yu L, Yeo J C, Soon R H, Yeo T, Lee H H, Lim C T 2018 Highly stretchable, weavable, and washable piezoresistive microfiber sensors ACS Appl. Mater. Interfaces 10 12773-80 doi: 10.1021/acsami.7b19823
    [33] Zeng W, Shu L, Li Q, Chen S, Wang F, Tao X-M 2014 Fiberbased wearable electronics: a review of materials, fabrication, devices, and applications Adv. Mater. 26 5310-36 doi: 10.1002/adma.201400633
    [34] Ye L, et al 2024 A rechargeable calcium-oxygen battery that operates at room temperature Nature 626 313-8 doi: 10.1038/s41586-023-06949-x
    [35] Hu X, et al 2024 Wearable and regenerable electrochemical fabric sensing system based on molecularly imprinted polymers for realtime stress management Adv. Funct. Mater. 34 2312897 doi: 10.1002/adfm.202312897
    [36] Wang C, Xia K, Wang H, Liang X, Yin Z, Zhang Y 2019 Advanced carbon for flexible and wearable electronics Adv. Mater. 31 1801072 doi: 10.1002/adma.201801072
    [37] He H, Qin Y, Zhu Z, Jiang Q, Ouyang S, Wan Y, Qu X, Xu J, Yu Z 2023 Temperature-arousing self-powered fire warning E-textile based on p-n segment coaxial aerogel fibers for active fire protection in firefighting clothing Nano-Micro Lett. 15 226 doi: 10.1007/s40820-023-01200-8
    [38] Yin J, et al 2023 Smart textiles for self-powered biomonitoring Med-X 1 3 doi: 10.1007/s44258-023-00001-3
    [39] Li J H, Chen J H, Xu F 2018 Sensitive and wearable optical microfiber sensor for human health monitoring Adv. Mater. Technol. 3 1800296 doi: 10.1002/admt.201800296
    [40] Chen J, He T, Du Z, Lee C 2023 Review of textile-based wearable electronics: from the structure of the multi-level hierarchy textiles Nano Energy 117 108898 doi: 10.1016/j.nanoen.2023.108898
    [41] Wei L, Wang S, Shan M, Li Y, Wang Y, Wang F, Wang L, Mao J 2023 Conductive fibers for biomedical applications Bioact. Mater. 22 343-64 doi: 10.1016/j.bioactmat.2022.10.014
    [42] Liang H, Wang Y, Kan L, Xu K, Dong T, Wang W, Gao B, Jiang C 2022 Wearable and multifunctional self-mixing microfiber sensor for human health monitoring IEEE Sens. J. 23 2122-7 doi: 10.1109/JSEN.2022.3225196
    [43] Yang W, et al 2024 Single body-coupled fiber enables chipless textile electronics Science 384 74-81 doi: 10.1126/science.adk3755
    [44] Shi X, et al 2021 Large-area display textiles integrated with functional systems Nature 591 240-5 doi: 10.1038/s41586-021-03295-8
    [45] He J, et al 2021 Scalable production of high-performing woven lithium-ion fibre batteries Nature 597 57-63 doi: 10.1038/s41586-021-03772-0
    [46] He Q, Wang Z, Wang Y, Wang Z, Li C, Annapooranan R, Zeng J, Chen R, Cai S 2021 Electrospun liquid crystal elastomer microfiber actuator Sci. Robot. 6 eabi9704 doi: 10.1126/scirobotics.abi9704
    [47] Kong B, Liu R, Guo J, Lu L, Zhou Q, Zhao Y 2023 Tailoring micro/nano-fibers for biomedical applications Bioact. Mater. 19 328-47 doi: 10.1016/j.bioactmat.2022.04.016
    [48] Xu Z, Wu M, Ye Q, Chen D, Liu K, Bai H 2022 Spinning from nature: engineered preparation and application of high-performance bio-based fibers Engineering 14 100-12 doi: 10.1016/j.eng.2021.06.030
    [49] Liu X, et al 2024 Magnetic soft microfiberbots for robotic embolization Sci. Robot. 9 eadh2479 doi: 10.1126/scirobotics.adh2479
    [50] He Q, Wang Z, Yan Y, Zheng J, Cai S 2016 Polymer nanofiber reinforced double network gel composite: strong, tough and transparent Extreme Mech. Lett. 9 165-70 doi: 10.1016/j.eml.2016.06.004
    [51] Kwon I K, Kidoaki S, Matsuda T 2005 Electrospun nano-to microfiber fabrics made of biodegradable copolyesters: structural characteristics, mechanical properties and cell adhesion potential Biomaterials 26 3929-39 doi: 10.1016/j.biomaterials.2004.10.007
    [52] Du X Y, Li Q, Wu G, Chen S 2019 Multifunctional micro/nanoscale fibers based on microfluidic spinning technology Adv. Mater. 31 1903733 doi: 10.1002/adma.201903733
    [53] Yu Y, Shang L, Guo J, Wang J, Zhao Y 2018 Design of capillary microfluidics for spinning cell-laden microfibers Nat. Protocols 13 2557-79 doi: 10.1038/s41596-018-0051-4
    [54] Shang L, Yu Y, Liu Y, Chen Z, Kong T, Zhao Y 2019 Spinning and applications of bioinspired fiber systems ACS Nano 13 2749-72 doi: 10.1021/acsnano.8b09651
    [55] Xie R, Xu P, Liu Y, Li L, Luo G, Ding M, Liang Q 2018 Necklacelike microfibers with variable knots and perfusable channels fabricated by an oilfree microfluidic spinning process Adv. Mater. 30 1705082 doi: 10.1002/adma.201705082
    [56] Wu R, Kim T 2021 Review of microfluidic approaches for fabricating intelligent fiber devices: importance of shape characteristics Lab Chip 21 1217-40 doi: 10.1039/D0LC01208D
    [57] Yang C, et al 2024 Flexible liquid-diode microtubes from multimodal microfluidics Proc. Natl. Acad. Sci. 121 e2402331121 doi: 10.1073/pnas.2402331121
    [58] Guo J, et al 2021 Microfluidics for flexible electronics Mater. Today 44 105-35 doi: 10.1016/j.mattod.2020.08.017
    [59] Xiao Y, et al 2023 Strong and tough biofibers designed by dual crosslinking for sutures Adv. Funct. Mater. 34 2313131 doi: 10.1002/adfm.202313131
    [60] Ghahremani Honarvar M, Latifi M 2017 Overview of wearable electronics and smart textiles J. Text. Inst. 108 631-52 doi: 10.1080/00405000.2016.1177870
    [61] Weigel N, Li Y, Thiele J, Fery A 2023 From microfluidics to hierarchical hydrogel materials Curr. Opin. Colloid Interface Sci. 64 101673 doi: 10.1016/j.cocis.2022.101673
    [62] Liu Z, et al 2015 Hierarchically buckled sheath-core fibers for superelastic electronics, sensors, and muscles Science 349 400-4 doi: 10.1126/science.aaa7952
    [63] Shi Y, Wei X, Wang K, He D, Yuan Z, Xu J, Wu Z, Wang Z L 2021 Integrated all-fiber electronic skin toward self-powered sensing sports systems ACS Appl. Mater. Interfaces 13 50329-37 doi: 10.1021/acsami.1c13420
    [64] Kang M, Kim T-W 2021 Recent advances in fiber-shaped electronic devices for wearable applications Appl. Sci. 11 6131 doi: 10.3390/app11136131
    [65] Morimoto Y, Kiyosawa M, Takeuchi S 2018 Three-dimensional printed microfluidic modules for design changeable coaxial microfluidic devices Sens. Actuators B 274 491-500 doi: 10.1016/j.snb.2018.07.151
    [66] Nunes J, Tsai S S H, Wan J, Stone H A 2013 Dripping and jetting in microfluidic multiphase flows applied to particle and fibre synthesis J. Phys. D: Appl. Phys. 46 114002 doi: 10.1088/0022-3727/46/11/114002
    [67] Zhu P, Wang L 2022 Microfluidics-Enabled Soft ManufactureSpringer
    [68] Shang L, Cheng Y, Zhao Y 2017 Emerging droplet microfluidics Chem. Rev. 117 7964-8040 doi: 10.1021/acs.chemrev.6b00848
    [69] Ding T, Chan K H, Zhou Y, Wang X-Q, Cheng Y, Li T, Ho G W 2020 Scalable thermoelectric fibers for multifunctional textile-electronics Nat. Commun. 11 6006 doi: 10.1038/s41467-020-19867-7
    [70] Lu H, et al 2024 Intelligent perceptual textiles based on ionic-conductive and strong silk fibers Nat. Commun. 15 3289 doi: 10.1038/s41467-024-47665-y
    [71] Chen Q-L, Wu X, Cheng H, Li Q, Chen S 2019 Facile synthesis of carbon nanobranches towards cobalt ion sensing and high-performance micro-supercapacitors Nanoscale Adv. 1 3614-20 doi: 10.1039/C9NA00181F
    [72] Golecki H M, Yuan H, Glavin C, Potter B, Badrossamay M R, Goss J A, Phillips M D, Parker K K 2014 Effect of solvent evaporation on fiber morphology in rotary jet spinning Langmuir 30 13369-74 doi: 10.1021/la5023104
    [73] Yeh C-H, Lin P-W, Lin Y-C 2010 Chitosan microfiber fabrication using a microfluidic chip and its application to cell cultures Microfluid. Nanofluidics 8 115-21 doi: 10.1007/s10404-009-0485-7
    [74] Song Y, Yu X Q, Chen S 2024 Recent advances in microfluidic fiberspinning chemistry J. Polym. Sci. 62 447-62 doi: 10.1002/pol.20230527
    [75] Khan M, et al 2021 A study on microfluidic spinning technology (MST) used for micro fibre fabrication Adv. Res. Text. Eng. 6 1065 doi: 10.26420/advrestexteng.2021.1065
    [76] Xu F, Wang S, Cao C, Ma W, Zhang X, Du J, Sun W, Ma Q 2022 Microfluidic generation of multifunctional core-shell microfibers promote wound healing Colloids Surf. B 219 112842 doi: 10.1016/j.colsurfb.2022.112842
    [77] Ding X, Zhuge W, Zhang Y, Ding S, Wang J, Zhou G 2023 Microfluidic generation of bioinspired core-shell structured microfibers for cultured meat Chem. Eng. J. 478 147467 doi: 10.1016/j.cej.2023.147467
    [78] Meng Z-J, Wang W, Xie R, Ju X-J, Liu Z, Chu L-Y 2016 Microfluidic generation of hollow Ca-alginate microfibers Lab Chip 16 2673-81 doi: 10.1039/c6lc00640j
    [79] Pham U H, Hanif M, Asthana A, Iqbal S M 2015 A microfluidic device approach to generate hollow alginate microfibers with controlled wall thickness and inner diameter J. Appl. Phys. 117 214703 doi: 10.1063/1.4919361
    [80] Tian Y, Wang Z, Wang L 2021 Hollow fibers: from fabrication to applications Chem. Commun. 57 9166-77 doi: 10.1039/D1CC02991F
    [81] Gao C, Wang X, Du Q, Tang J, Jiang J 2019 Generation of perfusable hollow calcium alginate microfibers with a double co-axial flow capillary microfluidic device Biomicrofluidics 13 064108 doi: 10.1063/1.5116225
    [82] Liu H, Wang Y, Yu Y, Chen W, Jiang L, Qin J 2019 Simple fabrication of inner chitosancoated alginate hollow microfiber with higher stability J. Biomed. Mater. Res. B 107 2527-36 doi: 10.1002/jbm.b.34343
    [83] Ranjan V D, Zeng P, Li B, Zhang Y 2020 In vitro cell culture in hollow microfibers with porous structures Biomater. Sci. 8 2175-88 doi: 10.1039/C9BM01986C
    [84] Nguyen T P T, Tran B M, Lee N Y 2018 Microfluidic approach for the fabrication of cell-laden hollow fibers for endothelial barrier research J. Mater. Chem. B 6 6057-66 doi: 10.1039/C8TB02031K
    [85] Cheng Y, Yu Y, Fu F, Wang J, Shang L, Gu Z, Zhao Y 2016 Controlled fabrication of bioactive microfibers for creating tissue constructs using microfluidic techniques ACS Appl. Mater. Interfaces 8 1080-6 doi: 10.1021/acsami.5b11445
    [86] Ma W, Liu Y, Ling S, Chen Z, Xu J 2023 Generation of helical multi-functional microfiber motors based on modified microfluidic spinning method Chem. Eng. Sci. 282 119339 doi: 10.1016/j.ces.2023.119339
    [87] Jia L, Han F, Yang H, Turnbull G, Wang J, Clarke J, Shu W, Guo M, Li B 2019 Microfluidic fabrication of biomimetic helical hydrogel microfibers for bloodvesselonachip applications Adv. Healthcare Mater. 8 1900435 doi: 10.1002/adhm.201900435
    [88] Wang Y, Wang Z, Sun H, Lyu T, Ma X, Guo J, Tian Y 2024 Multi-functional nano-doped hollow fiber from microfluidics for sensors and micromotors Biosensors 14 186 doi: 10.3390/bios14040186
    [89] Shao L, Gao Q, Zhao H, Xie C, Fu J, Liu Z, Xiang M, He Y 2018 Fiberbased mini tissue with morphologycontrollable GelMA microfibers Small 14 1802187 doi: 10.1002/smll.201802187
    [90] Zhu P, Tang X, Wang L 2016 Droplet generation in co-flow microfluidic channels with vibration Microfluid. Nanofluidics 20 1-10 doi: 10.1007/s10404-016-1717-2
    [91] Zhu P, Wang L 2017 Passive and active droplet generation with microfluidics: a review Lab Chip 17 34-75 doi: 10.1039/C6LC01018K
    [92] Yang C, Yu Y, Zhao Y, Shang L 2023 Bioinspired jellyfish microparticles from microfluidics Research 6 0034 doi: 10.34133/research.0034
    [93] Mak S Y, Li Z, Frere A, Chan T C, Shum H C 2014 Musical interfaces: visualization and reconstruction of music with a microfluidic two-phase flow Sci. Rep. 4 6675 doi: 10.1038/srep06675
    [94] Li Z, Mak S Y, Sauret A, Shum H C 2014 Syringe-pump-induced fluctuation in all-aqueous microfluidic system implications for flow rate accuracy Lab Chip 14 744-9 doi: 10.1039/c3lc51176f
    [95] Yang C, Yu Y, Shang L, Zhao Y 2024 Flexible hemline-shaped microfibers for liquid transport Nat. Chem. Eng. 1 87-96 doi: 10.1038/s44286-023-00001-5
    [96] Yang C, Yu Y, Wang X, Shang L, Zhao Y 2022 Programmable knot microfibers from piezoelectric microfluidics Small 18 2104309 doi: 10.1002/smll.202104309
    [97] Yang C, Yu Y, Wang X, Zu Y, Zhao Y, Shang L 2023 Bioinspired stimuli-responsive spindle-knotted fibers for droplet manipulation Chem. Eng. J. 451 138669 doi: 10.1016/j.cej.2022.138669
    [98] Guo J, Yu Y, Zhang H, Sun L, Zhao Y 2021 Elastic MXene hydrogel microfiber-derived electronic skin for joint monitoring ACS Appl. Mater. Interfaces 13 47800-6 doi: 10.1021/acsami.1c10311
    [99] Lan L, Jiang C, Yao Y, Ping J, Ying Y 2021 A stretchable and conductive fiber for multifunctional sensing and energy harvesting Nano Energy 84 105954 doi: 10.1016/j.nanoen.2021.105954
    [100] Peng L, Liu Y, Gong J, Zhang K, Ma J 2017 Continuous fabrication of multi-stimuli responsive graphene oxide composite hydrogel fibres by microfluidics RSC Adv. 7 19243-9 doi: 10.1039/C7RA01750B
    [101] Tong Y L, Xu B, Du X-F, Cheng H-Y, Wang C-F, Wu G, Chen S 2018 Microfluidicspinningdirected conductive fibers toward flexible microsupercapacitors Macromol. Mater. Eng. 303 1700664 doi: 10.1002/mame.201700664
    [102] Wang J, Qi Y, Gui Y, Wang C, Wu Y, Yao J, Wang J 2024 Ultrastretchable Eskin based on conductive hydrogel microfibers for wearable sensors Small 20 2305951 doi: 10.1002/smll.202305951
    [103] Yu Y, Guo J, Zhang H, Wang X, Yang C, Zhao Y 2022 Shear-flow-induced graphene coating microfibers from microfluidic spinning Innovation 3 100209 doi: 10.1016/j.xinn.2022.100209
    [104] Fan W, et al 2023 An antisweat interference and highly sensitive temperature sensor based on Poly (3, 4-ethylenedioxythiophene)-Poly (styrenesulfonate) fiber coated with polyurethane/graphene for real-time monitoring of body temperature ACS Nano 17 21073-82 doi: 10.1021/acsnano.3c04246
    [105] Zhou J, Tian G, Jin G, Xin Y, Tao R, Lubineau G 2020 Buckled conductive polymer ribbons in elastomer channels as stretchable fiber conductor Adv. Funct. Mater. 30 1907316 doi: 10.1002/adfm.201907316
    [106] Guo J, Yu Y, Wang H, Zhang H, Zhang X, Zhao Y 2019 Conductive polymer hydrogel microfibers from multiflow microfluidics Small 15 1805162 doi: 10.1002/smll.201805162
    [107] Yu Y, Guo J, Ma B, Zhang D, Zhao Y 2020 Liquid metal-integrated ultra-elastic conductive microfibers from microfluidics for wearable electronics Sci. Bull. 65 1752-9 doi: 10.1016/j.scib.2020.06.002
    [108] Zheng L, Zhu M, Wu B, Li Z, Sun S, Wu P 2021 Conductance-stable liquid metal sheath-core microfibers for stretchy smart fabrics and self-powered sensing Sci. Adv. 7 eabg4041 doi: 10.1126/sciadv.abg4041
    [109] Guo J, Yu Y, Sun L, Zhang Z, Zhao Y, Chai R, Shi K 2020 Bio-inspired multicomponent carbon nanotube microfibers from microfluidics for supercapacitor Chem. Eng. J. 397 125517 doi: 10.1016/j.cej.2020.125517
    [110] Yu Y, Fu F, Shang L, Cheng Y, Gu Z, Zhao Y 2017 Bioinspired helical microfibers from microfluidics Adv. Mater. 29 1605765 doi: 10.1002/adma.201605765
    [111] Guo J, Yu Y, Zhang D, Zhang H, Zhao Y 2021 Morphological hydrogel microfibers with MXene encapsulation for electronic skin Research 2021 7065907 doi: 10.34133/2021/7065907
    [112] Hui Y, Yao Y, Qian Q, Luo J, Chen H, Qiao Z, Yu Y, Tao L, Zhou N 2022 Three-dimensional printing of soft hydrogel electronics Nat. Electron. 5 893-903 doi: 10.1038/s41928-022-00887-8
    [113] Shin S-J, Park J-Y, Lee J-Y, Park H, Park Y-D, Lee K-B, Whang C-M, Lee S-H 2007 “On the fly” continuous generation of alginate fibers using a microfluidic device Langmuir 23 9104-8 doi: 10.1021/la700818q
    [114] Cuadros T R, Skurtys O, Aguilera J M 2012 Mechanical properties of calcium alginate fibers produced with a microfluidic device Carbohydrate Polym. 89 1198-206 doi: 10.1016/j.carbpol.2012.03.094
    [115] Sun T, Li X, Shi Q, Wang H, Huang Q, Fukuda T 2018 Microfluidic spun alginate hydrogel microfibers and their application in tissue engineering Gels 4 38 doi: 10.3390/gels4020038
    [116] Yamada M, Seki M 2018 Multiphase microfluidic processes to produce alginate-based microparticles and fibers J. Chem. Eng. Japan 51 318-30 doi: 10.1252/jcej.17we328
    [117] Su J, Zheng Y, Wu H 2009 Generation of alginate microfibers with a roller-assisted microfluidic system Lab Chip 9 996-1001 doi: 10.1039/B813518E
    [118] Wang X, Jia J, Niu M, Li W, Zhao Y 2023 Living Chinese herbal scaffolds from microfluidic bioprinting for wound healing Research 6 0138 doi: 10.34133/research.0138
    [119] Wang X, Yu Y, Yang C, Shang L, Zhao Y, Shen X 2022 Dynamically responsive scaffolds from microfluidic 3D printing for skin flap regeneration Adv. Sci. 9 2201155 doi: 10.1002/advs.202201155
    [120] Wang X, Yu Y, Yang C, Shao C, Shi K, Shang L, Ye F, Zhao Y 2021 Microfluidic 3D printing responsive scaffolds with biomimetic enrichment channels for bone regeneration Adv. Funct. Mater. 31 2105190 doi: 10.1002/adfm.202105190
    [121] Qing H, Ji Y, Li W, Zhao G, Yang Q, Zhang X, Luo Z, Lu T J, Jin G, Xu F 2019 Microfluidic printing of three-dimensional graphene electroactive microfibrous scaffolds ACS Appl. Mater. Interfaces 12 2049-58 doi: 10.1021/acsami.9b17948
    [122] Meng Y, Jin L, Cai B, Wang Z 2017 Facile fabrication of flexible core-shell graphene/conducting polymer microfibers for fibriform supercapacitors RSC Adv. 7 38187-92 doi: 10.1039/C7RA06641D
    [123] Xue F, et al 2024 Two way workable microchanneled hydrogel suture to diagnose, treat and monitor the infarcted heart Nat. Commun. 15 864 doi: 10.1038/s41467-024-45144-y
    [124] Wang P, Zhou J, Xu B, Lu C, Meng Q, Liu H 2020 Bioinspired antiPlateau-Rayleighinstability on dual parallel fibers Adv. Mater. 32 2003453 doi: 10.1002/adma.202003453
    [125] Ma W, Liu D, Ling S, Zhang J, Chen Z, Lu Y, Xu J 2021 High-throughput and controllable fabrication of helical microfibers by hydrodynamically focusing flow ACS Appl. Mater. Interfaces 13 59392-9 doi: 10.1021/acsami.1c20720
    [126] Ma W, Ling S, Zhang J, Chen Z, Xu J 2022 Microfluidic fabrication of calcium alginate helical microfibers for highly stretchable wound dressing J. Polym. Sci. 60 1741-9 doi: 10.1002/pol.20220041
    [127] Yu Y, Shang L, Gao W, Zhao Z, Wang H, Zhao Y 2017 Microfluidic lithography of bioinspired helical micromotors Angew. Chem. 129 12295-9 doi: 10.1002/ange.201705667
    [128] Dong Y, Wang L, Wang J, Wang S, Wang Y, Jin D, Chen P, Du W, Zhang L, Liu B-F 2020 Graphene-based helical micromotors constructed by ‘microscale liquid rope-coil effect’ with microfluidics ACS Nano 14 16600-13 doi: 10.1021/acsnano.0c07067
    [129] Liu J D, Du X Y, Chen S 2021 A phase inversionbased microfluidic fabrication of helical microfibers towards versatile artificial abdominal skin Angew. Chem., Int. Ed. 60 25089-96 doi: 10.1002/anie.202110888
    [130] Shang L, Fu F, Cheng Y, Yu Y, Wang J, Gu Z, Zhao Y 2017 Bioinspired multifunctional spindleknotted microfibers from microfluidics Small 13 1600286 doi: 10.1002/smll.201600286
    [131] Liu Y, Yang N, Li X, Li J, Pei W, Xu Y, Hou Y, Zheng Y 2020 Water harvesting of bioinspired microfibers with rough spindleknots from microfluidics Small 16 1901819 doi: 10.1002/smll.201901819
    [132] He X-H, Wang W, Liu Y-M, Jiang M-Y, Wu F, Deng K, Liu Z, Ju X-J, Xie R, Chu L-Y 2015 Microfluidic fabrication of bio-inspired microfibers with controllable magnetic spindle-knots for 3D assembly and water collection ACS Appl. Mater. Interfaces 7 17471-81 doi: 10.1021/acsami.5b05075
    [133] Zhu P, Wang L 2022 Microfluidic spinning of symmetric microfibers Microfluidics-Enabled Soft ManufactureSpringer 137-56
    [134] Wang S, Zhu L, Yu D, Han X, Zhong L, Hou Y, Zheng Y 2023 Bioinspired robust helicalgroove spindleknot microfibers for largescale water collection Adv. Funct. Mater. 33 2305244 doi: 10.1002/adfm.202305244
    [135] Tian Y, Zhu P, Tang X, Zhou C, Wang J, Kong T, Xu M, Wang L 2017 Large-scale water collection of bioinspired cavity-microfibers Nat. Commun. 8 1080 doi: 10.1038/s41467-017-01157-4
    [136] Yang C, Li W, Zhao Y, Shang L 2024 Flexible liquid-diode microtubes from multimodal microfluidics Proc. Natl Acad. Sci. 121 e2402331121 doi: 10.1073/pnas.2402331121
    [137] Sharifi F, Patel B B, McNamara M C, Meis P J, Roghair M N, Lu M, Montazami R, Sakaguchi D S, Hashemi N N 2019 Photo-cross-linked poly (ethylene glycol) diacrylate hydrogels: spherical microparticles to bow tie-shaped microfibers ACS Appl. Mater. Interfaces 11 18797-807 doi: 10.1021/acsami.9b05555
    [138] Shi X, Ostrovidov S, Zhao Y, Liang X, Kasuya M, Kurihara K, Nakajima K, Bae H, Wu H, Khademhosseini A 2015 Microfluidic spinning of cellresponsive grooved microfibers Adv. Funct. Mater. 25 2250-9 doi: 10.1002/adfm.201404531
    [139] Zhao M, Liu H, Zhang X, Wang H, Tao T, Qin J 2021 A flexible microfluidic strategy to generate grooved microfibers for guiding cell alignment Biomater. Sci. 9 4880-90 doi: 10.1039/D1BM00549A
    [140] Zamarayeva A M, Ostfeld A E, Wang M, Duey J K, Deckman I, Lechêne B P, Davies G, Steingart D A, Arias A C 2017 Flexible and stretchable power sources for wearable electronics Sci. Adv. 3 e1602051 doi: 10.1126/sciadv.1602051
    [141] Dubal D P, Chodankar N R, Kim D-H, Gomez-Romero P 2018 Towards flexible solid-state supercapacitors for smart and wearable electronics Chem. Soc. Rev. 47 2065-129 doi: 10.1039/c7cs00505a
    [142] Zhang H, Cao Y, Chee M O L, Dong P, Ye M, Shen J 2019 Recent advances in micro-supercapacitors Nanoscale 11 5807-21 doi: 10.1039/C9NR01090D
    [143] Chen D, Jiang K, Huang T, Shen G 2020 Recent advances in fiber supercapacitors: materials, device configurations, and applications Adv. Mater. 32 1901806 doi: 10.1002/adma.201901806
    [144] Qiu H, Cheng H, Meng J, Wu G, Chen S 2020 Magnetothermal microfluidicassisted hierarchical microfibers for ultrahighenergydensity supercapacitors Angew. Chem. 132 8008-17 doi: 10.1002/ange.202000951
    [145] Qiu Y, Ren Y, Jia X, Li H, Zhang M 2023 Microfluidic construction of polypyrrole-coated core-sheath polyaniline/graphene hybrid fibers with excellent properties for wearable supercapacitors ACS Appl. Energy Mater. 6 11189-98 doi: 10.1021/acsaem.3c02056
    [146] Wu X, Wu G, Tan P, Cheng H, Hong R, Wang F, Chen S 2018 Construction of microfluidic-oriented polyaniline nanorod arrays/graphene composite fibers for application in wearable micro-supercapacitors J. Mater. Chem. A 6 8940-6 doi: 10.1039/C7TA11135E
    [147] Sun H, Zhang Y, Zhang J, Sun X, Peng H 2017 Energy harvesting and storage in 1D devices Nat. Rev. Mater. 2 1-12 doi: 10.1038/natrevmats.2017.23
    [148] Peng H, Peng H 2015 Fiber-shaped supercapacitor Fiber-Shaped Energy Harvesting and Storage DevicesSpringer 117-45
    [149] Wu G, Tan P, Wu X, Peng L, Cheng H, Wang C-F, Chen W, Yu Z, Chen S 2017 Highperformance wearable microsupercapacitors based on microfluidicdirected nitrogendoped graphene fiber electrodes Adv. Funct. Mater. 27 1702493 doi: 10.1002/adfm.201702493
    [150] Zhou L, et al 2024 Phase inversion-based microfluidic-fiber-spinning assembly of self-supported rGO/PEDOT fiberfabrics towards wearable supercapacitors Adv. Fiber Mater. 6 1-12 doi: 10.1007/s42765-024-00373-0
    [151] Wu M, Yao K, Li D, Huang X, Liu Y, Wang L, Song E, Yu J, Yu X 2021 Self-powered skin electronics for energy harvesting and healthcare monitoring Mater. Today Energy 21 100786 doi: 10.1016/j.mtener.2021.100786
    [152] Du X, Zhang K 2022 Recent progress in fibrous high-entropy energy harvesting devices for wearable applications Nano Energy 101 107600 doi: 10.1016/j.nanoen.2022.107600
    [153] Ning C, Dong K, Cheng R, Yi J, Ye C, Peng X, Sheng F, Jiang Y, Wang Z L 2021 Flexible and stretchable fibershaped triboelectric nanogenerators for biomechanical monitoring and humaninteractive sensing Adv. Funct. Mater. 31 2006679 doi: 10.1002/adfm.202006679
    [154] Yang Y, et al 2018 Liquid-metal-based super-stretchable and structure-designable triboelectric nanogenerator for wearable electronics ACS Nano 12 2027-34 doi: 10.1021/acsnano.8b00147
    [155] Wang Z L, Zhu G, Yang Y, Wang S, Pan C 2012 Progress in nanogenerators for portable electronics Mater. Today 15 532-43 doi: 10.1016/S1369-7021(13)70011-7
    [156] Ding W, Wang A C, Wu C, Guo H, Wang Z L 2019 Human-machine interfacing enabled by triboelectric nanogenerators and tribotronics Adv. Mater. Technol. 4 1800487 doi: 10.1002/admt.201800487
    [157] Yuan Z, Han S-T, Gao W, Pan C 2021 Flexible and stretchable strategies for electronic skins: materials, structure, and integration ACS Appl. Electron. Mater. 4 1-26 doi: 10.1021/acsaelm.1c00025
    [158] Lin S, Yang W, Zhu X, Lan Y, Li K, Zhang Q, Li Y, Hou C, Wang H 2024 Triboelectric micro-flexure-sensitive fiber electronics Nat. Commun. 15 2374 doi: 10.1038/s41467-024-46516-0
    [159] Zou K, et al 2024 A highly selective implantable electrochemical fiber sensor for real-time monitoring of blood homovanillic acid ACS Nano 18 7485-95 doi: 10.1021/acsnano.3c11641
    [160] Lee J, et al 2021 Stretchable and suturable fibre sensors for wireless monitoring of connective tissue strain Nat. Electron. 4 291-301 doi: 10.1038/s41928-021-00557-1
    [161] Herbert R, Lim H-R, Rigo B, Yeo W-H 2022 Fully implantable wireless batteryless vascular electronics with printed soft sensors for multiplex sensing of hemodynamics Sci. Adv. 8 eabm1175 doi: 10.1126/sciadv.abm1175
    [162] Wang L, et al 2020 Functionalized helical fibre bundles of carbon nanotubes as electrochemical sensors for long-term in vivo monitoring of multiple disease biomarkers Nat. Biomed. Eng. 4 159-71 doi: 10.1038/s41551-019-0462-8
    [163] Chen N, Wei W, Ning N, Wu H, Tian M 2024 All-Polymeric stretchable conductive fiber with versatile intelligent wearable applications via microfluidic spinning technology Chem. Eng. J. 487 150741 doi: 10.1016/j.cej.2024.150741
    [164] Yu Y, Guo J, Sun L, Zhang X, Zhao Y 2019 Microfluidic generation of microsprings with ionic liquid encapsulation for flexible electronics Research 2019 6906275 doi: 10.34133/2019/6906275
    [165] Ding X, Yu Y, Shang L, Zhao Y 2022 Histidine-triggered GO hybrid hydrogels for microfluidic 3D printing ACS Nano 16 19533-42 doi: 10.1021/acsnano.2c09850
    [166] Taylor L, et al 2023 Smart sutures Advanced Technologies and Polymer Materials for Surgical SuturesElsevier 129-48
    [167] Kalidasan V, et al 2021 Wirelessly operated bioelectronic sutures for the monitoring of deep surgical wounds Nat. Biomed. Eng. 5 1217-27 doi: 10.1038/s41551-021-00802-0
    [168] Alsaedi M K, Riccio R E, Sharma A, Xia J, Owyeung R E, Romero L M, Sonkusale S 2023 Smart sensing flexible sutures for glucose monitoring in house sparrows Analyst 148 5714-23 doi: 10.1039/D3AN01488F
    [169] Li Y, et al 2023 Advances, challenges, and prospects for surgical suture materials Acta Biomater. 168 78-112 doi: 10.1016/j.actbio.2023.07.041
    [170] Lee Y, et al 2021 A multifunctional electronic suture for continuous strain monitoring and on-demand drug release Nanoscale 13 18112-24 doi: 10.1039/D1NR04508C
  • 加载中
图(9) / 表(1)
计量
  • 文章访问数:  215
  • HTML全文浏览量:  106
  • PDF下载量:  18
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-05-08
  • 录用日期:  2024-07-17
  • 修回日期:  2024-07-08

目录

    /

    返回文章
    返回