[1] |
Manthiram A 2020 A reflection on lithium-ion battery cathode chemistry Nat. Commun. 11 1550 doi: 10.1038/s41467-020-15355-0
|
[2] |
Chang U, Lee J T, Yun J-M, Lee B, Lee S W, Joh H-I, Eom K, Fuller T F 2019 In situ self-formed nanosheet MoS3/reduced graphene oxide material showing superior performance as a lithium-ion battery cathode ACS Nano 13 1490-8 doi: 10.1021/acsnano.8b07191
|
[3] |
Yuan T, et al 2022 A high-rate, durable cathode for sodium-ion batteries: sb-doped O3-type Ni/Mn-based layered oxides ACS Nano 16 18058-70 doi: 10.1021/acsnano.2c04702
|
[4] |
Chayambuka K, Mulder G, Danilov D L, Notten P H L 2018 Sodium-ion battery materials and electrochemical properties reviewed Adv. Energy Mater. 8 1800079 doi: 10.1002/aenm.201800079
|
[5] |
Gao R-M, Zheng Z-J, Wang P-F, Wang C-Y, Ye H, Cao F-F 2020 Recent advances and prospects of layered transition metal oxide cathodes for sodium-ion batteries Energy Storage Mater. 30 9-26 doi: 10.1016/j.ensm.2020.04.040
|
[6] |
Li S, Sun Y, Pang Y, Xia S, Chen T, Sun H, Zheng S, Yuan T 2022 Recent developments of layered transition metal oxide cathodes for sodium-ion batteries toward desired high performance Asia-Pac. J. Chem. Eng. 17 e2762 doi: 10.1002/apj.2762
|
[7] |
Wang P-F, Yao H-R, Liu X-Y, Zhang J-N, Gu L, Yu X-Q, Yin Y-X, Guo Y-G 2017 Ti-substituted NaNi0.5Mn0.5-xTixO2 cathodes with reversible O3-P3 phase transition for high-performance sodium-ion batteries Adv. Mater. 29 1700210 doi: 10.1002/adma.201700210
|
[8] |
Guo S, Yu H, Liu P, Ren Y, Zhang T, Chen M, Ishida M, Zhou H 2015 High-performance symmetric sodium-ion batteries using a new, bipolar O3-type material, Na0.8Ni0.4Ti0.6O2 Energy Environ. Sci. 8 1237-44 doi: 10.1039/C4EE03361B
|
[9] |
Wang P-F, You Y, Yin Y-X, Wang Y-S, Wan L-J, Gu L, Guo Y-G 2016 Suppressing the P2-O2 phase transition of Na0.67Mn0.67Ni0.33O2 by magnesium substitution for improved sodium-ion batteries Angew. Chem., Int. Ed. 128 7571-5 doi: 10.1002/ange.201602202
|
[10] |
Han M H, Gonzalo E, Singh G, Rojo T 2015 A comprehensive review of sodium layered oxides: powerful cathodes for Na-ion batteries Energy Environ. Sci. 8 81-102 doi: 10.1039/C4EE03192J
|
[11] |
Guo S, Liu P, Yu H, Zhu Y, Chen M, Ishida M, Zhou H 2015 A layered P2- and O3-type composite as a high-energy cathode for rechargeable sodium-ion batteries Angew. Chem., Int. Ed. 54 5894-9 doi: 10.1002/anie.201411788
|
[12] |
Xie Y, et al 2021 Role of lithium doping in P2-Na0.67Ni0.33Mn0.67O2 for sodium-ion batteries Chem. Mater. 33 4445-55 doi: 10.1021/acs.chemmater.1c00569
|
[13] |
Delmas C, Fouassier C, Hagenmuller P 1980 Structural classification and properties of the layered oxides Physica B+C 99 81-85 doi: 10.1016/0378-4363(80)90214-4
|
[14] |
Delmas C, Braconnier J-J, Fouassier C, Hagenmuller P 1981 Electrochemical intercalation of sodium in NaxCoO2 bronzes Solid State Ion. 3-4 165-9 doi: 10.1016/0167-2738(81)90076-X
|
[15] |
Nitta N, Wu F, Lee J T, Yushin G 2015 Li-ion battery materials: present and future Mater. Today 18 252-64 doi: 10.1016/j.mattod.2014.10.040
|
[16] |
Blomgren G E 2017 The development and future of lithium ion batteries J. Electrochem. Soc. 164 A5019-25 doi: 10.1149/2.0251701jes
|
[17] |
Noh H-J, Youn S, Yoon C S, Sun Y-K 2013 Comparison of the structural and electrochemical properties of layered Li[NixCoyMnz]O2 (x=1/3, 0.5,0.6, 0.7, 0.8 and 0.85) cathode material for lithium-ion batteries J. Power Sources 233 121-30 doi: 10.1016/j.jpowsour.2013.01.063
|
[18] |
Kim J-H, Ryu H-H, Kim S J, Yoon C S, Sun Y-K 2019 Degradation mechanism of highly Ni-rich Li[NixCoyMn1-x-y]O2 cathodes with x > 0.9 ACS Appl. Mater. Interfaces 11 30936-42 doi: 10.1021/acsami.9b09754
|
[19] |
Bianchini M, Roca-Ayats M, Hartmann P, Brezesinski T, Janek J 2019 There and back again-the journey of LiNiO2 as a cathode active material Angew. Chem., Int. Ed. 58 10434-58 doi: 10.1002/anie.201812472
|
[20] |
Li W, Reimers J N, Dahn J R 1992 Crystal structure of LixNi2-xO2 and a lattice-gas model for the order-disorder transition Phys. Rev. B 46 3236-46 doi: 10.1103/PhysRevB.46.3236
|
[21] |
Reimers J N, Li W, Dahn J R 1993 Short-range cation ordering in LixNi2-xO2 Phys. Rev. B 47 8486-93 doi: 10.1103/PhysRevB.47.8486
|
[22] |
Shannon R D 1976 Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides Acta Crystallogr. 32 751-67 doi: 10.1107/S0567739476001551
|
[23] |
Karger L, et al 2023 Low-temperature ion exchange synthesis of layered LiNiO2 single crystals with high ordering Chem. Mater. 35 648-57 doi: 10.1021/acs.chemmater.2c03203
|
[24] |
Vassilaras P, Ma X, Li X, Ceder G 2013 Electrochemical properties of monoclinic NaNiO2 J. Electrochem. Soc. 160 A207-11 doi: 10.1149/2.023302jes
|
[25] |
Han M H, Gonzalo E, Casas-Cabanas M, Rojo T 2014 Structural evolution and electrochemistry of monoclinic NaNiO2 upon the first cycling process J. Power Sources 258 266-71 doi: 10.1016/j.jpowsour.2014.02.048
|
[26] |
Wang L, Wang J, Zhang X, Ren Y, Zuo P, Yin G, Wang J 2017 Unravelling the origin of irreversible capacity loss in NaNiO2 for high voltage sodium ion batteries Nano Energy 34 215-23 doi: 10.1016/j.nanoen.2017.02.046
|
[27] |
Kang K, Meng Y-S, Breger J, Grey C P, Ceder G 2006 Electrodes with high power and high capacity for rechargeable lithium batteries Science 311 977-80 doi: 10.1126/science.1122152
|
[28] |
Luo Y, et al 2022 Towards Ni-rich layered oxides cathodes with low Li/Ni intermixing by mild molten-salt ion exchange for lithium-ion batteries Nano Energy 102 107626 doi: 10.1016/j.nanoen.2022.107626
|
[29] |
Cao X, Qiao Y, Jia M, He P, Zhou H 2022 Ion-exchange: a promising strategy to design li-rich and li-excess layered cathode materials for Li-ion batteries Adv. Energy Mater. 12 2003972 doi: 10.1002/aenm.202003972
|
[30] |
Komaba S, Yabuuchi N, Nakayama T, Ogata A, Ishikawa T, Nakai I 2012 Study on the reversible electrode reaction of Na1-xNi0.5Mn0.5O2 for a rechargeable sodium-ion battery Inorg. Chem. 51 6211-20 doi: 10.1021/ic300357d
|
[31] |
Yu H, Guo S, Zhu Y, Ishida M, Zhou H 2014 Novel titanium-based O3-type NaTi0.5Ni0.5O2 as a cathode material for sodium ion batteries Chem. Commun. 50 457-9 doi: 10.1039/C3CC47351A
|
[32] |
Maletti S, Sarapulova A, Schökel A, Mikhailova D 2019 Operando studies on the NaTi0.5Ni0.5O2 cathode for Na-ion batteries: elucidating titanium as a structure stabilizer ACS Appl. Mater. Interfaces 11 33923-30 doi: 10.1021/acsami.9b10352
|
[33] |
Ma Q, Peng F, Li R, Yin S, Dai C 2016 Effect of calcination temperature on microstructure and electrochemical performance of lithium-rich layered oxide cathode materials Mater. Sci. Eng. 213 123-30 doi: 10.1016/j.mseb.2016.04.010
|
[34] |
Manzi J, Paolone A, Palumbo O, Corona D, Massaro A, Cavaliere R, Muñoz-García A B, Trequattrini F, Pavone M, Brutti S 2021 Monoclinic and orthorhombic NaMnO2 for secondary batteries: a comparative study Energies 14 1230 doi: 10.3390/en14051230
|
[35] |
Kubota K, Miyazaki M, Kim E J, Yoshida H, Barpanda P, Komaba S 2021 Structural change induced by electrochemical sodium extraction from layered O’3-NaMnO2 J. Mater. Chem. A 9 26810-9 doi: 10.1039/D1TA05390F
|
[36] |
Yu T-Y, Ryu H-H, Han G, Sun Y-K 2020 Understanding the capacity fading mechanisms of O3-type Na[Ni0.5Mn0.5]O2 cathode for sodium-ion batteries Adv. Energy Mater. 10 2001609 doi: 10.1002/aenm.202001609
|
[37] |
Wang H, Xiao Y, Sun C, Lai C, Ai X 2015 A type of sodium-ion full-cell with a layered NaNi0.5Ti0.5O2 cathode and a pre-sodiated hard carbon anode RSC Adv. 5 106519-22 doi: 10.1039/C5RA21235A
|
[38] |
Zhou D, Huang W, Zhao F, Lv X 2019 The effect of Na content on the electrochemical performance of the O3-type NaxFe0.5Mn0.5O2 for sodium-ion batteries J. Mater. Sci. 54 7156-64 doi: 10.1007/s10853-018-03277-8
|
[39] |
Liu H, et al 2018 Truncated octahedral high-voltage spinel LiNi0.5Mn1.5O4 cathode materials for lithium ion batteries: positive influences of Ni/Mn disordering and oxygen vacancies J. Electrochem. Soc. 165 A1886-96 doi: 10.1149/2.1241809jes
|
[40] |
Liu X, et al 2020 Al and Fe-containing Mn-based layered cathode with controlled vacancies for high-rate sodium ion batteries Nano Energy 76 104997 doi: 10.1016/j.nanoen.2020.104997
|
[41] |
Xu G-L, et al 2022 Native lattice strain induced structural earthquake in sodium layered oxide cathodes Nat. Commun. 13 436 doi: 10.1038/s41467-022-28052-x
|
[42] |
Toby B H, Von Dreele R B 2013 GSAS-II: the genesis of a modern open-source all purpose crystallography software package J. Appl. Crystallogr. 46 544-9 doi: 10.1107/S0021889813003531
|
[43] |
Geßwein H, Stüble P, Weber D, Binder J R, Mönig R 2022 A multipurpose laboratory diffractometer for operando powder x-ray diffraction investigations of energy materials J. Appl. Crystallogr. 55 503-14 doi: 10.1107/S1600576722003089
|
[44] |
Jahrman E P, et al 2019 An improved laboratory-based x-ray absorption fine structure and x-ray emission spectrometer for analytical applications in materials chemistry research Rev. Sci. Instrum. 90 024106 doi: 10.1063/1.5049383
|
[45] |
Schweidler S, Dreyer S L, Breitung B, Brezesinski T 2021 Operando acoustic emission monitoring of degradation processes in lithium-ion batteries with a high-entropy oxide anode Sci. Rep. 11 23381 doi: 10.1038/s41598-021-02685-2
|
[46] |
Dreyer S L, Zhang R, Wang J, Kondrakov A, Wang Q, Brezesinski T, Janek J 2023 The effect of configurational entropy on acoustic emission of P2-type layered oxide cathodes for sodium-ion batteries J. Phys. Energy 5 035002 doi: 10.1088/2515-7655/acd41a
|
[47] |
Berkes B B, Jozwiuk A, Sommer H, Brezesinski T, Janek J 2015 Simultaneous acquisition of differential electrochemical mass spectrometry and infrared spectroscopy data for in situ characterization of gas evolution reactions in lithium-ion batteries Electrochem. Commun. 60 64-69 doi: 10.1016/j.elecom.2015.08.002
|
[48] |
Berkes B B, Jozwiuk A, Vraar M, Sommer H, Brezesinski T, Janek J 2015 Online continuous flow differential electrochemical mass spectrometry with a realistic battery setup for high-precision, long-term cycling tests Anal. Chem. 87 5878-83 doi: 10.1021/acs.analchem.5b01237
|
[49] |
Rudola A, Saravanan K, Mason C W, Balaya P 2013 Na2Ti3O7: an intercalation based anode for sodium-ion battery applications J. Mater. Chem. A 1 2653-62 doi: 10.1039/c2ta01057g
|
[50] |
Yuan T, et al 2023 Moisture stable and ultrahigh-rate Ni/Mn-based sodium-ion battery cathodes via K+ decoration Nano Res. 16 6890-902 doi: 10.1007/s12274-023-5435-2
|
[51] |
Darga J, Manthiram A 2022 Facile synthesis of O3-type NaNi0.5Mn0.5O2 single crystals with improved performance in sodium-ion batteries ACS Appl. Mater. Interfaces 14 52729-37 doi: 10.1021/acsami.2c12098
|
[52] |
Komaba S, Ishikawa T, Yabuuchi N, Murata W, Ito A, Ohsawa Y 2011 Fluorinated ethylene carbonate as electrolyte additive for rechargeable Na batteries ACS Appl. Mater. Interfaces 3 4165-8 doi: 10.1021/am200973k
|
[53] |
Kubota K, Fujitani N, Yoda Y, Kuroki K, Tokita Y, Komaba S 2021 Impact of Mg and Ti doping in O3 type NaNi1/2Mn1/2O2 on reversibility and phase transition during electrochemical Na intercalation J. Mater. Chem. A 9 12830-44 doi: 10.1039/D1TA01164B
|
[54] |
Yabuuchi N, Kubota K, Dahbi M, Komaba S 2014 Research development on sodium-ion batteries Chem. Rev. 114 11636-82 doi: 10.1021/cr500192f
|
[55] |
Braconnier J-J, Delmas C, Fouassier C, Hagenmuller P 1980 Comportement electrochimique des phases NaxCoO2 Mater. Res. Bull. 15 1797-804 doi: 10.1016/0025-5408(80)90199-3
|
[56] |
Li X, Wang Y, Wu D, Liu L, Bo S-H, Ceder G 2016 Jahn-Teller assisted Na diffusion for high performance Na ion batteries Chem. Mater. 28 6575-83 doi: 10.1021/acs.chemmater.6b02440
|
[57] |
Vassilaras P, Kwon D-H, Dacek S T, Shi T, Seo D-H, Ceder G, Kim J C 2017 Electrochemical properties and structural evolution of O3-type layered sodium mixed transition metal oxides with trivalent nickel J. Mater. Chem. A 5 4596-606 doi: 10.1039/C6TA09220A
|
[58] |
Van der Ven A, Aydinol M K, Ceder G 1998 First-principles evidence for stage ordering in LixCoO2 J. Electrochem. Soc. 145 2149-55 doi: 10.1149/1.1838610
|
[59] |
Kaufman J L, Van Der Ven A 2019 NaxCoO2 phase stability and hierarchical orderings in the O3/P3 structure family Phys. Rev. Mater. 3 015402 doi: 10.1103/PhysRevMaterials.3.015402
|
[60] |
Kubota K, Asari T, Yoshida H, Yaabuuchi N, Shiiba H, Nakayama M, Komaba S 2016 Understanding the structural evolution and redox mechanism of a NaFeO2-NaCoO2 solid solution for sodium-ion batteries Adv. Funct. Mater. 26 6047-59 doi: 10.1002/adfm.201601292
|
[61] |
Yabuuchi N, Ikeuchi I, Kubota K, Komaba S 2016 Thermal stability of NaxCrO2 for rechargeable sodium batteries; studies by high-temperature synchrotron x-ray diffraction ACS Appl. Mater. Interfaces 8 32292-9 doi: 10.1021/acsami.6b09280
|
[62] |
Didier C, Guignard M, Suchomel M R, Carlier D, Darriet J, Delmas C 2016 Thermally and electrochemically driven topotactical transformations in sodium layered oxides NaxVO2 Chem. Mater. 28 1462-71 doi: 10.1021/acs.chemmater.5b04882
|
[63] |
Ding F-X, Rong X-H, Wang H-B, Yang Y, Hu Z-L, Dang R-B, Lu Y-X, Hu Y-S 2022 Phase transitions of Na-ion layered oxide materials and their influence on properties Acta Phys. Sin. 71 108801 doi: 10.7498/aps.71.20220291
|
[64] |
Enoki M, Inaba H, Mizutani Y, Nakano M, Ohtsu M 2016 Principles of the acoustic emission (AE) method and signal processing Practical Acoustic Emission TestingSpringer
|
[65] |
Beganovic N, Söffker D 2019 Estimation of remaining useful lifetime of lithium-ion battery based on acoustic emission measurements J. Energy Resour. Technol. 141 041901 doi: 10.1115/1.4042234
|
[66] |
Wang K, Chen Q, Yue Y, Tang R, Wang G, Tang L, He Y 2023 Cyclic aging monitoring of lithium-ion battery based on acoustic emission Nondestruct. Test. Eval. 38 480-99 doi: 10.1080/10589759.2022.2133114
|
[67] |
Zhang K, Yin J, He Y 2021 Acoustic emission detection and analysis method for health status of lithium ion batteries Sensors 21 712 doi: 10.3390/s21030712
|
[68] |
Schweidler S, Bianchini M, Hartmann P, Brezesinski T, Janek J 2020 The sound of batteries: an operando acoustic emission study of the LiNiO2 cathode in Li-ion cells Batter. Supercaps 3 1021-7 doi: 10.1002/batt.202000099
|
[69] |
Majasan J O, Robinson J B, Owen R E, Maier M, Radhakrishnan A N P, Pham M, Tranter T G, Zhang Y, Shearing P R, Brett D J L 2021 Recent advances in acoustic diagnostics for electrochemical power systems J. Phys. Energy 3 032011 doi: 10.1088/2515-7655/abfb4a
|
[70] |
Choe C-Y, Jung W-S, Byeon J-W 2015 Damage evaluation in lithium cobalt oxide/carbon electrodes of secondary battery by acoustic emission monitoring Mater. Trans. 56 269-73 doi: 10.2320/matertrans.M2014396
|
[71] |
Schweidler S, Dreyer S L, Breitung B, Brezesinski T 2022 Acoustic emission monitoring of high-entropy oxyfluoride rock-salt cathodes during battery operation Coatings 12 402 doi: 10.3390/coatings12030402
|
[72] |
Tranchot A, Etiemble A, Thivel P-X, Idrissi H, Roué L 2015 In-situ acoustic emission study of Si-based electrodes for Li-ion batteries J. Power Sources 279 259-66 doi: 10.1016/j.jpowsour.2014.12.126
|
[73] |
Matsuo T, Uchida M, Cho H 2011 Development of acoustic emission clustering method to detect degradation of lithium ion batteries J. Solid Mech. Mater. Eng. 5 678-89 doi: 10.1299/jmmp.5.678
|
[74] |
Kircheva N, Genies S, Chabrol C, Thivel P-X 2013 Evaluation of acoustic emission as a suitable tool for aging characterization of LiAl/LiMnO2 cell Electrochim. Acta 88 488-94 doi: 10.1016/j.electacta.2012.10.121
|
[75] |
Rhodes K, Dudney N, Lara-Curzio E, Daniel C 2010 Understanding the degradation of silicon electrodes for lithium-ion batteries using acoustic emission J. Electrochem. Soc. 157 A1354 doi: 10.1149/1.3489374
|
[76] |
Didier-Laurent S, Idrissi H, Roué L 2008 In-situ study of the cracking of metal hydride electrodes by acoustic emission technique J. Power Sources 179 412-6 doi: 10.1016/j.jpowsour.2007.12.073
|
[77] |
Jung R, Metzger M, Maglia F, Stinner C, Gasteiger H A 2017 Chemical versus electrochemical electrolyte oxidation on NMC111, NMC622, NMC811, LNMO, and conductive carbon J. Phys. Chem. Lett. 8 4820-5 doi: 10.1021/acs.jpclett.7b01927
|
[78] |
Hatsukade T, Schiele A, Hartmann P, Brezesinski T, Janek J 2018 Origin of carbon dioxide evolved during cycling of nickel-rich layered NCM cathodes ACS Appl. Mater. Interfaces 10 38892-9 doi: 10.1021/acsami.8b13158
|
[79] |
Papp J K, Li N, Kaufman L A, Naylor A J, Younesi R, Tong W, McCloskey B D 2021 A comparison of high voltage outgassing of LiCoO2, LiNiO2, and Li2MnO3 layered Li-ion cathode materials Electrochim. Acta 368 137505 doi: 10.1016/j.electacta.2020.137505
|
[80] |
Strauss F, Payandeh S, Kondrakov A, Brezesinski T 2022 On the role of surface carbonate species in determining the cycling performance of all-solid-state batteries Mater. Futures 1 023501 doi: 10.1088/2752-5724/ac5b7d
|
[81] |
Dreyer S L, Kondrakov A, Janek J, Brezesinski T 2022 In situ analysis of gas evolution in liquid- and solid-electrolyte-based batteries with current and next-generation cathode materials J. Mater. Res. 37 3146-68 doi: 10.1557/s43578-022-00586-2
|
[82] |
Wang J, et al 2022 P2-type layered high-entropy oxides as sodium-ion cathode materials Mater. Futures 1 035104 doi: 10.1088/2752-5724/ac8ab9
|
[83] |
Jung R, Metzger M, Maglia F, Stinner C, Gasteiger H A 2017 Oxygen release and its effect on the cycling stability of LiNixMnyCozO2 (NMC) cathode materials for Li-ion batteries J. Electrochem. Soc. 164 A1361-77 doi: 10.1149/2.0021707jes
|
[84] |
Wandt J, Freiberg A T S, Ogrodnik A, Gasteiger H A 2018 Singlet oxygen evolution from layered transition metal oxide cathode materials and its implications for lithium-ion batteries Mater. Today 21 825-33 doi: 10.1016/j.mattod.2018.03.037
|
[85] |
Metzger M, Strehle B, Solchenbach S, Gasteiger H A 2016 Origin of H2 evolution in LIBs: H2O reduction vs. electrolyte oxidation J. Electrochem. Soc. 163 A798-809 doi: 10.1149/2.1151605jes
|
[86] |
Yu Y, Ning D, Li Q, Franz A, Zheng L, Zhang N, Ren G, Schumacher G, Liu X 2021 Revealing the anionic redox chemistry in O3-type layered oxide cathode for sodium-ion batteries Energy Storage Mater. 38 130-40 doi: 10.1016/j.ensm.2021.03.004
|
[87] |
Voronina N, Yaqoob N, Kim H J, Lee K-S, Lim H-D, Jung H-G, Guillon O, Kaghazchi P, Myung S-T 2021 A new approach to stable cationic and anionic redox activity in O3-layered cathode for sodium-ion batteries Adv. Energy Mater. 11 2100901 doi: 10.1002/aenm.202100901
|
[88] |
Guo Y-J, et al 2021 Boron-doped sodium layered oxide for reversible oxygen redox reaction in Na-ion battery cathodes Nat. Commun. 12 5267 doi: 10.1038/s41467-021-25610-7
|
[89] |
Hwang J-Y, Myung S-T, Choi J U, Yoon C S, Yashiro H, Sun Y-K 2017 Resolving the degradation pathways of the O3-type layered oxide cathode surface through the nano-scale aluminum oxide coating for high-energy density sodium-ion batteries J. Mater. Chem. A 5 23671-80 doi: 10.1039/C7TA08443A
|
[90] |
Dreyer S L, Kretschmer K R, Tripkovi , Mazilkin A, Chukwu R, Azmi R, Hartmann P, Bianchini M, Brezesinski T, Janek J 2022 Multi-element surface coating of layered Ni-rich oxide cathode materials and their long-term cycling performance in lithium-ion batteries Adv. Mater. Interfaces 9 2101100 doi: 10.1002/admi.202101100
|
[91] |
Neudeck S, Strauss F, Garcia G, Wolf H, Janek J, Hartmann P, Brezesinski T 2019 Room temperature, liquid-phase Al2O3 surface coating approach for Ni-rich layered oxide cathode material Chem. Commun. 55 2174-7 doi: 10.1039/C8CC09618J
|
[92] |
Peng B, Wan G, Ahmad N, Yu L, Ma X, Zhang G 2023 Recent progress in the emerging modification strategies for layered oxide cathodes toward practicable sodium ion batteries Adv. Energy Mater. 13 2300334 doi: 10.1002/aenm.202300334
|
[93] |
Peng B, Chen Y, Wang F, Sun Z, Zhao L, Zhang X, Wang W, Zhang G 2022 Unusual site-selective doping in layered cathode strengthens electrostatic cohesion of alkali-metal layer for practicable sodium-ion full cell Adv. Mater. 34 2103210 doi: 10.1002/adma.202103210
|