留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Improving cycling performance of the NaNiO2 cathode in sodium-ion batteries by titanium substitution

Siyu An Leonhard Karger Sören L Dreyer Yang Hu Eduardo Barbosa Ruizhuo Zhang Jing Lin Maximilian Fichtner Aleksandr Kondrakov Jürgen Janek Torsten Brezesinski

Siyu An, Leonhard Karger, Sören L Dreyer, Yang Hu, Eduardo Barbosa, Ruizhuo Zhang, Jing Lin, Maximilian Fichtner, Aleksandr Kondrakov, Jürgen Janek, Torsten Brezesinski. Improving cycling performance of the NaNiO2 cathode in sodium-ion batteries by titanium substitution[J]. Materials Futures, 2024, 3(3): 035103. doi: 10.1088/2752-5724/ad5faa
Citation: Siyu An, Leonhard Karger, Sören L Dreyer, Yang Hu, Eduardo Barbosa, Ruizhuo Zhang, Jing Lin, Maximilian Fichtner, Aleksandr Kondrakov, Jürgen Janek, Torsten Brezesinski. Improving cycling performance of the NaNiO2 cathode in sodium-ion batteries by titanium substitution[J]. Materials Futures, 2024, 3(3): 035103. doi: 10.1088/2752-5724/ad5faa
Paper •
OPEN ACCESS

Improving cycling performance of the NaNiO2 cathode in sodium-ion batteries by titanium substitution

doi: 10.1088/2752-5724/ad5faa
More Information
  • Figure  1.  Contour plot of in situ XRD data collected from the pre-heated NNTO mixture during calcination under O2 atmosphere.

    Figure  2.  XRD patterns of NNTO prepared at different calcination temperatures.

    Figure  3.  (a)‒(e) Low- and high-magnification SEM images of NNTO prepared at different calcination temperatures. (f) Cycling performance of samples obtained at 700, 750, and 800 °C.

    Figure  4.  (a) STEM-EDS mapping of NNTO (800 °C). The random dots in the Ti map are artifacts. (b), (c) Low- and high-magnification cross-sectional HAADF STEM images of a FIB-prepared NNTO (800 °C) particle. (d) High-resolution image of the area indicated by the white dashed circle in (c).

    Figure  5.  (a) XRD patterns, (b), (c) SEM images, (d) primary particle size distributions, and (e) cycling performance of NNTO prepared with different molar Na/TM ratios.

    Figure  6.  (a) XRD patterns, (b), (c) SEM images, (d) primary particle size distributions, (e) first-cycle voltage profiles, and (f) cycling performance of NNTO prepared with different cooling rates.

    Figure  7.  (a) XRD patterns of NNTO prepared with different O2 flow rates of 1.4 l h-1 (cyan) and 7 l h-1 (purple). (b) SEM images at different magnifications of the 1.4 l h-1 sample.

    Figure  8.  (a) Long-term cycling performance of NNTO in coin half-cells and (b) corresponding rate capability.

    Figure  9.  Ex situ XANES spectra at the Ni K-edge of NNTO and NNO in the pristine and discharged states (after 10 cycles).

    Figure  10.  (a) 2D contour plot of operando XRD data collected during the first cycle at C/10 rate. (b) Illustration of crystal structures for O3, O’3, P3, O’’3, and O1. Cross-sectional SEM images of NNTO (c) in the pristine state and (d) after 200 cycles.

    Figure  11.  (a) Voltage profiles for the first five cycles (at C/30 rate followed by C/10 cycling) and corresponding cumulated hits. (b) Contour plot of acoustic activity (hit density) as a function of time and potential.

    Figure  12.  (a) Voltage profiles at C/10 rate and corresponding time-resolved evolution rates (left y-axis) and cumulative amounts (right y-axis) of (b) H2, (c) O2, and (d) CO2 measured by DEMS.

  • [1] Manthiram A 2020 A reflection on lithium-ion battery cathode chemistry Nat. Commun. 11 1550 doi: 10.1038/s41467-020-15355-0
    [2] Chang U, Lee J T, Yun J-M, Lee B, Lee S W, Joh H-I, Eom K, Fuller T F 2019 In situ self-formed nanosheet MoS3/reduced graphene oxide material showing superior performance as a lithium-ion battery cathode ACS Nano 13 1490-8 doi: 10.1021/acsnano.8b07191
    [3] Yuan T, et al 2022 A high-rate, durable cathode for sodium-ion batteries: sb-doped O3-type Ni/Mn-based layered oxides ACS Nano 16 18058-70 doi: 10.1021/acsnano.2c04702
    [4] Chayambuka K, Mulder G, Danilov D L, Notten P H L 2018 Sodium-ion battery materials and electrochemical properties reviewed Adv. Energy Mater. 8 1800079 doi: 10.1002/aenm.201800079
    [5] Gao R-M, Zheng Z-J, Wang P-F, Wang C-Y, Ye H, Cao F-F 2020 Recent advances and prospects of layered transition metal oxide cathodes for sodium-ion batteries Energy Storage Mater. 30 9-26 doi: 10.1016/j.ensm.2020.04.040
    [6] Li S, Sun Y, Pang Y, Xia S, Chen T, Sun H, Zheng S, Yuan T 2022 Recent developments of layered transition metal oxide cathodes for sodium-ion batteries toward desired high performance Asia-Pac. J. Chem. Eng. 17 e2762 doi: 10.1002/apj.2762
    [7] Wang P-F, Yao H-R, Liu X-Y, Zhang J-N, Gu L, Yu X-Q, Yin Y-X, Guo Y-G 2017 Ti-substituted NaNi0.5Mn0.5-xTixO2 cathodes with reversible O3-P3 phase transition for high-performance sodium-ion batteries Adv. Mater. 29 1700210 doi: 10.1002/adma.201700210
    [8] Guo S, Yu H, Liu P, Ren Y, Zhang T, Chen M, Ishida M, Zhou H 2015 High-performance symmetric sodium-ion batteries using a new, bipolar O3-type material, Na0.8Ni0.4Ti0.6O2 Energy Environ. Sci. 8 1237-44 doi: 10.1039/C4EE03361B
    [9] Wang P-F, You Y, Yin Y-X, Wang Y-S, Wan L-J, Gu L, Guo Y-G 2016 Suppressing the P2-O2 phase transition of Na0.67Mn0.67Ni0.33O2 by magnesium substitution for improved sodium-ion batteries Angew. Chem., Int. Ed. 128 7571-5 doi: 10.1002/ange.201602202
    [10] Han M H, Gonzalo E, Singh G, Rojo T 2015 A comprehensive review of sodium layered oxides: powerful cathodes for Na-ion batteries Energy Environ. Sci. 8 81-102 doi: 10.1039/C4EE03192J
    [11] Guo S, Liu P, Yu H, Zhu Y, Chen M, Ishida M, Zhou H 2015 A layered P2- and O3-type composite as a high-energy cathode for rechargeable sodium-ion batteries Angew. Chem., Int. Ed. 54 5894-9 doi: 10.1002/anie.201411788
    [12] Xie Y, et al 2021 Role of lithium doping in P2-Na0.67Ni0.33Mn0.67O2 for sodium-ion batteries Chem. Mater. 33 4445-55 doi: 10.1021/acs.chemmater.1c00569
    [13] Delmas C, Fouassier C, Hagenmuller P 1980 Structural classification and properties of the layered oxides Physica B+C 99 81-85 doi: 10.1016/0378-4363(80)90214-4
    [14] Delmas C, Braconnier J-J, Fouassier C, Hagenmuller P 1981 Electrochemical intercalation of sodium in NaxCoO2 bronzes Solid State Ion. 3-4 165-9 doi: 10.1016/0167-2738(81)90076-X
    [15] Nitta N, Wu F, Lee J T, Yushin G 2015 Li-ion battery materials: present and future Mater. Today 18 252-64 doi: 10.1016/j.mattod.2014.10.040
    [16] Blomgren G E 2017 The development and future of lithium ion batteries J. Electrochem. Soc. 164 A5019-25 doi: 10.1149/2.0251701jes
    [17] Noh H-J, Youn S, Yoon C S, Sun Y-K 2013 Comparison of the structural and electrochemical properties of layered Li[NixCoyMnz]O2 (x=1/3, 0.5,0.6, 0.7, 0.8 and 0.85) cathode material for lithium-ion batteries J. Power Sources 233 121-30 doi: 10.1016/j.jpowsour.2013.01.063
    [18] Kim J-H, Ryu H-H, Kim S J, Yoon C S, Sun Y-K 2019 Degradation mechanism of highly Ni-rich Li[NixCoyMn1-x-y]O2 cathodes with x > 0.9 ACS Appl. Mater. Interfaces 11 30936-42 doi: 10.1021/acsami.9b09754
    [19] Bianchini M, Roca-Ayats M, Hartmann P, Brezesinski T, Janek J 2019 There and back again-the journey of LiNiO2 as a cathode active material Angew. Chem., Int. Ed. 58 10434-58 doi: 10.1002/anie.201812472
    [20] Li W, Reimers J N, Dahn J R 1992 Crystal structure of LixNi2-xO2 and a lattice-gas model for the order-disorder transition Phys. Rev. B 46 3236-46 doi: 10.1103/PhysRevB.46.3236
    [21] Reimers J N, Li W, Dahn J R 1993 Short-range cation ordering in LixNi2-xO2 Phys. Rev. B 47 8486-93 doi: 10.1103/PhysRevB.47.8486
    [22] Shannon R D 1976 Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides Acta Crystallogr. 32 751-67 doi: 10.1107/S0567739476001551
    [23] Karger L, et al 2023 Low-temperature ion exchange synthesis of layered LiNiO2 single crystals with high ordering Chem. Mater. 35 648-57 doi: 10.1021/acs.chemmater.2c03203
    [24] Vassilaras P, Ma X, Li X, Ceder G 2013 Electrochemical properties of monoclinic NaNiO2 J. Electrochem. Soc. 160 A207-11 doi: 10.1149/2.023302jes
    [25] Han M H, Gonzalo E, Casas-Cabanas M, Rojo T 2014 Structural evolution and electrochemistry of monoclinic NaNiO2 upon the first cycling process J. Power Sources 258 266-71 doi: 10.1016/j.jpowsour.2014.02.048
    [26] Wang L, Wang J, Zhang X, Ren Y, Zuo P, Yin G, Wang J 2017 Unravelling the origin of irreversible capacity loss in NaNiO2 for high voltage sodium ion batteries Nano Energy 34 215-23 doi: 10.1016/j.nanoen.2017.02.046
    [27] Kang K, Meng Y-S, Breger J, Grey C P, Ceder G 2006 Electrodes with high power and high capacity for rechargeable lithium batteries Science 311 977-80 doi: 10.1126/science.1122152
    [28] Luo Y, et al 2022 Towards Ni-rich layered oxides cathodes with low Li/Ni intermixing by mild molten-salt ion exchange for lithium-ion batteries Nano Energy 102 107626 doi: 10.1016/j.nanoen.2022.107626
    [29] Cao X, Qiao Y, Jia M, He P, Zhou H 2022 Ion-exchange: a promising strategy to design li-rich and li-excess layered cathode materials for Li-ion batteries Adv. Energy Mater. 12 2003972 doi: 10.1002/aenm.202003972
    [30] Komaba S, Yabuuchi N, Nakayama T, Ogata A, Ishikawa T, Nakai I 2012 Study on the reversible electrode reaction of Na1-xNi0.5Mn0.5O2 for a rechargeable sodium-ion battery Inorg. Chem. 51 6211-20 doi: 10.1021/ic300357d
    [31] Yu H, Guo S, Zhu Y, Ishida M, Zhou H 2014 Novel titanium-based O3-type NaTi0.5Ni0.5O2 as a cathode material for sodium ion batteries Chem. Commun. 50 457-9 doi: 10.1039/C3CC47351A
    [32] Maletti S, Sarapulova A, Schökel A, Mikhailova D 2019 Operando studies on the NaTi0.5Ni0.5O2 cathode for Na-ion batteries: elucidating titanium as a structure stabilizer ACS Appl. Mater. Interfaces 11 33923-30 doi: 10.1021/acsami.9b10352
    [33] Ma Q, Peng F, Li R, Yin S, Dai C 2016 Effect of calcination temperature on microstructure and electrochemical performance of lithium-rich layered oxide cathode materials Mater. Sci. Eng. 213 123-30 doi: 10.1016/j.mseb.2016.04.010
    [34] Manzi J, Paolone A, Palumbo O, Corona D, Massaro A, Cavaliere R, Muñoz-García A B, Trequattrini F, Pavone M, Brutti S 2021 Monoclinic and orthorhombic NaMnO2 for secondary batteries: a comparative study Energies 14 1230 doi: 10.3390/en14051230
    [35] Kubota K, Miyazaki M, Kim E J, Yoshida H, Barpanda P, Komaba S 2021 Structural change induced by electrochemical sodium extraction from layered O’3-NaMnO2 J. Mater. Chem. A 9 26810-9 doi: 10.1039/D1TA05390F
    [36] Yu T-Y, Ryu H-H, Han G, Sun Y-K 2020 Understanding the capacity fading mechanisms of O3-type Na[Ni0.5Mn0.5]O2 cathode for sodium-ion batteries Adv. Energy Mater. 10 2001609 doi: 10.1002/aenm.202001609
    [37] Wang H, Xiao Y, Sun C, Lai C, Ai X 2015 A type of sodium-ion full-cell with a layered NaNi0.5Ti0.5O2 cathode and a pre-sodiated hard carbon anode RSC Adv. 5 106519-22 doi: 10.1039/C5RA21235A
    [38] Zhou D, Huang W, Zhao F, Lv X 2019 The effect of Na content on the electrochemical performance of the O3-type NaxFe0.5Mn0.5O2 for sodium-ion batteries J. Mater. Sci. 54 7156-64 doi: 10.1007/s10853-018-03277-8
    [39] Liu H, et al 2018 Truncated octahedral high-voltage spinel LiNi0.5Mn1.5O4 cathode materials for lithium ion batteries: positive influences of Ni/Mn disordering and oxygen vacancies J. Electrochem. Soc. 165 A1886-96 doi: 10.1149/2.1241809jes
    [40] Liu X, et al 2020 Al and Fe-containing Mn-based layered cathode with controlled vacancies for high-rate sodium ion batteries Nano Energy 76 104997 doi: 10.1016/j.nanoen.2020.104997
    [41] Xu G-L, et al 2022 Native lattice strain induced structural earthquake in sodium layered oxide cathodes Nat. Commun. 13 436 doi: 10.1038/s41467-022-28052-x
    [42] Toby B H, Von Dreele R B 2013 GSAS-II: the genesis of a modern open-source all purpose crystallography software package J. Appl. Crystallogr. 46 544-9 doi: 10.1107/S0021889813003531
    [43] Geßwein H, Stüble P, Weber D, Binder J R, Mönig R 2022 A multipurpose laboratory diffractometer for operando powder x-ray diffraction investigations of energy materials J. Appl. Crystallogr. 55 503-14 doi: 10.1107/S1600576722003089
    [44] Jahrman E P, et al 2019 An improved laboratory-based x-ray absorption fine structure and x-ray emission spectrometer for analytical applications in materials chemistry research Rev. Sci. Instrum. 90 024106 doi: 10.1063/1.5049383
    [45] Schweidler S, Dreyer S L, Breitung B, Brezesinski T 2021 Operando acoustic emission monitoring of degradation processes in lithium-ion batteries with a high-entropy oxide anode Sci. Rep. 11 23381 doi: 10.1038/s41598-021-02685-2
    [46] Dreyer S L, Zhang R, Wang J, Kondrakov A, Wang Q, Brezesinski T, Janek J 2023 The effect of configurational entropy on acoustic emission of P2-type layered oxide cathodes for sodium-ion batteries J. Phys. Energy 5 035002 doi: 10.1088/2515-7655/acd41a
    [47] Berkes B B, Jozwiuk A, Sommer H, Brezesinski T, Janek J 2015 Simultaneous acquisition of differential electrochemical mass spectrometry and infrared spectroscopy data for in situ characterization of gas evolution reactions in lithium-ion batteries Electrochem. Commun. 60 64-69 doi: 10.1016/j.elecom.2015.08.002
    [48] Berkes B B, Jozwiuk A, Vraar M, Sommer H, Brezesinski T, Janek J 2015 Online continuous flow differential electrochemical mass spectrometry with a realistic battery setup for high-precision, long-term cycling tests Anal. Chem. 87 5878-83 doi: 10.1021/acs.analchem.5b01237
    [49] Rudola A, Saravanan K, Mason C W, Balaya P 2013 Na2Ti3O7: an intercalation based anode for sodium-ion battery applications J. Mater. Chem. A 1 2653-62 doi: 10.1039/c2ta01057g
    [50] Yuan T, et al 2023 Moisture stable and ultrahigh-rate Ni/Mn-based sodium-ion battery cathodes via K+ decoration Nano Res. 16 6890-902 doi: 10.1007/s12274-023-5435-2
    [51] Darga J, Manthiram A 2022 Facile synthesis of O3-type NaNi0.5Mn0.5O2 single crystals with improved performance in sodium-ion batteries ACS Appl. Mater. Interfaces 14 52729-37 doi: 10.1021/acsami.2c12098
    [52] Komaba S, Ishikawa T, Yabuuchi N, Murata W, Ito A, Ohsawa Y 2011 Fluorinated ethylene carbonate as electrolyte additive for rechargeable Na batteries ACS Appl. Mater. Interfaces 3 4165-8 doi: 10.1021/am200973k
    [53] Kubota K, Fujitani N, Yoda Y, Kuroki K, Tokita Y, Komaba S 2021 Impact of Mg and Ti doping in O3 type NaNi1/2Mn1/2O2 on reversibility and phase transition during electrochemical Na intercalation J. Mater. Chem. A 9 12830-44 doi: 10.1039/D1TA01164B
    [54] Yabuuchi N, Kubota K, Dahbi M, Komaba S 2014 Research development on sodium-ion batteries Chem. Rev. 114 11636-82 doi: 10.1021/cr500192f
    [55] Braconnier J-J, Delmas C, Fouassier C, Hagenmuller P 1980 Comportement electrochimique des phases NaxCoO2 Mater. Res. Bull. 15 1797-804 doi: 10.1016/0025-5408(80)90199-3
    [56] Li X, Wang Y, Wu D, Liu L, Bo S-H, Ceder G 2016 Jahn-Teller assisted Na diffusion for high performance Na ion batteries Chem. Mater. 28 6575-83 doi: 10.1021/acs.chemmater.6b02440
    [57] Vassilaras P, Kwon D-H, Dacek S T, Shi T, Seo D-H, Ceder G, Kim J C 2017 Electrochemical properties and structural evolution of O3-type layered sodium mixed transition metal oxides with trivalent nickel J. Mater. Chem. A 5 4596-606 doi: 10.1039/C6TA09220A
    [58] Van der Ven A, Aydinol M K, Ceder G 1998 First-principles evidence for stage ordering in LixCoO2 J. Electrochem. Soc. 145 2149-55 doi: 10.1149/1.1838610
    [59] Kaufman J L, Van Der Ven A 2019 NaxCoO2 phase stability and hierarchical orderings in the O3/P3 structure family Phys. Rev. Mater. 3 015402 doi: 10.1103/PhysRevMaterials.3.015402
    [60] Kubota K, Asari T, Yoshida H, Yaabuuchi N, Shiiba H, Nakayama M, Komaba S 2016 Understanding the structural evolution and redox mechanism of a NaFeO2-NaCoO2 solid solution for sodium-ion batteries Adv. Funct. Mater. 26 6047-59 doi: 10.1002/adfm.201601292
    [61] Yabuuchi N, Ikeuchi I, Kubota K, Komaba S 2016 Thermal stability of NaxCrO2 for rechargeable sodium batteries; studies by high-temperature synchrotron x-ray diffraction ACS Appl. Mater. Interfaces 8 32292-9 doi: 10.1021/acsami.6b09280
    [62] Didier C, Guignard M, Suchomel M R, Carlier D, Darriet J, Delmas C 2016 Thermally and electrochemically driven topotactical transformations in sodium layered oxides NaxVO2 Chem. Mater. 28 1462-71 doi: 10.1021/acs.chemmater.5b04882
    [63] Ding F-X, Rong X-H, Wang H-B, Yang Y, Hu Z-L, Dang R-B, Lu Y-X, Hu Y-S 2022 Phase transitions of Na-ion layered oxide materials and their influence on properties Acta Phys. Sin. 71 108801 doi: 10.7498/aps.71.20220291
    [64] Enoki M, Inaba H, Mizutani Y, Nakano M, Ohtsu M 2016 Principles of the acoustic emission (AE) method and signal processing Practical Acoustic Emission TestingSpringer
    [65] Beganovic N, Söffker D 2019 Estimation of remaining useful lifetime of lithium-ion battery based on acoustic emission measurements J. Energy Resour. Technol. 141 041901 doi: 10.1115/1.4042234
    [66] Wang K, Chen Q, Yue Y, Tang R, Wang G, Tang L, He Y 2023 Cyclic aging monitoring of lithium-ion battery based on acoustic emission Nondestruct. Test. Eval. 38 480-99 doi: 10.1080/10589759.2022.2133114
    [67] Zhang K, Yin J, He Y 2021 Acoustic emission detection and analysis method for health status of lithium ion batteries Sensors 21 712 doi: 10.3390/s21030712
    [68] Schweidler S, Bianchini M, Hartmann P, Brezesinski T, Janek J 2020 The sound of batteries: an operando acoustic emission study of the LiNiO2 cathode in Li-ion cells Batter. Supercaps 3 1021-7 doi: 10.1002/batt.202000099
    [69] Majasan J O, Robinson J B, Owen R E, Maier M, Radhakrishnan A N P, Pham M, Tranter T G, Zhang Y, Shearing P R, Brett D J L 2021 Recent advances in acoustic diagnostics for electrochemical power systems J. Phys. Energy 3 032011 doi: 10.1088/2515-7655/abfb4a
    [70] Choe C-Y, Jung W-S, Byeon J-W 2015 Damage evaluation in lithium cobalt oxide/carbon electrodes of secondary battery by acoustic emission monitoring Mater. Trans. 56 269-73 doi: 10.2320/matertrans.M2014396
    [71] Schweidler S, Dreyer S L, Breitung B, Brezesinski T 2022 Acoustic emission monitoring of high-entropy oxyfluoride rock-salt cathodes during battery operation Coatings 12 402 doi: 10.3390/coatings12030402
    [72] Tranchot A, Etiemble A, Thivel P-X, Idrissi H, Roué L 2015 In-situ acoustic emission study of Si-based electrodes for Li-ion batteries J. Power Sources 279 259-66 doi: 10.1016/j.jpowsour.2014.12.126
    [73] Matsuo T, Uchida M, Cho H 2011 Development of acoustic emission clustering method to detect degradation of lithium ion batteries J. Solid Mech. Mater. Eng. 5 678-89 doi: 10.1299/jmmp.5.678
    [74] Kircheva N, Genies S, Chabrol C, Thivel P-X 2013 Evaluation of acoustic emission as a suitable tool for aging characterization of LiAl/LiMnO2 cell Electrochim. Acta 88 488-94 doi: 10.1016/j.electacta.2012.10.121
    [75] Rhodes K, Dudney N, Lara-Curzio E, Daniel C 2010 Understanding the degradation of silicon electrodes for lithium-ion batteries using acoustic emission J. Electrochem. Soc. 157 A1354 doi: 10.1149/1.3489374
    [76] Didier-Laurent S, Idrissi H, Roué L 2008 In-situ study of the cracking of metal hydride electrodes by acoustic emission technique J. Power Sources 179 412-6 doi: 10.1016/j.jpowsour.2007.12.073
    [77] Jung R, Metzger M, Maglia F, Stinner C, Gasteiger H A 2017 Chemical versus electrochemical electrolyte oxidation on NMC111, NMC622, NMC811, LNMO, and conductive carbon J. Phys. Chem. Lett. 8 4820-5 doi: 10.1021/acs.jpclett.7b01927
    [78] Hatsukade T, Schiele A, Hartmann P, Brezesinski T, Janek J 2018 Origin of carbon dioxide evolved during cycling of nickel-rich layered NCM cathodes ACS Appl. Mater. Interfaces 10 38892-9 doi: 10.1021/acsami.8b13158
    [79] Papp J K, Li N, Kaufman L A, Naylor A J, Younesi R, Tong W, McCloskey B D 2021 A comparison of high voltage outgassing of LiCoO2, LiNiO2, and Li2MnO3 layered Li-ion cathode materials Electrochim. Acta 368 137505 doi: 10.1016/j.electacta.2020.137505
    [80] Strauss F, Payandeh S, Kondrakov A, Brezesinski T 2022 On the role of surface carbonate species in determining the cycling performance of all-solid-state batteries Mater. Futures 1 023501 doi: 10.1088/2752-5724/ac5b7d
    [81] Dreyer S L, Kondrakov A, Janek J, Brezesinski T 2022 In situ analysis of gas evolution in liquid- and solid-electrolyte-based batteries with current and next-generation cathode materials J. Mater. Res. 37 3146-68 doi: 10.1557/s43578-022-00586-2
    [82] Wang J, et al 2022 P2-type layered high-entropy oxides as sodium-ion cathode materials Mater. Futures 1 035104 doi: 10.1088/2752-5724/ac8ab9
    [83] Jung R, Metzger M, Maglia F, Stinner C, Gasteiger H A 2017 Oxygen release and its effect on the cycling stability of LiNixMnyCozO2 (NMC) cathode materials for Li-ion batteries J. Electrochem. Soc. 164 A1361-77 doi: 10.1149/2.0021707jes
    [84] Wandt J, Freiberg A T S, Ogrodnik A, Gasteiger H A 2018 Singlet oxygen evolution from layered transition metal oxide cathode materials and its implications for lithium-ion batteries Mater. Today 21 825-33 doi: 10.1016/j.mattod.2018.03.037
    [85] Metzger M, Strehle B, Solchenbach S, Gasteiger H A 2016 Origin of H2 evolution in LIBs: H2O reduction vs. electrolyte oxidation J. Electrochem. Soc. 163 A798-809 doi: 10.1149/2.1151605jes
    [86] Yu Y, Ning D, Li Q, Franz A, Zheng L, Zhang N, Ren G, Schumacher G, Liu X 2021 Revealing the anionic redox chemistry in O3-type layered oxide cathode for sodium-ion batteries Energy Storage Mater. 38 130-40 doi: 10.1016/j.ensm.2021.03.004
    [87] Voronina N, Yaqoob N, Kim H J, Lee K-S, Lim H-D, Jung H-G, Guillon O, Kaghazchi P, Myung S-T 2021 A new approach to stable cationic and anionic redox activity in O3-layered cathode for sodium-ion batteries Adv. Energy Mater. 11 2100901 doi: 10.1002/aenm.202100901
    [88] Guo Y-J, et al 2021 Boron-doped sodium layered oxide for reversible oxygen redox reaction in Na-ion battery cathodes Nat. Commun. 12 5267 doi: 10.1038/s41467-021-25610-7
    [89] Hwang J-Y, Myung S-T, Choi J U, Yoon C S, Yashiro H, Sun Y-K 2017 Resolving the degradation pathways of the O3-type layered oxide cathode surface through the nano-scale aluminum oxide coating for high-energy density sodium-ion batteries J. Mater. Chem. A 5 23671-80 doi: 10.1039/C7TA08443A
    [90] Dreyer S L, Kretschmer K R, Tripkovi , Mazilkin A, Chukwu R, Azmi R, Hartmann P, Bianchini M, Brezesinski T, Janek J 2022 Multi-element surface coating of layered Ni-rich oxide cathode materials and their long-term cycling performance in lithium-ion batteries Adv. Mater. Interfaces 9 2101100 doi: 10.1002/admi.202101100
    [91] Neudeck S, Strauss F, Garcia G, Wolf H, Janek J, Hartmann P, Brezesinski T 2019 Room temperature, liquid-phase Al2O3 surface coating approach for Ni-rich layered oxide cathode material Chem. Commun. 55 2174-7 doi: 10.1039/C8CC09618J
    [92] Peng B, Wan G, Ahmad N, Yu L, Ma X, Zhang G 2023 Recent progress in the emerging modification strategies for layered oxide cathodes toward practicable sodium ion batteries Adv. Energy Mater. 13 2300334 doi: 10.1002/aenm.202300334
    [93] Peng B, Chen Y, Wang F, Sun Z, Zhao L, Zhang X, Wang W, Zhang G 2022 Unusual site-selective doping in layered cathode strengthens electrostatic cohesion of alkali-metal layer for practicable sodium-ion full cell Adv. Mater. 34 2103210 doi: 10.1002/adma.202103210
  • mfad5faasupp1.pdf
  • 加载中
图(12)
计量
  • 文章访问数:  240
  • HTML全文浏览量:  100
  • PDF下载量:  69
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-04-12
  • 录用日期:  2024-06-26
  • 修回日期:  2024-06-18
  • 刊出日期:  2024-07-25

目录

    /

    返回文章
    返回