留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Silk fibroin-based flexible pressure sensors: processing and application

Muhan Chen Junhong Liu Yidi Hu Yujie Wu Chun-Yan Tang Kai Ke Wei Yang

Muhan Chen, Junhong Liu, Yidi Hu, Yujie Wu, Chun-Yan Tang, Kai Ke, Wei Yang. Silk fibroin-based flexible pressure sensors: processing and application[J]. Materials Futures, 2024, 3(3): 032501. doi: 10.1088/2752-5724/ad5f48
Citation: Muhan Chen, Junhong Liu, Yidi Hu, Yujie Wu, Chun-Yan Tang, Kai Ke, Wei Yang. Silk fibroin-based flexible pressure sensors: processing and application[J]. Materials Futures, 2024, 3(3): 032501. doi: 10.1088/2752-5724/ad5f48
Topical Review •
OPEN ACCESS

Silk fibroin-based flexible pressure sensors: processing and application

doi: 10.1088/2752-5724/ad5f48
More Information
  • Figure  1.  An overview of silk fibroin-based pressure sensors, including the performance of silk fibroin, fabrication and applications of silk fibroin-based pressure sensors. Demos of the application of silk fibroin-based pressure sensors in daily life. An array sensor attached to the back of the hand for remote control of the drone. Reprinted from [11], © 2020 Elsevier B.V. All rights reserved. Smart mask detecting breathing conditions and a smart glove detecting the degree of finger bending. Reproduced from [12], with permission from Springer Nature. Versatile E-skins for simultaneous temperature and stress monitoring. Reprinted with permission from [13]. Copyright (2017) American Chemical Society. Smart gloves for identifying the type of materials in contact with the object. Reprinted with permission from [14]. Copyright (2024) American Chemical Society. Devices for recognition of Morse codes and gestures. Reproduced from [15], with permission from Springer Nature. Reproduced from [16]. CC BY 4.0.

    Figure  2.  Structure and properties of silk fibroins. (a) Hierarchical structure of silk fibers. Schematic illustration of the chemical structure heavy chain (b) and β-crystallite (c) of silk fibroin. Reprinted with permission from [30]. Copyright (2019) American Chemical Society. (d) Bond length and bond angle in parallel and antiparallel fibroin β-sheets. Reprinted from [31], Copyright © 2015 Elsevier Ltd. All rights reserved. (e) Typical repeating protein amino acid sequence of the cocoon silk of the domestic silkworm Bombyx mori (Amino acids in red indicate sequence motifs that are recognized in the literature as being involved in β-sheets.). Reprinted from [32], Copyright © 2007 The Biophysical Society. Published by Elsevier Inc. All rights reserved. (f) Schematic diagram of the piezoelectric effect. Reprinted from [33], © 2022 Elsevier Ltd. All rights reserved.

    Figure  3.  Timeline of studies on the piezoelectric properties of silk fibroin.

    Figure  4.  Preparation of RSF pressure sensors by casting and spin coating. (a) The relationship between processing parameters, structure (degree of orientation, content of β-sheet folding) and piezoelectric properties of RSF membranes. The relationship between processability and piezoelectric coefficient (middle). Exponential dependence of the tensile ratio with the shear piezoelectric coefficient and content of β-sheet folding (right) [81] John Wiley & Sons. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. (b) Preparation process, stress-strain curve and cross-sectional structure of RSF-GO composite film. Reproduced from [113] with permission from the Royal Society of Chemistry. (c) Schematic diagram of the preparation of RSF films by centrifugal casting. Mechanical property and transparency curves of centrifugal cast SF film and ordinary cast SF film. [114] John Wiley & Sons. © 2015 Wiley Periodicals, Inc. (d) Schematic diagram of enhancing the piezoelectric intensity of RSF films by using ferroelectric nanoparticles. Piezoelectric output of different films with NPs, AgNW and PVP. The piezoelectric response of SF film with 30 wt.% KNN:Mn to the human foot pedaling. Reprinted from [115], Copyright © 2015 Elsevier Ltd. All rights reserved.

    Figure  5.  RSF pressure sensors made by electrospinning. (a) Schematic diagram of the fabrication and sensing mechanism, and pressure sensing performance of the AFMS. Reproduced from [12], with permission from Springer Nature. (b) Schematic diagram of the preparation, mechanical properties and piezoelectric output performance of SF-NFSs. Reproduced from [131] with permission from the Royal Society of Chemistry (c) Schematic diagram of the preparation of OSFM-SE. Effect of the orientation of RSF fibers and electrode surface microstructure on piezoelectric properties of OSFM-SE. Reprinted from [97], © 2022 Elsevier Ltd. All rights reserved.

    Figure  6.  Fabrication of RSF pressure sensors by other methods. (a) Schematic diagram of the fabrication of RSF nanogenerators by using electrodeposition. Atomic force microscopy data and output open circuit voltage of the as-electrodeposited RSF nanogenerators. Reproduced from [141] with permission from the Royal Society of Chemistry. [126] John Wiley & Sons. © 2021 John Wiley & Sons Ltd. (b) Schematic diagram of the preparation of SF-based multi-channel cryogel scaffolds. Stereo micrographs and cyclic compressive stress-strain curves of SF/PEDOT scaffolds. Reprinted from [88], © 2022 Elsevier B.V. All rights reserved. (c) Schematic illustration of the silk-fabric piezoelectric nanogenerator (PENG) fabrication. FE-SEM image of and piezoelectric output performance of degummed silk fabrics. Reproduced from [142]. CC BY 4.0. (d) Schematic diagram of the manufacturing of PZ-EG-skin. The output voltage response to force for the PZ-EG-skin with 4.8% ZnONRs. Output voltages of PZ-EG- skin plotted with time at 15 N for the sensors with different ZnONR contents. Reprinted from [143], © 2020 Elsevier Ltd. All rights reserved. (e) Schematic diagram of the in-situ molding and piezoelectric output performance of SFBT hydrogel. Reprinted from [144], © 2024 Published by Elsevier Ltd on behalf of The editorial office of Journal of Materials Science & Technology.

    Figure  7.  Applications for SF-based resistive and capacitive pressure sensors. (a) Schematic diagram of the structure of PSGP flexible conductive hydrogel. PSGP flexible conductive hydrogel is used to detect human facial expressions. Reprinted with permission from [151]. Copyright (2020) American Chemical Society (b) Schematic diagram of the preparation of the combo E-skin sensor. Combo E-skin sensor is used for detecting air blowing and finger compression. As well as ice water. Reprinted with permission from [13]. Copyright (2017) American Chemical Society. (c) Schematic diagram of the preparation of RSF/ITO composite membranes. The detection results of a touch sensor array on a finger touch. Schematic diagram of the structure of the touch sensor array and the touch array’s detection signal for touch and swipe events. Reprinted with permission from [156]. Copyright (2022) American Chemical Society. (d) Schematic diagram of the fabrication of an interdigital capacitive pressure sensor and the sensor circuit, as well as the final assembled pressure sensor. Controlling the switch of the LED light by touching the sensor with fingers. Reprinted from [153], © 2020 Elsevier B.V. All rights reserved. (e) AFMS is used to monitor respiration as a smart mask and to identify the bending angle of flexion of finger joints as smart gloves. Reproduced from [12], with permission from Springer Nature.

    Figure  8.  Applications of SF-based piezoelectric and triboelectric pressure sensors. (a) Encapsulated EG skin in detecting different human activities, e.g. muscle movement, elbow bending, respiration and the response of chicken breast tissue during respiration. Reprinted from [143], © 2020 Elsevier Ltd. All rights reserved. (b) The output signal of the smart glove made by SF-based flexible piezoelectric sensors under different gestures. Reproduced from [16]. CC BY 4.0. (c) OSFE-SE Detection of different pressure in different locations in the oral cavity by the OSFE-SE pressure sensor. Schematic diagram of remote signal acquisition by the OSFE-SE and transmitting via a Bluetooth device. Reprinted from [97], © 2022 Elsevier Ltd. All rights reserved. (d) Schematic diagram of piezoelectric smart patch based on RSF/CNTs and the detection of diaphragmatic contraction in rats once inserted into the subcutaneous pocket of the rat’s abdomen. Reproduced from [117]. CC BY 4.0. (e) Schematic diagram of a remote emergency call microsystem for TPNG for real-time detection of falls and the corresponding demos in the fall alarm. Reprinted from [154], © 2018 Elsevier Ltd. All rights reserved. (f) Schematic illustration of the working principle of the SF-TENG when manually tapping on the SF-TENG for Morse code compilation and joint curvature detection of human finger and leg. Reproduced from [15], with permission from Springer Nature. (g) A photo of a STENG-based tactile sensor on the skin and the use STENG to control the drone movements. Reprinted from [11], © 2020 Elsevier B.V. All rights reserved. (h) Output of current signals for sound vibrations of different animals (giraffes, cows, and horses) and friction surfaces with different roughness and STFT analysis of texture perception signals with different roughness by SFGH. Schematic diagram of SFBS gloves and photos of rehabilitation training while grabbing bottles by a smart glove made by SFGH. Reprinted with permission from [14]. Copyright (2024) American Chemical Society.

    Table  1.   Solvent systems for the dissolving of silk fibroin.

    SystemCompositionExamplesAdvantagesDisadvantages
    Inorganic salt systemInorganic salt/H2OLiBr/H2O, ZnCl2/H2OLow price, excellent solubilityCumbersome post-processing, less molecular chain damage
    Inorganic salt/organic solventCaCl2/MeOH
    Inorganic salt/H2O/organic solventCaCl2/H2O/ethanol
    Inorganic salt/inorganic acidsCaCl2/FA, LiBr/FA
    Inorganic acids systemFANo post-processingPoor solubility, partial molecular chain damage
    Alkali systemNaOH/H2OLess molecular chain damagePoor solubility
    Organic solvent systemHFIP, HFA-3H2OLess molecular chain damage and good stabilityToxic, volatile, high-cost, weak solubility
    Ionic liquids (ILs) systemBmimCl, EmimCl, AmimClExcellent thermal stability, weak volatility and easy regenerationHarsh processing conditions, degradation of SF at high temperature, hard to process at room temperature
    下载: 导出CSV

    Table  2.   A summary of methods for the fabrication of RSF and its composites.

    ProcessingAdvantagesDisadvantages
    Solution castingSimple operation, good plasticityVery limited structural regulation
    Spin coatingCertain structural regulation ability, uniform thickness and a smooth surfaceLimited structural regulation (better than solution casting)
    ElectrospinningEffective structural control under multiple processing external fieldLow β-sheet folding (fast solvent evaporation rate), more defects
    3D printingHigh degree of freedom, good repeatability and accuracy of 3D structureWeak microstructural regulation ability
    Electrodeposition/ electrogelationEffective structural regulation, higher β-sheet foldingLow-degree macromolecular chain orientation
    Freeze dryingEnhancement of piezoelectric properties (stress concentration in porous structure), enhancement of tensile propertiesLow β-sheet folding, low freedom degree of 3D structure control
    Formation of hydrogel via crosslinkingExcellent mechanical propertiesTotally different performance with and without water
    下载: 导出CSV

    Table  3.   Applications of silk fibroin-based pressure sensors in daily life.

    Application typesConcrete applicationsMaterialsSensing typesStructureSensor performanceRefs.
    Human health monitoring (in Vitro)Joint movements, emotions, pulse, and respirationRSF/PAM/GO/PEDOT:PSSRes.Hydrogel2%-600% (strain), 0.5-119.4 kPa (pressure)[151]
    Finger movement, human-computer interactionFlat silk cocoon/PDMSRes.Carbonized fiber network0.01 kPa-1, 0-680.57 kPa[152]
    Physiology and exercise detectionRSF/CNTsCap.Casted film20% (capacitance change)[15]
    Smart mask for respiration monitoring, smart gloves for finger bending detectionRSF/PEO/AgNWsCap.Electrospun film2.27 pF/kPa (0-10 kPa), 0.255 pF/kPa (10-53 kPa)[12]
    Human gait, fall monitoring for the elderlyRSF/CNFsPie.Sponges2.95 ± 0.03 V[118]
    Insufflation and cheek movementsRSFPie.Electrospun film4.5 V, 0.078 ± 0.01 V kPa-1[95]
    Body movements etc.RSFPie.Dip-coated film8-10 pC N-1, 35.31 μW cm-2[121]
    Body joint movements, energy supplyRSFPie.Electrospun film7 V, 150 nA[84]
    Human motion detection, lighting LEDs, charging capacitorsDegummed SFTri.Woven silk fabric1.52 μW cm-2[142]
    Human joint motion detectionRSF/PVDFTri.electrospun film16.5 V, 290 nA[132]
    Human health monitoring (in Vivo)Muscles, elbow movements, and respirationRSF/FA/glycerolPie.Hydrogel1 mW cm-2[143]
    Disposable oral medical equipmentRSFPie.Electrospun film30.6 mV N-1, 5.9 mW m-2, 3.4 ms[97]
    Intestinal suture, surgical adhesive, monitoring of tissue activity, electrical stimulationRSF/GNR/Ca2+Pie.Casted film20 mV[116]
    Surgical sutures and monitoring of respirationRSF/CNTsPie.Casted film\[117]
    heart tissue engineeringRSF/PEO/BaTiO3Pie.Casted film1100 mV[120]
    Remote controlSwitching on /off LED by finger touchingRSF/AgNWsCap.Casted film\[153]
    E-skinTemperature and pressure detectionRSF/PET/PDMSRes.Carbonized silk fiber membrane\[13]
    Electronic skin (pressure sensing)RSF/PU/glycerol/AgNWs /PDMSTri.Casted film13 V, 0.4 μA, 1.7 nC[11]
    Object identificationRecognize animal sounds, object identification, smart gloves for guiding stroke rehabilitationSF/glycerolTri.Casted film1.083 kPa-1, 50-400 Hz[14]
    Information conversionGesture monitoring glovesRSF/PVDFTri.Electrospun film500 V, 12 μA, 0.31 mW cm-2[154]
    Morse code compilation, finger and knee flexion detectionRSF/CNTsTri.Casted film13.5 V, 26.7 nA, 4.5 nC[15]
    Wearable keyboardless input system (WKIS)RSF/PU/glycerol/AgNWsTri.Casted film4 V, 1.8 nA[155]
    Other4 × 4 array touch sensorRSF/ITOCap.Casted film\[156]
    Micromachined ultrasonic transducerRSFPie.Spin coated film56.2 pm V-1[128]
    Pressure sensing, recognition of the preying of spidersRSF/ITOTri.Spin coated film5 V, ∼520 μA[157]
    Note: Res. Resistive. Cap. Capacitive. Pie. Piezoelectricity. Tri. Triboelectricity. PU, Polyurethane. Voltage and current for piezoelectric and triboelectric pressure sensors are open circuit voltage and short circuit current, respectively. The symbol of represents no reporting of the sensing performance.
    下载: 导出CSV
  • [1] Zhao K, Zhuang H, Cui L, Ma J, Yan G, Han D 2022 A packaging technique of pressure sensor for in vivo measurement system Sens. Actuators A 340 113514 doi: 10.1016/j.sna.2022.113514
    [2] Yang X, Chen S, Shi Y, Fu Z, Zhou B 2021 A flexible highly sensitive capacitive pressure sensor Sens. Actuators A 324 112629 doi: 10.1016/j.sna.2021.112629
    [3] Kang K, Park J, Kim K, Yu K J 2021 Recent developments of emerging inorganic, metal and carbon-based nanomaterials for pressure sensors and their healthcare monitoring applications Nano Res. 14 3096-111 doi: 10.1007/s12274-021-3490-0
    [4] Wang X, Yu J, Cui Y, Li W 2021 Research progress of flexible wearable pressure sensors Sens. Actuators A 330 112838 doi: 10.1016/j.sna.2021.112838
    [5] Choi W, Lee J, Kyoung Yoo Y, Kang S, Kim J, Hoon Lee J 2014 Enhanced sensitivity of piezoelectric pressure sensor with microstructured polydimethylsiloxane layer Appl. Phys. Lett. 104 123701 doi: 10.1063/1.4869816
    [6] Ge G, Zhang Y, Shao J, Wang W, Si W, Huang W, Dong X 2018 Stretchable, transparent, and self-patterned hydrogel-based pressure sensor for human motions detection Adv. Funct. Mater. 28 1802576 doi: 10.1002/adfm.201802576
    [7] Chen Z, Lin W, Zhang C, Xu Y, Wei C, Hu H, Liao X, Chen Z 2024 2024 multifunctional and reconfigurable electronic fabrics assisted by artificial intelligence for human augmentation Adv. Fiber Mater. 6 229-42 doi: 10.1007/s42765-023-00350-z
    [8] Liao X, Song W, Zhang X, Yan C, Li T, Ren H, Liu C, Wang Y, Zheng Y 2020 A bioinspired analogous nerve towards artificial intelligence Nat. Commun. 11 268 doi: 10.1038/s41467-019-14214-x
    [9] Lin W, et al 2023 Programmable and ultrasensitive haptic interfaces enabling closed-loop human-machine interactions Adv. Funct. Mater. 33 2305919 doi: 10.1002/adfm.202305919
    [10] Wei C, Lin W, Liang S, Chen M, Zheng Y, Liao X, Chen Z 2022 An all-in-one multifunctional touch sensor with carbon-based gradient resistance elements Nano-Micro Lett. 14 131 doi: 10.1007/s40820-022-00875-9
    [11] Gong H, et al 2020 Transparent, stretchable and degradable protein electronic skin for biomechanical energy scavenging and wireless sensing Biosens. Bioelectron. 169 112567 doi: 10.1016/j.bios.2020.112567
    [12] Wen D-L, Pang Y-X, Huang P, Wang Y-L, Zhang X-R, Deng H-T, Zhang X-S 2022 Silk fibroin-based wearable all-fiber multifunctional sensor for smart clothing Adv. Fiber Mater. 4 873-84 doi: 10.1007/s42765-022-00150-x
    [13] Wang C, Xia K, Zhang M, Jian M, Zhang Y 2017 An all-silk-derived dual-mode E-skin for simultaneous temperature-pressure detection ACS Appl. Mater. Interfaces 9 39484-92 doi: 10.1021/acsami.7b13356
    [14] Li S, et al 2024 An all-protein multisensory highly bionic skin ACS Nano 18 4579-89 doi: 10.1021/acsnano.3c12525
    [15] Dong X, Liu Q, Liu S, Wu R, Ma L 2022 Silk fibroin based conductive film for multifunctional sensing and energy harvesting Adv. Fiber Mater. 4 885-93 doi: 10.1007/s42765-022-00152-9
    [16] Chiesa I, et al 2022 3D printing silk-based bioresorbable piezoelectric self-adhesive holey structures forin vivo monitoring on soft tissues ACS Appl. Mater. Interfaces 14 19253-64 doi: 10.1021/acsami.2c04078
    [17] Yang S, Zhao C, Yang Y, Ren J, Ling S 2023 The fractal network structure of silk fibroin molecules and its effect on spinning of silkworm silk ACS Nano 17 7662-73 doi: 10.1021/acsnano.3c00105
    [18] Cui Y, et al 2021 A stretchable and transparent electrode based on PEGylated silk fibroin for in vivo dual-modal neural-vascular activity probing Adv. Mater. 33 2100221 doi: 10.1002/adma.202100221
    [19] Shu T, Cui J, Lv Z, Cao L, Ren J, Ling S 2021 Moderate conformational transition promotes the formation of a self-reinforced highly oriented silk fibroin network structure Soft Matter 17 9579-U12 doi: 10.1039/D1SM01120K
    [20] Zhang Y, Ye S, Cao L, Lv Z, Ren J, Shao Z, Yao Y, Ling S 2022 Natural silk spinning-inspired meso-assembly-processing engineering strategy for fabricating soft tissue-mimicking biomaterials Adv. Funct. Mater. 32 2200267 doi: 10.1002/adfm.202200267
    [21] Cao X, Ye C, Cao L, Shan Y, Ren J, Ling S 2023 Biomimetic spun silk ionotronic fibers for intelligent discrimination of motions and tactile stimuli Adv. Mater. 35 2300447 doi: 10.1002/adma.202300447
    [22] Teulé F, Miao Y-G, Sohn B-H, Kim Y-S, Hull J J, Fraser M J, Lewis R V, Jarvis D L 2012 Silkworms transformed with chimeric silkworm/spider silk genes spin composite silk fibers with improved mechanical properties Proc. Natl Acad. Sci. 109 923-8 doi: 10.1073/pnas.1109420109
    [23] Altman G H, Diaz F, Jakuba C, Calabro T, Horan R L, Chen J S, Lu H, Richmond J, Kaplan D L 2003 Silk-based biomaterials Biomaterials 24 401-16 doi: 10.1016/S0142-9612(02)00353-8
    [24] Torculas M, Medina J, Xue W, Hu X 2016 Protein-based bioelectronics ACS Biomater. Sci. Eng. 2 1211-23 doi: 10.1021/acsbiomaterials.6b00119
    [25] Aramwit P, Kanokpanont S, Nakpheng T, Srichana T 2010 The effect of sericin from various extraction methods on cell viability and collagen production Int. J. Mol. Sci. 11 2200-11 doi: 10.3390/ijms11052200
    [26] Inoue S, Tanaka K, Arisaka F, Kimura S, Ohtomo K, Mizuno S 2000 Silk fibroin of Bombyx mori is secreted, assembling a high molecular mass elementary unit consisting of H-chain, L-chain, and P25, with a 6:6:1 molar ratio J. Biol. Chem. 275 40517-28 doi: 10.1074/jbc.M006897200
    [27] Shimura K, Kikuchi A, Ohtomo K, Katagata Y, Hyodo A 1976 Studies on silk fibroin of bombyx mori. I. fractionation of fibroin prepared from the posterior silk gland J. Biochem. 80 693-702 doi: 10.1093/oxfordjournals.jbchem.a131328
    [28] Tanaka K, Inoue S, Mizuno S 1999 Hydrophobic interaction of P25, containing Asn-linked oligosaccharide chains, with the H-L complex of silk fibroin produced by Bombyx mori Insect Biochem. Mol. Biol. 29 269-76 doi: 10.1016/S0965-1748(98)00135-0
    [29] Kundu B, Rajkhowa R, Kundu S C, Wang X 2013 Silk fibroin biomaterials for tissue regenerations Adv. Drug Deliv. Rev. 65 457-70 doi: 10.1016/j.addr.2012.09.043
    [30] Wang C, Xia K, Zhang Y, Kaplan D L 2019 Silk-based advanced materials for soft electronics Acc. Chem. Res. 52 2916-27 doi: 10.1021/acs.accounts.9b00333
    [31] Koh L-D, et al 2015 Structures, mechanical properties and applications of silk fibroin materials Prog. Polym. Sci. 46 86-110 doi: 10.1016/j.progpolymsci.2015.02.001
    [32] Lefèvre T, Rousseau M-E, Pézolet M 2007 Protein secondary structure and orientation in silk as revealed by Raman spectromicroscopy Biophys. J. 92 2885-95 doi: 10.1529/biophysj.106.100339
    [33] Niu Q, Wei H, Hsiao B S, Zhang Y 2022 Biodegradable silk fibroin-based bio-piezoelectric/triboelectric nanogenerators as self-powered electronic devices Nano Energy 96 107101 doi: 10.1016/j.nanoen.2022.107101
    [34] Zhou C-Z, Confalonieri F, Jacquet M, Perasso R, Li Z-G, Janin J 2001 Silk fibroin: structural implications of a remarkable amino acid sequence Proteins: Struct. Funct. Genet. 44 119-22 doi: 10.1002/prot.1078
    [35] Reizabal A, Costa C M, Pérez-Álvarez L, Vilas-Vilela J L, Lanceros-Méndez S 2023 Silk fibroin as sustainable advanced material: material properties and characteristics, processing, and applications Adv. Funct. Mater. 33 2210764 doi: 10.1002/adfm.202210764
    [36] Kapoor S, Kundu S C 2016 Silk protein-based hydrogels: promising advanced materials for biomedical applications Acta Biomater. 31 17-32 doi: 10.1016/j.actbio.2015.11.034
    [37] Fu C, Shao Z, Fritz V 2009 Animal silks: their structures, properties and artificial production Chem. Commun. 43 6515-29 doi: 10.1039/b911049f
    [38] Craig C L, Riekel C 2002 Comparative architecture of silks, fibrous proteins and their encoding genes in insects and spiders Comp. Biochem. Physiol. B 133 493-507 doi: 10.1016/S1096-4959(02)00095-7
    [39] Melke J, Midha S, Ghosh S, Ito K, Hofmann S 2016 Silk fibroin as biomaterial for bone tissue engineering Acta Biomater. 31 1-16 doi: 10.1016/j.actbio.2015.09.005
    [40] Shao Z Z, Vollrath F 2002 Materials: surprising strength of silkworm silk Nature 418 741-41 doi: 10.1038/418741a
    [41] Keten S, Buehler M J 2010 Nanostructure and molecular mechanics of spider dragline silk protein assemblies J. R. Soc. Interface 7 1709-21 doi: 10.1098/rsif.2010.0149
    [42] Keten S, Xu Z, Ihle B, Buehler M J 2010 Nanoconfinement controls stiffness, strength and mechanical toughness of β-sheet crystals in silk Nat. Mater. 9 359-67 doi: 10.1038/nmat2704
    [43] Nova A, Keten S, Pugno N M, Redaelli A, Buehler M J 2010 Molecular and nanostructural mechanisms of deformation, strength and toughness of spider silk fibrils Nano Lett. 10 2626-34 doi: 10.1021/nl101341w
    [44] Rockwood D N, Preda R C, Yucel T, Wang X, Lovett M L, Kaplan D L 2011 Materials fabrication from Bombyx mori silk fibroin Nat. Protocols 6 1612-31 doi: 10.1038/nprot.2011.379
    [45] Vollrath F, Knight D P 2001 Liquid crystalline spinning of spider silk Nature 410 541-8 doi: 10.1038/35069000
    [46] Giesa T, Arslan M, Pugno N M, Buehler M J 2011 Nanoconfinement of spider silk fibrils begets superior strength, extensibility, and toughness Nano Lett. 11 5038-46 doi: 10.1021/nl203108t
    [47] Li G, Liu H, Li T, Wang J 2012 Surface modification and functionalization of silk fibroin fibers/fabric toward high performance applications Mater. Sci. Eng. C 32 627-36 doi: 10.1016/j.msec.2011.12.013
    [48] Francis N K, Pawar H S, Ghosh P, Dhara S 2016 In situ iodination cross-linking of silk for radio-opaque antimicrobial surgical sutures ACS Biomater. Sci. Eng. 2 188-96 doi: 10.1021/acsbiomaterials.5b00327
    [49] Cao Y, Wang B 2009 Biodegradation of silk biomaterials Int. J. Mol. Sci. 10 1514-24 doi: 10.3390/ijms10041514
    [50] Li M, Ogiso M, Minoura N 2003 Enzymatic degradation behavior of porous silk fibroin sheets Biomaterials 24 357-65 doi: 10.1016/S0142-9612(02)00326-5
    [51] Horan R L, Antle K, Collette A L, Wang Y, Huang J, Moreau J E, Volloch V, Kaplan D L, Altman G H 2005 In vitro degradation of silk fibroin Biomaterials 26 3385-93 doi: 10.1016/j.biomaterials.2004.09.020
    [52] Numata K, Cebe P, Kaplan D L 2010 Mechanism of enzymatic degradation of beta-sheet crystals Biomaterials 31 2926-33 doi: 10.1016/j.biomaterials.2009.12.026
    [53] Sun W, Gregory D A, Tomeh M A, Zhao X 2021 Silk fibroin as a functional biomaterial for tissue engineering Int. J. Mol. Sci. 22 1499 doi: 10.3390/ijms22031499
    [54] Gholipourmalekabadi M, Sapru S, Samadikuchaksaraei A, Reis R L, Kaplan D L, Kundu S C 2020 Silk fibroin for skin injury repair: where do things stand? Adv. Drug Deliv. Rev. 153 28-53 doi: 10.1016/j.addr.2019.09.003
    [55] Bharadwaz A, Jayasuriya A C 2020 Recent trends in the application of widely used natural and synthetic polymer nanocomposites in bone tissue regeneration Mater. Sci. Eng. C 110 110698 doi: 10.1016/j.msec.2020.110698
    [56] Yucel T, Lovett M L, Keplan D L 2014 Silk-based biomaterials for sustained drug delivery J. Control. Release 190 381-97 doi: 10.1016/j.jconrel.2014.05.059
    [57] Farokhi M, Mottaghitalab F, Reis R L, Ramakrishna S, Kundu S C 2020 Functionalized silk fibroin nanofibers as drug carriers: advantages and challenges J. Control. Release 321 324-47 doi: 10.1016/j.jconrel.2020.02.022
    [58] Wang Z, Song X, Cui Y, Cheng K, Tian X, Dong M, Liu L 2021 Silk fibroin H-fibroin/poly(-caprolactone) core-shell nanofibers with enhanced mechanical property and long-term drug release J. Colloid Interface Sci. 593 142-51 doi: 10.1016/j.jcis.2021.02.099
    [59] Wang Z, Li X, Cui Y, Cheng K, Dong M, Liu L 2020 Effect of molecular weight of regenerated silk fibroin on silk-based spheres for drug delivery Korean J. Chem. Eng. 37 1732-42 doi: 10.1007/s11814-020-0591-5
    [60] Tao G, Cai R, Wang Y, Zuo H, He H 2021 Fabrication of antibacterial sericin based hydrogel as an injectable and mouldable wound dressing Mater. Sci. Eng. C 119 111597 doi: 10.1016/j.msec.2020.111597
    [61] Anand S, Rajinikanth P S, Arya D K, Pandey P, Gupta R K, Sankhwar R, Chidambaram K 2022 Multifunctional biomimetic nanofibrous scaffold loaded with asiaticoside for rapid diabetic wound healing Pharmaceutics 14 273 doi: 10.3390/pharmaceutics14020273
    [62] Qiao Z, et al 2021 A mussel-inspired supramolecular hydrogel with robust tissue anchor for rapid hemostasis of arterial and visceral bleedings Bioact. Mater. 6 2829-40 doi: 10.1016/j.bioactmat.2021.01.039
    [63] Eivazzadeh-Keihan R, et al 2021 Hybrid bionanocomposite containing magnesium hydroxide nanoparticles embedded in a carboxymethyl cellulose hydrogel plus silk fibroin as a scaffold for wound dressing applications ACS Appl. Mater. Interfaces 13 33840-9 doi: 10.1021/acsami.1c07285
    [64] Farokhi M, Mottaghitalab F, Samani S, Shokrgozar M A, Kundu S C, Reis R L, Fatahi Y, Kaplan D L 2018 Silk fibroin/hydroxyapatite composites for bone tissue engineering Biotechnol. Adv. 36 68-91 doi: 10.1016/j.biotechadv.2017.10.001
    [65] Lu L, et al 2024 Silk-fabric reinforced silk for artificial bones Adv. Mater. 36 2308748 doi: 10.1002/adma.202308748
    [66] Shi W, et al 2017 Structurally and functionally optimized silk-fibroin-gelatin scaffold using 3D printing to repair cartilage injury in vitro and in vivo Adv. Mater. 29 1701089 doi: 10.1002/adma.201701089
    [67] Zhou Z, Cui J, Wu S, Geng Z, Su J 2022 Silk fibroin-based biomaterials for cartilage/osteochondral repair Theranostics 12 5103-24 doi: 10.7150/thno.74548
    [68] Wu Y, Wang L, Guo B, Ma P X 2017 Interwoven aligned conductive nanofiber yarn/hydrogel composite scaffolds for engineered 3D cardiac anisotropy ACS Nano 11 5646-59 doi: 10.1021/acsnano.7b01062
    [69] Cai J, et al 2023 Constructing high-strength nano-micro fibrous woven scaffolds with native-like anisotropic structure and immunoregulatory function for tendon repair and regeneration Biofabrication 15 025002 doi: 10.1088/1758-5090/acb106
    [70] Miguel S P, Figueira D R, Simoes D, Ribeiro M P, Coutinho P, Ferreira P, Correia I J 2018 Electrospun polymeric nanofibres as wound dressings: a review Colloids Surf. B 169 60-71 doi: 10.1016/j.colsurfb.2018.05.011
    [71] Farokhi M, Mottaghitalab F, Fatahi Y, Khademhosseini A, Kaplan D L 2018 Overview of silk fibroin use in wound dressings Trends Biotechnol. 36 907-22 doi: 10.1016/j.tibtech.2018.04.004
    [72] Wang S, Shao H-Q, Liu Y, Tang C-Y, Zhao X, Ke K, Bao R-Y, Yang M-B, Yang W 2021 Boosting piezoelectric response of PVDF-TrFE via MXene for self-powered linear pressure sensor Compos. Sci. Technol. 202 108600 doi: 10.1016/j.compscitech.2020.108600
    [73] Zhu B, Wang H, Leow W R, Cai Y, Loh X J, Han M-Y, Chen X 2016 Silk fibroin for flexible electronic devices Adv. Mater. 28 4250-65 doi: 10.1002/adma.201504276
    [74] Zhang C, Fan W, Wang S, Wang Q, Zhang Y, Dong K 2021 Recent progress of wearable piezoelectric nanogenerators ACS Appl. Electron. Mater. 3 2449-67 doi: 10.1021/acsaelm.1c00165
    [75] Kang J, Liu T, Lu Y, Lu L, Dong K, Wang S, Li B, Yao Y, Bai Y, Fan W 2022 Polyvinylidene fluoride piezoelectric yarn for real-time damage monitoring of advanced 3D textile composites Composites B 245 110229 doi: 10.1016/j.compositesb.2022.110229
    [76] Harvey E N 1939 The luminescence of adhesive tape Science 89 460-1 doi: 10.1126/science.89.2316.460
    [77] Fukada E 1956 On the piezoelectric effect of silk fibers J. Phys. Soc. Jpn. 11 1301A-01A doi: 10.1143/JPSJ.11.1301A
    [78] Fukada E 1974 Piezoelectric properties of organic polymers Ann. New York Acad. Sci. 238 7-25 doi: 10.1111/j.1749-6632.1974.tb26776.x
    [79] Ando Y, Okano R, Nishida K, Miyata S, Fukada E 1980 Piezoelectric and related properties of hydrated silk fibroin Rep. Prog. Polym. Phys. Japan 23 775-8
    [80] Fukada E 1983 Piezoelectric properties of biological polymers Q. Rev. Biophys. 16 59-87 doi: 10.1017/S0033583500004923
    [81] Yucel T, Cebe P, Kaplan D L 2011 Structural origins of silk piezoelectricity Adv. Funct. Mater. 21 779-85 doi: 10.1002/adfm.201002077
    [82] Sencadas V, Garvey C, Mudie S, Kirkensgaard J J K, Gouadec G, Hauser S 2019 Electroactive properties of electrospun silk fibroin for energy harvesting applications Nano Energy 66 104106 doi: 10.1016/j.nanoen.2019.104106
    [83] Bhavanasi V, Kusuma D Y, Lee P S 2014 Polarization orientation, piezoelectricity, and energy harvesting performance of ferroelectric PVDF-TrFE nanotubes synthesized by nanoconfinement Adv. Energy Mater. 4 1400723 doi: 10.1002/aenm.201400723
    [84] Sohn C, Kim H, Han J, Lee K-T, Sutka A, Jeong C K 2022 Generating electricity from molecular bonding-correlated piezoresponse of biodegradable silk nanofibers Nano Energy 103 107844 doi: 10.1016/j.nanoen.2022.107844
    [85] Sahoo J K, Hasturk O, Falcucci T, Kaplan D L 2023 Silk chemistry and biomedical material designs Nat. Rev. Chem. 7 302-18 doi: 10.1038/s41570-023-00486-x
    [86] Wen D-L, et al 2021 Recent progress in silk fibroin-based flexible electronics Microsyst. Nanoeng. 7 35 doi: 10.1038/s41378-021-00261-2
    [87] Cebe P, Hu X, Kaplan D L, Zhuravlev E, Wurm A, Arbeiter D, Schick C 2013 Beating the heat—fast scanning melts silk beta sheet crystals Sci. Rep. 3 1130 doi: 10.1038/srep01130
    [88] Ma Y, Wang H, Wang Q, Cao X, Gao H 2023 Piezoelectric conduit combined with multi-channel conductive scaffold for peripheral nerve regeneration Chem. Eng. J. 452 139424 doi: 10.1016/j.cej.2022.139424
    [89] Su M, Brugger J, Kim B 2020 Simply structured wearable triboelectric nanogenerator based on a hybrid composition of carbon nanotubes and polymer layer Int. J. Precis. Eng. Manuf. 7 683-98 doi: 10.1007/s40684-020-00212-8
    [90] Woltje M, Kolbel A, Aibibu D, Cherif C 2021 A fast and reliable process to fabricate regenerated silk fibroin solution from degummed silk in 4 hours Int. J. Mol. Sci. 22 10565 doi: 10.3390/ijms221910565
    [91] Gou S, Wang G, Zou Y, Geng W, He T, Qin Z, Che L, Feng Q, Cai K 2023 Nonpore dependent and MMP9 responsive gelatin/silk fibroin composite microparticles as universal delivery platform for inhaled treatment of lung cancer Adv. Mater. 35 2303718 doi: 10.1002/adma.202303718
    [92] Holland C, Terry A E, Porter D, Vollrath F 2007 Natural and unnatural silks Polymer 48 3388-92 doi: 10.1016/j.polymer.2007.04.019
    [93] Shen T, Wang T, Cheng G, Huang L, Chen L, Wu D 2018 Dissolution behavior of silk fibroin in a low concentration CaCl2-methanol solvent: from morphology to nanostructure Int. J. Biol. Macromol. 113 458-63 doi: 10.1016/j.ijbiomac.2018.02.022
    [94] Ming J, Liu Z, Bie S, Zhang F, Zuo B 2014 Novel silk fibroin films prepared by formic acid/hydroxyapatite dissolution method Mater. Sci. Eng. C 37 48-53 doi: 10.1016/j.msec.2013.12.041
    [95] Sencadas V 2020 Influence of the stabilization process on the piezotronic performance of electrospun silk fibroin Macromol. Mater. Eng. 305 2000165 doi: 10.1002/mame.202000165
    [96] Zhao C H, Yao J M, Masuda H, Kishore R, Asakura T 2003 Structural characterization and artificial fiber formation of Bombyx mori silk fibroin in hexafluoro-iso-propanol solvent system Biopolymers 69 253-9 doi: 10.1002/bip.10350
    [97] Liu J-H, et al 2022 Structure-regenerated silk fibroin with boosted piezoelectricity for disposable and biodegradable oral healthcare device Nano Energy 103 107787 doi: 10.1016/j.nanoen.2022.107787
    [98] Yao J M, Masuda H, Zhao C H, Asakura T 2002 Artificial spinning and characterization of silk fiber from Bombyx mori silk fibroin in hexafluoroacetone hydrate Macromolecules 35 6-9 doi: 10.1021/ma011335j
    [99] Ohgo K, Zhao C H, Kobayashi M, Asakura T 2003 Preparation of non-woven nanofibers of Bombyx mori silk, Samia cynthia ricini silk and recombinant hybrid silk with electrospinning method Polymer 44 841-6 doi: 10.1016/S0032-3861(02)00819-4
    [100] Zhang X, Tsukada M, Morikawa H, Aojima K, Zhang G, Miura M 2011 Production of silk sericin/silk fibroin blend nanofibers Nanoscale Res. Lett. 6 1-8 doi: 10.1186/1556-276X-6-510
    [101] Junghans F, Morawietz M, Conrad U, Scheibel T, Heilmann A, Spohn U 2006 Preparation and mechanical properties of layers made of recombinant spider silk proteins and silk from silk worm Appl. Phys. A 82 253-60 doi: 10.1007/s00339-005-3432-9
    [102] Phillips D M, Drummy L F, Conrady D G, Fox D M, Naik R R, Stone M O, Trulove P C, De Long H C, Mantz R A 2004 Dissolution and regeneration of Bombyx mori Silk fibroin using ionic liquids J. Am. Chem. Soc. 126 14350-1 doi: 10.1021/ja046079f
    [103] Wilkes J S, Zaworotko M J 1992 Air and water stable 1-ethyl-3-methylimidazolium based ionic liquids J. Chem. Soc., Chem. Commun. 965-7 doi: 10.1039/c39920000965
    [104] Wang Q, Yang Y, Chen X, Shao Z 2012 Investigation of rheological properties and conformation of silk fibroin in the solution of AmimCl Biomacromolecules 13 1875-81 doi: 10.1021/bm300387z
    [105] Wang Q, Chen Q, Yang Y, Shao Z 2013 Effect of various dissolution systems on the molecular weight of regenerated silk fibroin Biomacromolecules 14 285-9 doi: 10.1021/bm301741q
    [106] Zhang H, Wu J, Zhang J, He J S 2005 1-Allyl-3-methylimidazolium chloride room temperature ionic liquid: a new and powerful nonderivatizing solvent for cellulose Macromolecules 38 8272-7 doi: 10.1021/ma0505676
    [107] Bai S, Zhang X, Lu Q, Sheng W, Liu L, Dong B, Kaplan D L, Zhu H 2014 Reversible hydrogel-solution system of silk with high beta-sheet content Biomacromolecules 15 3044-51 doi: 10.1021/bm500662z
    [108] Dong X, Zhao Q, Xiao L, Lu Q, Kaplan D L 2016 Amorphous silk nanofiber solutions for fabricating silk-based functional materials Biomacromolecules 17 3000-6 doi: 10.1021/acs.biomac.6b00863
    [109] Zhao H-P, Feng X-Q, Gao H 2007 Ultrasonic technique for extracting nanofibers from nature materials Appl. Phys. Lett. 90 073112 doi: 10.1063/1.2450666
    [110] Zhang F, Lu Q, Ming J, Dou H, Liu Z, Zuo B, Qin M, Li F, Kaplan D L, Zhang X 2014 Silk dissolution and regeneration at the nanofibril scale J. Mat. Chem. B 2 3879-85 doi: 10.1039/c3tb21582b
    [111] Ling S, Jin K, Kaplan D L, Buehler M J 2016 Ultrathin free-standing Bombyx mori silk nanofibril membranes Nano Lett. 16 3795-800 doi: 10.1021/acs.nanolett.6b01195
    [112] Shi M, Hu Y, Luo X, Liu L, Yu J, Fan Y 2022 Tiny NaOH assisted facile preparation of silk nanofibers and their nanotube-compositing strong, flexible, and conductive films ACS Biomater. Sci. Eng. 8 4014-23 doi: 10.1021/acsbiomaterials.2c00667
    [113] Huang L, Li C, Yuan W, Shi G 2013 Strong composite films with layered structures prepared by casting silk fibroin-graphene oxide hydrogels Nanoscale 5 3780-6 doi: 10.1039/c3nr00196b
    [114] Lee M C, Kim D-K, Lee O J, Kim J-H, Ju H W, Lee J M, Moon B M, Park H J, Kim D W, Kim S H, Park C H 2016 Fabrication of silk fibroin film using centrifugal casting technique for corneal tissue engineering J. Biomed. Mater. Res. B 104 508-14 doi: 10.1002/jbm.b.33402
    [115] Kim K N, Chun J, Chae S A, Ahn C W, Kim I W, Kim S-W, Wang Z L, Baik J M 2015 Silk fibroin-based biodegradable piezoelectric composite nanogenerators using lead-free ferroelectric nanoparticles Nano Energy 14 87-94 doi: 10.1016/j.nanoen.2015.01.004
    [116] Bon S B, Rapi M, Coletta R, Morabito A, Valentini L 2020 Plasticised regenerated silk/gold nanorods hybrids as sealant and bio-piezoelectric materials Nanomaterials 10 179 doi: 10.3390/nano10010179
    [117] Bon S B, et al 2021 Carbon nanotubes/regenerated silk composite as a three-dimensional printable bio-adhesive ink with self-powering properties ACS Appl. Mater. Interfaces 13 21007-17 doi: 10.1021/acsami.1c03288
    [118] Rathinasamy S K, Maheswar R, Lorincz J 2023 Silk fibroin-based piezoelectric sensor with carbon nanofibers for wearable health monitoring applications Sensors 23 1373 doi: 10.3390/s23031373
    [119] Valentini L, Ceccarini M R, Verdejo R, Tondi G, Beccari T 2021 Stretchable, bio-compatible, antioxidant and self-powering adhesives from soluble silk fibroin and vegetal polyphenols exfoliated graphite Nanomaterials 11 2352 doi: 10.3390/nano11092352
    [120] Khalil A K A, Fouad H, Abdal-hay A, Abd El-salam N M, Khalil K A 2023 Fabrication and characterization of piezoelectric PEO/SF/BaTiO3 scaffolds for cardiac tissue engineering J. Compos. Sci. 7 200 doi: 10.3390/jcs7050200
    [121] Kim M S, Park S 2021 Bio-piezoelectric generator with silk fibroin films prepared by dip-coating method J. Korean Inst. Electr. Electron. Mater. Eng. 34 487-94 doi: 10.4313/JKEM.2021.34.6.14
    [122] Freddi G, Tsukada M, Beretta S 1999 Structure and physical properties of silk fibroin polyacrylamide blend films J. Appl. Polym. Sci. 71 1563-71 doi: 10.1002/(SICI)1097-4628(19990307)71:10<1563::AID-APP4>3.0.CO;2-E
    [123] Jin H J, Park J, Karageorgiou V, Kim U J, Valluzzi R, Kaplan D L 2005 Water-stable silk films with reduced β-sheet content Adv. Funct. Mater. 15 1241-7 doi: 10.1002/adfm.200400405
    [124] Bon S B, Valentini L, Degli Esposti M, Morselli D, Fabbri P, Palazzi V, Mezzanotte P, Roselli L 2021 Self-adhesive plasticized regenerated silk on poly(3-hydroxybutyrate-co-3-hydroxyvalerate) for bio-piezoelectric force sensor and microwave circuit design J. Appl. Polym. Sci. 138 49726 doi: 10.1002/app.49726
    [125] Joseph J, Singh S G, Vanjari S R K 2017 Leveraging innate piezoelectricity of ultra-smooth silk thin films for flexible and wearable sensor applications IEEE Sens. J. 17 8306-13 doi: 10.1109/JSEN.2017.2766163
    [126] Sarkar L, Yelagala B P, Singh S G, Vanjari S R K 2022 Electrodeposition as a facile way for the preparation of piezoelectric ultrathin silk film-based flexible nanogenerators Int. J. Energy Res. 46 3443-57 doi: 10.1002/er.7393
    [127] Joseph J, Saraswathi S, Agarwal A, Singh S G, Vanjari S R K 2016 Silk piezoelectric thin films: materials to devices Paper presented at the 2016 IEEE Sensors. Proceedings
    [128] Joseph J, Singh S G, Vanjari S R K 2018 Piezoelectric micromachined ultrasonic transducer using silk piezoelectric thin film IEEE Electron Device Lett. 39 749-52 doi: 10.1109/LED.2018.2816646
    [129] Sarkar L, Sushma M V, Yalagala B P, Rengan A K, Singh S G, Vanjari S R K 2022 ZnO nanoparticles embedded silk fibroin-a piezoelectric composite for nanogenerator applications Nanotechnology 33 265403 doi: 10.1088/1361-6528/ac5d9f
    [130] Jiang C, Wang X, Gunawidjaja R, Lin Y-H, Gupta M K, Kaplan D L, Naik R R, Tsukruk V V 2007 Mechanical properties of robust ultrathin silk fibroin films Adv. Funct. Mater. 17 2229-37 doi: 10.1002/adfm.200601136
    [131] Yue X, Wang Z, Shi H, Wu R, Feng Y, Yuan L, Hou S, Song X, Liu L 2023 Silk fibroin-based piezoelectric nanofibrous scaffolds for rapid wound healing Biomater. Sci. 11 5232-9 doi: 10.1039/D3BM00308F
    [132] Wang S, Shi K, Chai B, Qiao S, Huang Z, Jiang P, Huang X 2022 Core-shell structured silk fibroin/PVDF piezoelectric nanofibers for energy harvesting and self-powered sensing Nano Mater. Sci. 4 126-32 doi: 10.1016/j.nanoms.2021.07.008
    [133] Zhou J, Wang H, Wu H, Lan D, Peng Y, Li Z, Dai F 2022 Electrospun SF/PLGA/ICG composite nanofibrous membranes for potential wound healing and tumor therapy Processes 10 850 doi: 10.3390/pr10050850
    [134] Zhang H, Lan D, Wu B, Chen X, Li X, Li Z, Dai F 2023 Electrospun piezoelectric scaffold with external mechanical stimulation for promoting regeneration of peripheral nerve injury Biomacromolecules 24 3268-82 doi: 10.1021/acs.biomac.3c00311
    [135] Liu Z, Wang J, Zhang Q, Li Z, Li Z, Cheng L, Dai F 2022 Electrospinning silk fibroin/graphene nanofiber membrane used for 3D wearable pressure sensor Polymers 14 3875 doi: 10.3390/polym14183875
    [136] Lee J C, Suh I W, Park C H, Kim C S 2021 Polyvinylidene fluoride/silk fibroin-based bio-piezoelectric nanofibrous scaffolds for biomedical application J. Tissue Eng. Regen. Med. 15 869-77 doi: 10.1002/term.3232
    [137] Zhu J, Yang H, Cao L, Dai C, Ren J, Liang J, Ling S 2023 Functionalization of structural materials through electro-blown spinning of ultrathin and transparent silk fibroin ionotronic nanofiber skin Nano Today 50 101873 doi: 10.1016/j.nantod.2023.101873
    [138] Bon S B, Chiesa I, Morselli D, Degli Esposti M, Fabbri P, De Maria C, Viligiardi T F, Morabito A, Giorgi G, Valentini L 2021 Printable smart 3D architectures of regenerated silk on poly (3-hydroxybutyrate-co-3-hydroxyvalerate) Mater. Des. 201 109492 doi: 10.1016/j.matdes.2021.109492
    [139] Xu Y, Wu X, Guo X, Kong B, Zhang M, Qian X, Mi S, Sun W 2017 The boom in 3D-printed sensor technology Sensors 17 1166 doi: 10.3390/s17051166
    [140] Liu C, Huang N, Xu F, Tong J, Chen Z, Gui X, Fu Y, Lao C 2018 3D printing technologies for flexible tactile sensors toward wearable electronics and electronic skin Polymers 10 629 doi: 10.3390/polym10060629
    [141] Kojic N, Panzer M J, Leisk G G, Raja W K, Kojic M, Kaplan D L 2012 Ion electrodiffusion governs silk electrogelation Soft Matter 8 6897-905 doi: 10.1039/c2sm25783a
    [142] Kim M-S, Commerell W, Roh J-W, Park -S-S 2023 Degumming effects of silk fabrics as piezoelectrics for nanogenerators Mater. Sci. Eng. B 298 116898 doi: 10.1016/j.mseb.2023.116898
    [143] Gogurla N, Roy B, Kim S 2020 Self-powered artificial skin made of engineered silk protein hydrogel Nano Energy 77 105242 doi: 10.1016/j.nanoen.2020.105242
    [144] Li Z, Li G, Wang X, Zhao Z 2024 Piezoelectric composite hydrogel with wireless electrical stimulation enhances motor functional recovery of spinal cord injury J. Mater. Sci. Technol. 172 228-39 doi: 10.1016/j.jmst.2023.07.014
    [145] Su D, Yao M, Liu J, Zhong Y, Chen X, Shao Z 2017 Enhancing mechanical properties of silk fibroin hydrogel through restricting the growth of β-sheet domains ACS Appl. Mater. Interfaces 9 17490-9 doi: 10.1021/acsami.7b04623
    [146] Tran H A, Hoang T T, Maraldo A, Do T N, Kaplan D L, Lim K S, Rnjak-Kovacina J 2023 Emerging silk fibroin materials and their applications: new functionality arising from innovations in silk crosslinking Mater. Today 65 244-59 doi: 10.1016/j.mattod.2023.03.027
    [147] Saleem M, Rasheed S, Chen Y 2020 Silk fibroin/hydroxyapatite scaffold: a highly compatible material for bone regeneration Sci. Technol. Adv. Mater. 21 242-66 doi: 10.1080/14686996.2020.1748520
    [148] Zheng H, Zuo B 2021 Functional silk fibroin hydrogels: preparation, properties and applications J. Mat. Chem. B 9 1238-58 doi: 10.1039/D0TB02099K
    [149] Cao L, Ye C, Zhang H, Yang S, Shan Y, Lv Z, Ren J, Ling S 2023 An artificial motion and tactile receptor constructed by hyperelastic double physically cross-linked silk fibroin ionoelastomer Adv. Funct. Mater. 33 2301404 doi: 10.1002/adfm.202301404
    [150] Li S, Liu G, Wen H, Liu G, Wang H, Ye M, Yang Y, Guo W, Liu Y 2022 A skin-like pressure- and vibration-sensitive tactile sensor based on polyacrylamide/silk fibroin elastomer Adv. Funct. Mater. 32 2111747 doi: 10.1002/adfm.202111747
    [151] He F, You X, Gong H, Yang Y, Bai T, Wang W, Guo W, Liu X, Ye M 2020 Stretchable, biocompatible, and multifunctional silk fibroin-based hydrogels toward wearable strain/pressure sensors and triboelectric nanogenerators ACS Appl. Mater. Interfaces 12 6442-50 doi: 10.1021/acsami.9b19721
    [152] Liu Z, Cai M, Jia R, Xu X, Xu M, Cheng G, Cheng L, Dai F 2024 Flat-silk-cocoon-based wearable flexible piezoresistive sensor and its performance Polymers 16 295
    [153] Chen Y, Duan L, Ma Y, Han Q, Li X, Li J, Wang A, Bai S, Yin J 2020 Preparation of transient electronic devices with silk fibroin film as a flexible substrate Colloids Surf. A 600 124896 doi: 10.1016/j.colsurfa.2020.124896
    [154] Guo Y, Zhang X-S, Wang Y, Gong W, Zhang Q, Wang H, Brugger J 2018 All-fiber hybrid piezoelectric-enhanced triboelectric nanogenerator for wearable gesture monitoring Nano Energy 48 152-60 doi: 10.1016/j.nanoen.2018.03.033
    [155] Liu J, et al 2022 Wearable five-finger keyboardless input system based on silk fibroin electronic skin Nano Energy 103 107764 doi: 10.1016/j.nanoen.2022.107764
    [156] Reizabal A, Castro N, Pereira N, Costa C M, Perez L, Vilas-Vilela J L, Lanceros-Mendez S 2022 Silk fibroin nanocomposites with indium tin oxide toward sustainable capacitive touch sensing applications ACS Appl. Electron. Mater. 4 1901-9 doi: 10.1021/acsaelm.2c00100
    [157] Zhang C, Li S, He Y, Chen C, Jiang S, Yang X, Wang X, Pan L, Wan Q 2020 Oxide synaptic transistors coupled with triboelectric nanogenerators for bio-inspired tactile sensing application IEEE Electron Device Lett. 41 617-20 doi: 10.1109/LED.2020.2972038
    [158] Ding Y, Xu T, Onyilagha O, Fong H, Zhu Z 2019 Recent advances in flexible and wearable pressure sensors based on piezoresistive 3D monolithic conductive sponges ACS Appl. Mater. Interfaces 11 6685-704 doi: 10.1021/acsami.8b20929
    [159] Ji F, Sun Z, Hang T, Zheng J, Li X, Duan G, Zhang C, Chen Y 2022 Flexible piezoresistive pressure sensors based on nanocellulose aerogels for human motion monitoring: a review Compos. Commun. 35 101351 doi: 10.1016/j.coco.2022.101351
    [160] Reizabal A, Goncalves S, Brito-Pereira R, Costa P, Costa C M, Perez-Alvarez L, Luis Vilas-Vilela J, Lanceros-Méndez S 2019 Optimized silk fibroin piezoresistive nanocomposites for pressure sensing applications based on natural polymers Nanoscale Adv. 1 2284-92 doi: 10.1039/C8NA00417J
    [161] Reizabal A, Goncalves S, Pereira N, Costa C M, Perez L, Vilas-Vilela J L, Lanceros-Méndez S 2020 Optically transparent silk fibroin/silver nanowire composites for piezoresistive sensing and object recognitions J. Mater. Chem. C 8 13053-62 doi: 10.1039/D0TC03428B
    [162] Ha K-H, Huh H, Li Z, Lu N 2022 Soft capacitive pressure sensors: trends, challenges, and perspectives ACS Nano 16 3442-8 doi: 10.1021/acsnano.2c00308
    [163] Li R, Zhou Q, Bi Y, Cao S, Xia X, Yang A, Li S, Xiao X 2021 Research progress of flexible capacitive pressure sensor for sensitivity enhancement approaches Sens. Actuators A 321 112425 doi: 10.1016/j.sna.2020.112425
    [164] Zhao S, Ran W, Wang D, Yin R, Yan Y, Jiang K, Lou Z, Shen G 2020 3D dielectric layer enabled highly sensitive capacitive pressure sensors for wearable electronics ACS Appl. Mater. Interfaces 12 32023-30 doi: 10.1021/acsami.0c09893
    [165] Niu Q, Huang X, Lv S, Yao X, Fan S, Zhang Y 2020 Natural polymer-based bioabsorbable conducting wires for implantable bioelectronic devices J. Mater. Chem. A 8 25323-35 doi: 10.1039/D0TA09701B
  • 加载中
图(8) / 表(3)
计量
  • 文章访问数:  234
  • HTML全文浏览量:  115
  • PDF下载量:  62
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-04-29
  • 录用日期:  2024-07-03
  • 修回日期:  2024-07-02
  • 刊出日期:  2024-07-25

目录

    /

    返回文章
    返回