ICE optimization strategies of hard carbon anode for sodium-ion batteries: from the perspective of material synthesis
doi: 10.1088/2752-5724/ad5d7f
-
Abstract: AbstractWith the continuous exploration of researchers in the field of sodium-ion batteries, the performance of these batteries has been greatly improved, and they have a wide range of application prospects in large-scale energy storage, traffic power and other fields. Hard carbon is the most important anode material for sodium-ion batteries. Although it has the advantages of low cost, stable structure and performance, it still has the problems of low initial Coulombic efficiency (ICE) and poor rate performance in application. In order to solve the problem of low ICE of hard carbon anode in sodium-ion batteries, in recent years the literature about hard carbon anode in sodium-ion batteries has been comprehensively reviewed. Based on the microstructure of hard carbon material, the causes of low ICE of hard carbon are analyzed. At the same time, from the point of view of material structure design and regulation, the current optimization strategies of hard carbon anode ICE are summarized, including the following aspects: optimization and improvement of the carbonization process, precursor screening and design, surface coating strategy, micro-pore structure control, catalytic carbonization strategy. We hope that this review will provide reference for further optimization of hard carbon properties and its large-scale application in sodium-ion batteries.
-
Key words:
- sodium-ion batteries /
- anode materials /
- hard carbon /
- initial Coulombic efficiency
-
Figure 2. (a) ‘House of cards’ model and ‘insertion-adsorption’ mechanism. Reproduced from [21]. © 2000 ECS-The Electrochemical Society. All rights reserved. (b) ‘Adsorption-intercalation-filling’ mechanism. Reprinted with permission from [49]. Copyright (2015) American Chemical Society. (c) ‘Adsorption-filling’ mechanism. [46] John Wiley & Sons.© 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. (d) ‘Adsorption-intercalation’ mechanism. [47] John Wiley & Sons.© 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. (e) Extended ‘adsorption-intercalation’ mechanism’. [51] John Wiley & Sons. © 2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. (f) ‘Adsorption-intercalation-pore filling-sodium cluster formation’ mechanism. [52] John Wiley & Sons.© 2023 WileyVCH GmbH.
Figure 3. (a) Steady-state Na+ distribution and sodium-ion storage between graphite layers at constant potential for the vacancy defect free electrode and non-vacancy defect free electrode; (b) first charge-discharge curve of hard carbon prepared at different heating rates at 20 mA g-1. [65] John Wiley & Sons.© 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. (c) Diagram of the spark plasma sintering (SPS) system diagram and annealing mechanism; the structural models obtained by molecular dynamics simulation under different conditions, respectively: initial structure (d), no external field (e), only external pressure (f) and simultaneous application of bias and external pressure (g). Reproduced with permission from [77]. © 2021. Published under the PNAS license. (h) Life cycle diagram of hard carbon prepared by two different pathways, and carbon production by different routes at various stages. Reproduced from [75]. CC BY 4.0.
Figure 4. (a) Schematic diagram of the synthesis of epoxy phenol aldehyde resin and schematic diagram of the structure of hard carbon; (b) FTIR spectra of maleic anhydride (MA), epoxy phenolic novolac resin (EPN) and cured epoxy phenol novolac resin (cured EPN). Reprinted from [79], © 2023 Elsevier Ltd. All rights reserved. (c) Charge and discharge curves of untreated samples (CPP-1400 °C) and pre-treated samples (CPOP-1400 °C) at 0.1C in the first cycle; (d) (e) HRTEM and SAED images of the two samples; (f) (g) Raman spectra of two samples. [81] John Wiley & Sons.© 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. (h) XRD pattern of hard carbon prepared under different conditions; (i) Raman spectrum of hard carbon prepared under different conditions. (j) (k) Physical parameters and electrochemical properties of hard carbon under different preparation conditions. Reprinted from [85], Copyright © 2015 Elsevier B.V. All rights reserved.
Figure 5. (a) Diagram of preparation of hard carbon by gaseous treatment of cyclohexane; (b) (c) XPS spectra and FTIR spectra of C-HC and P-HC samples; (d) First charge and discharge curves of different samples at 20 mA g-1. Reprinted from [59], © 2019 Published by Elsevier Ltd. (e) TEM-EDX map of HC-Al2O3-5% for elemental mapping of C, Al and O; (f) diagram of SEI layer on hard carbon surface improved by Al2O3; (g) EIS results of HC and HC-Al2O3-5% after the first cycle. Reproduced from [108]. CC BY 4.0.
Figure 6. Curves of different samples based on BET nitrogen adsorption and desorption measurements: (a) CMS; (b) AC; (c) graphite. First three cycles of different samples: (d) CMS; (e) AC; (f) graphite. Reprinted from [112], Copyright © 2016 Elsevier B.V. All rights reserved. (g) Diagram of controlled port diameter and interface charge distribution; (h) (i) charge and discharge curves in the first cycle of the materials before and after gas-phase adjustment; (j) (k) 23Na MAS ssNMR spectra of the material before and after gas-phase regulation at low voltage; (l) reversible capacity of materials with different specific surface areas obtained by gas-phase regulation. Reproduced from [54]. CC BY 4.0.
Figure 7. (a) Diagram of material synthesis route; (b) cycling performance of hard carbon (HCM-1300-ZBE) prepared by assisting with ZnO. [118] John Wiley & Sons.© 2022 WileyVCH GmbH. (c) Diagram of hard carbon microspheres etched with carbon dioxide; (d) (e) charge and discharge curves and ICE of the first three cycles of the unetched and etched material; (f) slope capacity and platform capacity of unetched and etched materials in the second cycle. [120] John Wiley & Sons. © 2023 WileyVCH GmbH.
Figure 8. (a) Diagram of the effect of ion concentration on the microstructure of hard carbon; (b) charge and discharge curve of hard carbon prepared at different concentrations in the first cycle; (c) cycle performance of hard carbon prepared at different concentrations. [52] John Wiley & Sons.© 2023 WileyVCH GmbH. (d) Diagram of two routes for synthesizing hard carbon using graphite plate sandwich. Reprinted with permission from [132]. Copyright (2021) American Chemical Society. (e) Diagram of hexagonal cell structure of graphite-like crystal (a = b = 3.528 Å, c = 9.6 Å, α = β = 90°, γ = 120°), the picture on the right shows the graphite phase; (f) (g) HRTEM image of hard carbon and SAED map of typical graphite-like crystals. [133] John Wiley & Sons.© 2021 Wiley-VCH GmbH.
Figure 9. (a) Schematic illustration of the IBL-regulated presodiation process. [135]. John Wiley & Sons.© 2023 WileyVCH GmbH. (b) Schematic of sodium powder application procedure onto hard carbon anode. Reprinted from [136], Published by Elsevier B.V. (c) 7Li and (d) 23Na NMR of the lithium-pretreated HC rested in carbonate and TEGDME. (e) C 1s XPS of the lithium-pretreated HC cycled in carbonate ten times. [138] John Wiley & Sons.© 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. (f) Charge/discharge curves of pHC and HC at 50 mA g-1 in the first cycle. (g) Normalized charge/discharge profiles of half cells of pHC and NVP and their full cell. (h) Cycle performance of full cells at 500 mA g-1. [141] John Wiley & Sons.© 2022 WileyVCH GmbH. (i) Cycling performance of NVP||HC full cell with (6%) and without Na3P coated on the separator within the potential range of 2.0-4.0 V at 0.5 C for the following cycles. [144] John Wiley & Sons.© 2023 WileyVCH GmbH.
Figure 10. CVs obtained in three-electrode Swagelok cells with (a) 1 M NaClO4 dissolved in single solvents, (b) low-current zoom plots of (a), (c) 1 M NaClO4 dissolved in solvent mixtures, (d) low-current zoom plots of (c), (e). Electrochemical potential window stability (black bars) and thermal range (green bars) values of electrolytes based on 1 M NaClO4 dissolved in various solvents and solvent mixtures. Reproduced from [149] with permission from the Royal Society of Chemistry. Comparison of LUMO and HOMO levels of (f) EC, DEC, PC, DME and DEGDME solvents and (g) their corresponding solvent-ion complexes. [152] John Wiley & Sons.© 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. (h), (i),(j), (k) The performance of the first three cycles of hard carbon anodes in different electrolytes (DME, DEGDME, EC/DMC and PC). Reprinted from [153], © 2020 Elsevier Ltd All rights reserved. HRTEM images of HCNS electrode after being cycled in DEGDME-based electrolyte (l) and EC/DEC-based electrolyte (m); the insets show the corresponding SAED images. Depth-profiling XPS spectra of O 1s and F 1s of the formed SEI films in DEGDME-based electrolyte (n) and EC/DEC-based electrolyte (o); the insets show the corresponding percentage of inorganic and organic species in the formed SEI films. [154] John Wiley & Sons.© 2021 Wiley-VCH GmbH.
Table 1. Performance of half cell of hard carbon prepared from different biomass.
Precursor Electrolyte Voltage range (V) ICE (%) Reversible capacity/current density (mAh g-1/mA-1 g-1) References Macadamia nut shell 1 M NaPF6 in EC:DMC(1:1 Vol%) with 2% FEC 0-2.0 91.4 300.9/30 [93] Waste wine corks 1 M NaPF6 in EC:DMC(1:1 Vol%) 0-2.0 81 358/30 [94] Natural cork 1 M NaPF6 in EC:DEC(1:1 Vol%) 0-2.5 88.0 276/20 [95] Cotton 0.8 m NaPF6 in ethylene and DMC(1:1 Vol%) 0-2.0 83 315/30 [46] Banana peel 1 M NaClO4 in EC:DEC(1:1 Vol%) 0.001-2.8 85.5 376/50 [96] Camphor residue 1 M NaClO4 in EC:DMC(1:1 Vol%) 0-2.0 82.8 324.6/20 [66] Hazelnut shell 1 M NaPF6 in EC:DMC(1:1 Vol%) 0-2.5 91.0 342/20 [97] Bamboo 1 M NaPF6 in DEG:DME(1:1 Vol%) 0-2.5 84.1 348.5/30 [98] Corncob 1 M NaPF6 in EC:DMC(1:1 Vol%) -0.008-2.5 85.0 299/20 [99] Tea stalk 1 M NaCF3SO3 in Diglyme 0.01-3.0 90.8 308/28 [100] Reed straw 1 M NaClO4 in EC:DEC(1:1 Vol%) 0.01-3.0 77.0 370/25 [101] Starch 1 M NaPF6 in DEGDME 0.01-2.0 87.2 335/30 [102] Gelatin 1 M NaPF6 in Diglyme 0.01-2.0 74.4 400/100 [103] Sycamore fruit seed 1 M NaClO4 in EC:DMC(1:1 Vol%) 0-2.8 73.8 296/25 [104] Table 2. Properties of hard carbon materials prepared by different methods in the full battery.
Full battery Voltage range (V) Specific capacity/current density (mAh g-1 mA-1 g-1) Energy density/current density (Wh kg-1 mA-1 g-1) Cyclic stability (capacity retention/cycle number/rate) References SHCs-1500||Na0.9(Cu0.22Fe0.30Mn0.48)O2 1.5-4.0 260/30 189/30 93.8%/300/1 C [76] MHC-1400||Na(Cu1/9Ni2/9Fe1/3Mn1/3)O2 1.5-4.0 297/0.1 C 215/0.1 C 70%/1300/1 C [93] CC-1600||O3-Na[Cu1/9Ni2/9Fe1/3Mn1/3]O2 1.0-4.0 362/0.1 C 230/2 C 71%/2000/2 C [94] HCT1300||Na0.9[Cu0.22Fe0.30Mn0.48]O2 1.0-4.05 290/0.2 C 207/0.2 C 92%/100/1 C [46] PPAC111400||Na0.9[Cu0.22Fe0.30Mn0.48]O2 1.0-4.0 240/0.2 C 195/1 C 91%/100/0.2 C [85] C-HC||Na3V2(PO4)2F3 2.0-4.3 98/20 (base on cathode) 239/20 80%/50/20 mA g-1 [59] Zn-HC||NVP 1.5-3.9 524/50 323/50 86%/650/2 A g-1 [118] HC-21-1400||O3-NaNi1/3Fe1/3Mn1/3O2 0.1-4.0 413/0.1 C 300/0.1 C 87%/50/0.2 C [119] CAC1300||NVP 1.5-3.7 251.3/0.1 C 231.2/0.2 C 84%/200/0.2 C [125] GHC-80||O3-Na0.9[Cu0.22Fe0.30Mn0.48]O2 1.0-4.0 Unreported 210/0.1 C 91%/100/2 C [131] HC-0.2P-1000||NVP 1.5-3.7 343.3/50 251.1/50 73.3%/450/1 A g-1 [162] RG-1300||NaNi1/3Fe1/3Mn1/3O2 0.5-4.0 283/20 239/20 Unreported [163] CM180||O3-NaNi1/3Fe1/3Mn1/3O2 0.5-4.0 291.6/0.1 C 238.7/2 C 75%/200/2 C [164] CHC1300||Na0.83Mg0.11Ni0.22Mn0.63O2 1.5-4.3 331.1/30 265.4/30 75.6%/400/1 C [165] GCHC-1400||NVP 2.2-3.6 321/1 C 270/1 C 99%/200/1 C [166] HCM||NVP 1.0-3.4 307/0.1 C 190/1 C 90.2%/200/1 C [167] HCM55-1400||Na0.9[Cu0.22Fe0.30Mn0.48]O2 1.0-4.05 291/0.1 C 247/0.1 C Unreported [168] -
[1] Cao Y, Li M, Lu J, Liu J, Amine K 2019 Bridging the academic and industrial metrics for next-generation practical batteries Nat. Nanotechnol. 14 200-7 doi: 10.1038/s41565-019-0371-8 [2] Dunn B, Haresh K, Jean-Marie T 2011 Electrical energy storage for the grid: a battery of choices Science 334 928-35 doi: 10.1126/science.1212741 [3] Armand M, Tarascon J M 2008 Building better batteries Nature 451 652-67 doi: 10.1038/451652a [4] Zeng Z, et al 2018 Non-flammable electrolytes with high salt-to-solvent ratios for Li-ion and Li-metal batteries Nat. Energy 3 674-81 doi: 10.1038/s41560-018-0196-y [5] Peng C, Xu X, Li F, Xi L, Zeng J, Song X, Wan X, Zhao J, Liu J 2023 Recent progress of promising cathode candidates for sodium-ion batteries: current issues, strategy, challenge, and prospects Small Struct. 4 2300150 doi: 10.1002/sstr.202300150 [6] Liu Z, et al 2021 Ultralow volume change of P2-type layered oxide cathode for Na-ion batteries with controlled phase transition by regulating distribution of Na+ Angew. Chem., Int. Ed. 60 20960-9 doi: 10.1002/anie.202108109 [7] Liu Z, Wu J, Zeng J, Li F, Peng C, Xue D, Zhu M, Liu J 2023 Co-free layered oxide cathode material with stable anionic redox reaction for sodium-ion batteries Adv. Energy Mater. 13 2301471 doi: 10.1002/aenm.202301471 [8] Yabuuchi N, Kubota K, Dahbi M, Komaba S 2014 Research development on sodium-ion batteries Chem. Rev. 23 11636-82 doi: 10.1021/cr500192f [9] Whittingham M S 1976 Electrical energy storage and intercalation chemistry Science 192 1126-7 doi: 10.1126/science.192.4244.1126 [10] Zhang H, et al 2020 From solid-solution electrodes and the rocking-chair concept to today’s batteries Angew. Chem., Int. Ed. 59 534-8 doi: 10.1002/anie.201913923 [11] Newman G H, Klemann L P 1980 Ambient temperature cycling of an Na-TiS2 cell J. Electrochem. Soc. 127 2097 doi: 10.1149/1.2129353 [12] Delmas C, Braconnier J, Fouassier C, Hagenmuller P 1981 Electrochemical intercalation of sodium in NaxCoO2 bronzes Solid State Ion. 3-4 165-9 doi: 10.1016/0167-2738(81)90076-X [13] Yoshino A 2012 The birth of the lithium-ion battery Angew. Chem., Int. Ed. 51 5798-800 doi: 10.1002/anie.201105006 [14] Asher R, Wilson S 1958 Lamellar compound of sodium with graphite Nature 181 409-10 doi: 10.1038/181409a0 [15] Ge P, Fouletier M 1988 Electrochemical intercalation of sodium in graphite Solid State Ion. 28-30 1172-5 doi: 10.1016/0167-2738(88)90351-7 [16] Du J, Gao S, Shi P, Fan J, Xu Q, Min Y 2020 Three-dimensional carbonaceous for potassium ion batteries anode to boost rate and cycle life performance J. Power Sources 451 227727 doi: 10.1016/j.jpowsour.2020.227727 [17] Wang J, Xi L, Peng C, Song X, Wan X, Sun L, Liu M, Liu J 2024 Recent progress in hard carbon anodes for sodium-ion batteries Adv. Eng. Mater. 26 2302063 doi: 10.1002/adem.202302063 [18] Liu Z, et al 2023 Regulating electron distribution of P2-type layered oxide cathodes for practical sodium-ion batteries Mater. Today 68 22-33 doi: 10.1016/j.mattod.2023.06.021 [19] Moriwake H, Kuwabara A, Fisher C A J, Ikuhara Y 2017 Why is sodium-intercalated graphite unstable? RSC Adv. 7 36550-4 doi: 10.1039/C7RA06777A [20] Nobuhara K, Nakayama H, Nose M, Nakanishi S, Iba H 2013 First-principles study of alkali metal-graphite intercalation compounds J. Power Sources 243 585-7 doi: 10.1016/j.jpowsour.2013.06.057 [21] Stevens D A, Dahn J R 2000 High capacity anode materials for rechargeable sodiumion batteries J. Electrochem. Soc. 147 1271 doi: 10.1149/1.1393348 [22] Komaba S, Matsuura Y, Ishikawa T, Yabuuchi N, Murata W, Kuze S 2012 Redox reaction of Sn-polyacrylate electrodes in aprotic Na cell Electrochem. Commun. 21 65-66 doi: 10.1016/j.elecom.2012.05.017 [23] Li H, Wang K, Zhou M, Li W, Tao H, Wang R, Cheng S, Jiang K 2019 Facile tailoring of multidimensional nanostructured Sb for sodium storage applications ACS Nano 13 9533-40 doi: 10.1021/acsnano.9b04520 [24] Ma J, Prieto A L 2019 Electrodeposition of pure phase SnSb exhibiting high stability as a sodium-ion battery anode Chem. Commun. 55 6938-41 doi: 10.1039/C9CC00001A [25] Xu X, Liu Z, Ji S, Wang Z, Ni Z, Lv Y, Liu J, Liu J 2019 Rational synthesis of ternary FeS@TiO2@C nanotubes as anode for superior Na-ion batteries Chem. Eng. J. 359 765-74 doi: 10.1016/j.cej.2018.11.191 [26] Jian Z, Zhao B, Liu P, Li F, Zheng M, Chen M, Shi Y, Zhou H 2014 Fe2O3 nanocrystals anchored onto graphene nanosheets as the anode material for low-cost sodium-ion batteries Chem. Commun. 50 1215-7 doi: 10.1039/C3CC47977C [27] Su D, Ahn H J, Wang G 2013 SnO2@graphene nanocomposites as anode materials for Na-ion batteries with superior electrochemical performance Chem. Commun. 49 3131-3 doi: 10.1039/c3cc40448j [28] Xu X, Li F, Zhang D, Ji S, Huo Y, Liu J 2023 Facile construction of CoSn/Co3Sn2@C nanocages as anode for superior lithium-/sodium-ion storage Carbon Neutralization 2 54-62 doi: 10.1002/cnl2.40 [29] Senguttuvan P, Rousse G, Seznec V, Tarascon J-M, Palacín M R 2011 Na2Ti3O7: lowest voltage ever reported oxide insertion electrode for sodium ion batteries Chem. Mater. 23 4109-11 doi: 10.1021/cm202076g [30] Wang Y, Yu X, Xu S, Bai J, Xiao R, Hu Y-S, Li H, Yang X-Q, Chen L, Huang X 2013 A zero-strain layered metal oxide as the negative electrode for long-life sodium-ion batteries Nat. Commun. 4 2365 doi: 10.1038/ncomms3365 [31] Wang Y, Xiao R, S H Y, Avdeev M, Chen L 2015 P2-Na0.6[Cr0.6Ti0.4]O2 cation-disordered electrode for high-rate symmetric rechargeable sodium-ion batteries Nat. Commun. 6 6954 doi: 10.1038/ncomms7954 [32] Wang H, Feng P, Fu F, Yu X, Yang D, Zhang W, Niu L, Qiu X 2022 Ligninderived carbon materials for catalysis and electrochemical energy storage Carbon Neutralization 1 277-97 doi: 10.1002/cnl2.29 [33] Nagmani, Kumar A, Puravankara S 2022 Optimizing ultramicroporous hard carbon spheres in carbonate esterbased electrolytes for enhanced sodium storage in half/fullcell sodiumion batteries Battery Energy 1 20220007 doi: 10.1002/bte2.20220007 [34] Abouimrane A, Weng W, Eltayeb H, Cui Y, Niklas J, Poluektov O, Amine K 2012 Sodium insertion in carboxylate based materials and their application in 3.6 V full sodium cells Energy Environ. Sci. 5 9632-8 doi: 10.1039/c2ee22864e [35] Kim H, Kwon J E, Lee B, Hong J, Lee M, Park S Y, Kang K 2015 High energy organic cathode for sodium rechargeable batteries Chem. Mater. 27 7258-64 doi: 10.1021/acs.chemmater.5b02569 [36] Luo W, Allen M, Raju V, Ji X 2014 An organic pigment as a highperformance cathode for sodiumion batteries Adv. Energy Mater. 4 1400554 doi: 10.1002/aenm.201400554 [37] Wang Q, Zhu X, Liu Y, Fang Y, Zhou X, Bao J 2018 Rice husk-derived hard carbons as high-performance anode materials for sodium-ion batteries Carbon 127 658-66 doi: 10.1016/j.carbon.2017.11.054 [38] Qi Y, Lu Y, Ding F, Zhang Q, Li H, Huang X, Chen L, Hu Y-S 2019 Slopedominated carbon anode with high specific capacity and superior rate capability for high safety Naion batteries Angew. Chem., Int. Ed. 58 4361-5 doi: 10.1002/anie.201900005 [39] Franklin R E 1951 Crystallite growth in graphitizing and non-graphitizing carbons Proc. R. Soc. A 209 196-218 doi: 10.1098/rspa.1951.0197 [40] Wang G, Yu M, Feng X 2021 Carbon materials for ion-intercalation involved rechargeable battery technologies Chem. Soc. Rev. 50 2388-443 doi: 10.1039/d0cs00187b [41] Köchling K H, et al 1982 International committee for characterization and terminology of carbon “first publication of 30 tentative definitions” Carbon 20 445-9 doi: 10.1016/0008-6223(82)90046-x [42] Liu Y, Xue J S, Zheng T, Dahn J R 1996 Mechanism of lithium insertion in hard carbons prepared by pyrolysis of epoxy resins Carbon 34 193-200 doi: 10.1016/0008-6223(96)00177-7 [43] Buiel E R, George A E, Dahn J R 1999 Model of micropore closure in hard carbon prepared from sucrose Carbon 37 1399-407 doi: 10.1016/S0008-6223(98)00335-2 [44] Stevens D A, Dahn J R 2001 The mechanisms of lithium and sodium insertion in carbon materials J. Electrochem. Soc. 148 A803 doi: 10.1149/1.1379565 [45] Komaba S, Murata W, Ishikawa T, Yabuuchi N, Ozeki T, Nakayama T, Ogata A, Gotoh K, Fujiwara K 2011 Electrochemical Na insertion and solid electrolyte interphase for hardcarbon electrodes and application to Naion batteries Adv. Funct. Mater. 21 3859-67 doi: 10.1002/adfm.201100854 [46] Li Y, Hu Y S, Titirici M M, Chen L, Huang X 2016 Hard carbon microtubes made from renewable cotton as highperformance anode material for sodiumion batteries Adv. Energy Mater. 6 1600659 doi: 10.1002/aenm.201600659 [47] Qiu S, et al 2017 Manipulating adsorption-insertion mechanisms in nanostructured carbon materials for highefficiency sodium ion storage Adv. Energy Mater. 7 1700403 doi: 10.1002/aenm.201700403 [48] Zhang B, Ghimbeu C M, Laberty C, VixGuterl C, Tarascon J-M 2016 Correlation between microstructure and Na storage behavior in hard carbon Adv. Energy Mater. 6 1501588 doi: 10.1002/aenm.201501588 [49] Bommier C, Surta T W, Dolgos M, Ji X 2015 New mechanistic insights on Na-ion storage in nongraphitizable carbon Nano Lett. 15 5888-92 doi: 10.1021/acs.nanolett.5b01969 [50] Zeng Y, Yang J, Yang H, Yang Y, Zhao J 2024 Bridging microstructure and sodium-ion storage mechanism in hard carbon for sodium ion batteries ACS Energy Lett. 9 1184-91 doi: 10.1021/acsenergylett.3c02751 [51] Sun N, Guan Z, Liu Y, Cao Y, Zhu Q, Liu H, Wang Z, Zhang P, Xu B 2019 Extended “adsorption-insertion” model: a new insight into the sodium storage mechanism of hard carbons Adv. Energy Mater. 9 1901351 doi: 10.1002/aenm.201901351 [52] Zhao J, et al 2023 Catalytic defectrepairing using manganese ions for hard carbon anode with highcapacity and highinitialCoulombicefficiency in sodiumion batteries Adv. Energy Mater. 13 2300444 doi: 10.1002/aenm.202300444 [53] Au H, et al 2020 A revised mechanistic model for sodium insertion in hard carbons Energy Environ. Sci. 13 3469-79 doi: 10.1039/D0EE01363C [54] Li Q, et al 2022 Sieving carbons promise practical anodes with extensible low-potential plateaus for sodium batteries Natl Sci. Rev. 9 118-26 doi: 10.1093/nsr/nwac084 [55] EinEli Y 1999 A new perspective on the formation and structure of the solid electrolyte interface at the graphite anode of Liion cells electrochemical and solid-state letters Electrochem. Solid-State Lett. 2 212 doi: 10.1149/1.1390787 [56] Li Z, Chen Y, Jian Z, Jiang H, Razink J J, Stickle W F, Neuefeind J C, Ji X 2018 Defective hard carbon anode for Na-ion batteries Chem. Mater. 30 4536-42 doi: 10.1021/acs.chemmater.8b00645 [57] Datta D, Li J, Shenoy V B 2014 Defective graphene as a high-capacity anode material for Na-and Ca-ion batteries ACS Appl. Mater. Interfaces 6 1788-95 doi: 10.1021/am404788e [58] Tsai P, Chung S C, Lin S, Yamada A 2015 Ab initio study of sodium intercalation into disordered carbon J. Mater. Chem. A 3 9763-8 doi: 10.1039/C5TA01443C [59] Sun D, Luo B, Wang H, Tang Y, Ji X, Wang L 2019 Engineering the trap effect of residual oxygen atoms and defects in hard carbon anode towards high initial Coulombic efficiency Nano Energy 64 103937 doi: 10.1016/j.nanoen.2019.103937 [60] Gomez-Martin A, Martinez-Fernandez J, Ruttert M, Winter M, Placke T, Ramirez-Rico J 2019 Correlation of structure and performance of hard carbons as anodes for sodium ion batteries Chem. Mater. 31 7288-99 doi: 10.1021/acs.chemmater.9b01768 [61] Zheng J, Guan C, Li H, Wang D, Lai Y, Li S, Li J, Zhang Z 2024 Unveiling the microscopic origin of irreversible capacity loss of hard carbon for sodiumion batteries Adv. Energy Mater. 14 2303584 doi: 10.1002/aenm.202303584 [62] Wang S, Dai G, Yang H, Luo Z 2017 Lignocellulosic biomass pyrolysis mechanism: a state-of-the-art review Prog. Energy Combust. Sci. 62 33-86 doi: 10.1016/j.pecs.2017.05.004 [63] Hu B, Zhang B, Xie W, Jiang X-Y, Liu J, Lu Q 2020 Recent progress in quantum chemistry modeling on the pyrolysis mechanisms of lignocellulosic biomass Energy Fuels 34 10384-440 doi: 10.1021/acs.energyfuels.0c01948 [64] Dahbi M, Kiso M, Kubota K, Horiba T, Chafik T, Hida K, Matsuyama T, Komaba S 2017 Synthesis of hard carbon from argan shells for Na-ion batteries J. Mater. Chem. A 5 9917-28 doi: 10.1039/C7TA01394A [65] Xiao L, Lu H, Fang Y, Sushko M L, Cao Y, Ai X, Yang H, Liu J 2018 Lowdefect and lowporosity hard carbon with high coulombic efficiency and high capacity for practical sodium ion battery anode Adv. Energy Mater. 8 1703238 doi: 10.1002/aenm.201703238 [66] Guo S, Chen Y, Tong L, Cao Y, Jiao H, long Z, Qiu X 2022 Biomass hard carbon of high initial coulombic efficiency for sodium-ion batteries: preparation and application Electrochim. Acta 410 140017 doi: 10.1016/j.electacta.2022.140017 [67] Zhang T, Mao J, Liu X, Xuan M, Bi K, Zhang X L, Hu J, Fan J, Chen S, Shao G 2017 Pinecone biomass-derived hard carbon anodes for high-performance sodium-ion batteries RSC Adv. 2017 41504-11 doi: 10.1039/C7RA07231G [68] Simone V, Boulineau A, De Geyer A, Rouchon D, Simonin L, Martinet S 2016 Hard carbon derived from cellulose as anode for sodium ion batteries: dependence of electrochemical properties on structure J. Energy Chem. 25 761-8 doi: 10.1016/j.jechem.2016.04.016 [69] Alvin S, Yoon D, Chandra C, Susanti R F, Chang W, Ryu C, Kim J 2019 Extended flat voltage profile of hard carbon synthesized using a two-step carbonization approach as an anode in sodium ion batteries J. Power Sources 430 157-68 doi: 10.1016/j.jpowsour.2019.05.013 [70] Titirici M M, White R J, Brun N, Budarin V L, Su D S, Del Monte F, Clark J H, MacLachlan M J 2015 Sustainable carbon materials Chem. Soc. Rev. 44 250-90 doi: 10.1039/c4cs00232f [71] Hu B, Wang K, Wu L, Yu S-H, Antonietti M, Titirici M-M 2010 Engineering carbon materials from the hydrothermal carbonization process of biomass Adv. Mater. 22 813-28 doi: 10.1002/adma.200902812 [72] Titirici M M, White R J, Falco C, Sevilla M 2012 Black perspectives for a green future: hydrothermal carbons for environment protection and energy storage Energy Environ. Sci. 5 6796-822 doi: 10.1039/c2ee21166a [73] Li Y, Xu S, Wu X, Yu J, Wang Y, Hu Y-S, Li H, Chen L, Huang X 2015 Amorphous monodispersed hard carbon micro-spherules derived from biomass as a high performance negative electrode material for sodium-ion batteries J. Mater. Chem. A 3 71-77 doi: 10.1039/C4TA05451B [74] Qatarneh A F, Dupont C, Michel J, Simonin L, Beda A, Matei Ghimbeu C, Ruiz-Villanueva V, da Silva D, Piégay H, Franca M J 2021 River driftwood pretreated via hydrothermal carbonization as a sustainable source of hard carbon for Na-ion battery anodes J. Environ. Chem. Eng. 9 106604 doi: 10.1016/j.jece.2021.106604 [75] Xu Z, Wang J, Guo Z, Xie F, Liu H, Yadegari H, Tebyetekerwa M, Ryan M P, Hu Y-S, Titirici M-M 2022 The role of hydrothermal carbonization in sustainable sodiumion battery anodes Adv. Energy Mater. 12 2200208 doi: 10.1002/aenm.202200208 [76] Yang B, Wang J, Zhu Y, Ji K, Wang C, Ruan D, Xia Y 2021 Engineering hard carbon with high initial coulomb efficiency for practical sodium-ion batteries J. Power Sources 492 229656 doi: 10.1016/j.jpowsour.2021.229656 [77] Zhen Y, Chen Y, Li F, Guo Z, Hong Z, Titirici M-M 2021 Ultrafast synthesis of hard carbon anodes for sodium-ion batteries Proc. Natl Acad. Sci. 118 e2111119118 doi: 10.1073/pnas.2111119118 [78] Zhang X, Dong X, Qiu X, Cao Y, Wang C, Wang Y, Xia Y 2020 Extended low-voltage plateau capacity of hard carbon spheres anode for sodium ion batteries J. Power Sources 476 228550 doi: 10.1016/j.jpowsour.2020.228550 [79] Fan C, Zhang R, Luo X, Hu Z, Zhou W, Zhang W, Liu J, Liu J 2023 Epoxy phenol novolac resin: a novel precursor to construct high performance hard carbon anode toward enhanced sodium-ion batteries Carbon 205 353-64 doi: 10.1016/j.carbon.2023.01.048 [80] Tang X, Xie F, Lu Y, Chen Z, Li X, Li H, Huang X, Chen L, Pan Y, Hu Y-S 2023 Intrinsic effects of precursor functional groups on the Na storage performance in carbon anodes Nano Res. 16 12579-86 doi: 10.1007/s12274-023-5643-9 [81] Lu Y, Zhao C, Qi X, Qi Y, Li H, Huang X, Chen L, Hu Y-S 2018 Preoxidationtuned microstructures of carbon anodes derived from pitch for enhancing Na storage performance Adv. Energy Mater. 8 1800108 doi: 10.1002/aenm.201800108 [82] Yamamoto H, Muratsubaki S, Kubota K, Fukunishi M, Watanabe H, Kim J, Komaba S 2018 Synthesizing higher-capacity hard-carbons from cellulose for Na- and K-ion batteries J. Mater. Chem. A 6 16844-8 doi: 10.1039/C8TA05203D [83] Wei Z, Zhao H X, Niu Y B, Zhang S-Y, Wu Y-B, Yan H-J, Xin S, Yin Y-X, Guo Y-G 2021 Insights into the pre-oxidation process of phenolic resin-based hard carbon for sodium storage Mater. Chem. Front. 5 3911-7 doi: 10.1039/D1QM00077B [84] Wang H, Liu S T, Lei C, Qiu H, Jiang W, Sun X, Zhang Y, He W 2024 P-doped hard carbon material for anode of sodium ion battery was prepared by using polyphosphoric acid modified petroleum asphalt as precursor Electrochim. Acta 477 143812 doi: 10.1016/j.electacta.2024.143812 [85] Li Y, Mu L, Li H, Chen L, Huang X 2016 Pitch-derived amorphous carbon as high performance anode for sodium-ion batteries Energy Storage Mater. 2 139-45 doi: 10.1016/j.ensm.2015.10.003 [86] Li Y, Hu Y S, Qi X, Rong X, Li H, Huang X, Chen L 2016 Advanced sodium-ion batteries using superior low cost pyrolyzed anthracite anode: towards practical applications Energy Storage Mater. 5 191-7 doi: 10.1016/j.ensm.2016.07.006 [87] Li R, et al 2023 Heteroatom screening and microcrystal regulation of coal-derived hard carbon promises high-performance sodium-ion batteries Carbon 215 118489 doi: 10.1016/j.carbon.2023.118489 [88] Arie A A, Tekin B, Demir E, Demir-Cakan R 2019 Hard carbons derived from waste tea bag powder as anodes for sodium ion battery Mater. Technol. 34 515-24 doi: 10.1080/10667857.2019.1586087 [89] Arie A, Tekin B, Demir E, Demir-Cakan R 2020 Utilization of the Indonesian’s spent tea leaves as promising porous hard carbon precursors for anode materials in sodium ion batteries Waste Biomass Valorization 11 3121-31 doi: 10.1007/s12649-019-00624-x [90] Muruganantham R, Wang F, Liu W 2022 A green route N, S-doped hard carbon derived from fruit-peel biomass waste as an anode material for rechargeable sodium-ion storage applications Electrochim. Acta 424 140573 doi: 10.1016/j.electacta.2022.140573 [91] Lee H V, Hamid S B A, Zain S K 2014 Conversion of lignocellulosic biomass to nanocellulose: structure and chemical process Sci. World J. 2014 631013 doi: 10.1155/2014/631013 [92] Tang Z, et al 2023 Revealing the closed pore formation of waste wood-derived hard carbon for advanced sodium-ion battery Nat. Commun. 14 6024 doi: 10.1038/s41467-023-39637-5 [93] Zheng Y, Wang Y, Lu Y, Hu Y-S, Li J 2017 A high-performance sodium-ion battery enhanced by macadamia shell derived hard carbon anode Nano Energy 39 489-98 doi: 10.1016/j.nanoen.2017.07.018 [94] Li Y, et al 2019 Regulating pore structure of hierarchical porous waste cork-derived hard carbon anode for enhanced Na storage performance Adv. Energy Mater. 9 1902852 doi: 10.1002/aenm.201902852 [95] Asfaw H D, Gond R, Kotronia A, Tai C W, Younesi R 2022 Bio-derived hard carbon nanosheets with high rate sodium-ion storage characteristics Sustain. Mater. Technol. 32 e00407 doi: 10.1016/j.susmat.2022.e00407 [96] Lotfabad E M, Kalisvaart P, Kohandehghan A, Karpuzov D, Mitlin D 2014 Origin of non-SEI related coulombic efficiency loss in carbons tested against Na and Li J. Mater. Chem. A 2 19685-95 doi: 10.1039/C4TA04995K [97] Wang J, Zhao J, He X, Qiao Y, Li L, Chou S L 2022 Hard carbon derived from hazelnut shell with facile HCl treatment as high-initial-coulombic-efficiency anode for sodium ion batteries Sustain. Mater. Technol. 33 e00446 doi: 10.1016/j.susmat.2022.e00446 [98] Xu T, Qiu X, Zhang X, Xia Y 2023 Regulation of surface oxygen functional groups and pore structure of bamboo-derived hard carbon for enhanced sodium storage performance Chem. Eng. J. 452 139514 doi: 10.1016/j.cej.2022.139514 [99] He X X, et al 2023 Achieving allplateau and highcapacity sodium insertion in topological graphitized carbon Adv. Mater. 35 2302613 doi: 10.1002/adma.202302613 [100] He Q, et al 2024 Teaderived sustainable materials Adv. Funct. Mater. 34 2310226 doi: 10.1002/adfm.202310226 [101] Wang J, Yan L, Ren Q, Fan L, Zhang F, Shi Z 2018 Facile hydrothermal treatment route of reed straw-derived hard carbon for high performance sodium ion battery Electrochim. Acta 291 188-96 doi: 10.1016/j.electacta.2018.08.136 [102] Chen Y, Li F, Guo Z, Song Z, Lin Y, Lin W, Zheng L, Huang Z, Hong Z, Titirici M-M 2023 Sustainable and scalable fabrication of high-performance hard carbon anode for Na-ion battery J. Power Sources 557 232534 doi: 10.1016/j.jpowsour.2022.232534 [103] Wei Y, Ji X, Lu Z, Jin H, Kong X, Jin S, Ji H 2024 Gelatinderived hard carbon achieves effective control of microstructure toward fast and durable sodium storage Adv. Funct. Mater. 34 2315408 doi: 10.1002/adfm.202315408 [104] Zhang G, Zhao Y, Yan L, Zhang L, Shi Z 2021 Sycamore fruit seedbased hard carbon anode material with high cycle stability for sodiumion battery J. Mater. Sci., Mater. Electron. 32 5645-54 doi: 10.1007/s10854-021-05286-x [105] Nita C, Zhang B, Dentzer J, Matei Ghimbeu C 2021 Hard carbon derived from coconut shells, walnut shells, and corn silk biomass waste exhibiting high capacity for Na-ion batteries J. Energy Chem. 58 207-18 doi: 10.1016/j.jechem.2020.08.065 [106] Xie F, Xu Z, Jensen A C S, Au H, Lu Y, AraulloPeters V, Drew A J, Hu Y-S, Titirici M-M 2019 Hard-soft carbon composite anodes with synergistic sodium storage performance Adv. Funct. Mater. 29 1901072 doi: 10.1002/adfm.201901072 [107] Zhang H, Ming H, Zhang W, Cao G, Yang Y 2017 Coupled carbonization strategy toward advanced hard carbon for high-energy sodium-ion battery ACS Appl. Mater. Interfaces 9 23766-74 doi: 10.1021/acsami.7b05687 [108] Yu C, Li Y, Ren H, Qian J, Wang S, Feng X, Liu M, Bai Y, Wu C 2023 Engineering homotype heterojunctions in hard carbon to induce stable solid electrolyte interfaces for sodiumion batteries Carbon Energy 5 e220 doi: 10.1002/cey2.220 [109] Lu H, Chen X, Jia Y, Chen H, Wang Y, Ai X, Yang H, Cao Y 2019 Engineering Al2O3 atomic layer deposition: enhanced hard carbon-electrolyte interface towards practical sodium ion batteries Nano Energy 64 103903 doi: 10.1016/j.nanoen.2019.103903 [110] Chen X, et al 2022 An overall understanding of sodium storage behaviors in hard carbons by an “adsorptionintercalation/filling” hybrid mechanism Adv. Energy Mater. 12 2200886 doi: 10.1002/aenm.202200886 [111] Sun H, Zhang Q, Ma Y, Li Z, Zhang D, Sun Q, Wang Q, Liu D, Wang B 2024 Unraveling the mechanism of sodium storage in low potential region of hard carbons with different microstructures Energy Storage Mater. 67 103269 doi: 10.1016/j.ensm.2024.103269 [112] Zhang S W, Lv W, Luo C, You C-H, Zhang J, Pan Z-Z, Kang F-Y, Yang Q-H 2016 Commercial carbon molecular sieves as a high performance anode for sodium-ion batteries Energy Storage Mater. 3 18-23 doi: 10.1016/j.ensm.2015.12.004 [113] Morishita T, Tsumura T, Toyoda M, Przepiórski J, Morawski A W, Konno H, Inagaki M 2010 A review of the control of pore structure in MgO-templated nanoporous carbons Carbon 48 2690-707 doi: 10.1016/j.carbon.2010.03.064 [114] Liu L, Yibibulla T, Yang Y, Hassan S U, Hou L, Kuang D, Mead J L, Deng L, Wang S 2024 Design and microwave absorption characteristics of porous lamellar hard carbon materials Microporous Mesoporous Mater. 369 113041 doi: 10.1016/j.micromeso.2024.113041 [115] Kyotani T, Ma Z, Tomita A 2003 Template synthesis of novel porous carbons using various types of zeolites Carbon 41 1451-9 doi: 10.1016/S0008-6223(03)00090-3 [116] Ryoo R, Joo S H, Jun S 1999 Synthesis of highly ordered carbon molecular sieves via template-mediated structural transformation J. Phys. Chem. B 103 7743-6 doi: 10.1021/jp991673a [117] Kamiyama A, Kubota K, Igarashi D, Youn Y, Tateyama Y, Ando H, Gotoh K, Komaba S 2021 MgOtemplate synthesis of extremely high capacity hard carbon for Naion battery Angew. Chem., Int. Ed. 60 5114-20 doi: 10.1002/anie.202013951 [118] Yin X, Lu Z, Wang J, Feng X, Roy S, Liu X, Yang Y, Zhao Y, Zhang J 2022 Enabling fast Na+ transfer kinetics in the wholevoltageregion of hardcarbon anodes for ultrahighrate sodium storage Adv. Mater. 34 2109282 doi: 10.1002/adma.202109282 [119] Meng Q, Lu Y, Ding F, Zhang Q, Chen L, Hu Y-S 2019 Tuning the closed pore structure of hard carbons with the highest Na storage capacity ACS Energy Lett. 4 2608-12 doi: 10.1021/acsenergylett.9b01900 [120] Zheng Z, Hu S, Yin W, Peng J, Wang R, Jin J, He B, Gong Y, Wang H, Fan H J 2024 CO2etching creates abundant closed pores in hard carbon for highplateaucapacity sodium storage Adv. Energy Mater. 14 2303064 doi: 10.1002/aenm.202303064 [121] Dou X, Hasa I, Saurel D, Jauregui M, Buchholz D, Rojo T, Passerini S 2018 Impact of the acid treatment on lignocellulosic biomass hard carbon for sodiumion battery anodes ChemSusChem 11 3276-85 doi: 10.1002/cssc.201801148 [122] Wang H, Yu W, Shi J, Mao N, Chen S, Liu W 2016 Biomass derived hierarchical porous carbons as high-performance anodes for sodium-ion batteries Electrochim. Acta 188 103-10 doi: 10.1016/j.electacta.2015.12.002 [123] Yu Z, Zhao Z, Peng T 2021 Coralloid carbon material based on biomass as a promising anode material for lithium and sodium storage New J. Chem. 45 7138-44 doi: 10.1039/D0NJ01769H [124] Singh G, Ruban A M, Geng X, Vinu A 2023 Recognizing the potential of K-salts, apart from KOH, for generating porous carbons using chemical activation Chem. Eng. J. 451 139045 doi: 10.1016/j.cej.2022.139045 [125] Wang K, Sun F, Wang H, Wu D, Chao Y, Gao J, Zhao G 2022 Altering thermal transformation pathway to create closed pores in coal-derived hard carbon and boosting of Na+ plateau storage for high-performance sodium-ion battery and sodium-ion capacitor Adv. Funct. Mater. 32 2203725 doi: 10.1002/adfm.202203725 [126] Cheng D, Li Z, Zhang M, Duan Z, Wang J, Wang C 2023 Engineering ultrathin carbon layer on porous hard carbon boosts sodium storage with high initial Coulombic efficiency ACS Nano 17 19063-75 doi: 10.1021/acsnano.3c04984 [127] Khaleghian H, Molaverdi M, Karimi K 2017 Silica removal from rice straw to improve its hydrolysis and ethanol production Ind. Eng. Chem. Res. 56 9793-8 doi: 10.1021/acs.iecr.7b02830 [128] Singh S, Kaur G, Singh D P, Arya S K, Krishania M 2024 Exploring rice straw’s potential from a sustainable biorefinery standpoint: towards valorization and diverse product production process Process Saf. Environ. Prot. 184 314-31 doi: 10.1016/j.psep.2024.01.105 [129] Li P, Yu L, Ji S, Xu X, Liu Z, Liu J, Liu J 2019 Facile synthesis of three-dimensional porous interconnected carbon matrix embedded with Sb nanoparticles as superior anode for Na-ion batteries Chem. Eng. J. 374 502-10 doi: 10.1016/j.cej.2019.05.198 [130] Li T, Liu Z, Gu Y, Tang Y, Huang F 2020 Hierarchically porous hard carbon with graphite nanocrystals for high-rate sodium ion batteries with improved initial Coulombic efficiency J. Alloy Compd. 817 152703 doi: 10.1016/j.jallcom.2019.152703 [131] Zhang H, Zhang W, Huang F 2022 Graphene inducing graphitization: towards a hard carbon anode with ultrahigh initial Coulombic efficiency for sodium storage Chem. Eng. J. 434 134503 doi: 10.1016/j.cej.2022.134503 [132] He X X, et al 2021 Soft-carbon-coated, free-standing, low-defect, hard-carbon anode to achieve a 94% initial Coulombic efficiency for sodium-ion batteries ACS Appl. Mater. Interfaces 13 44358-68 doi: 10.1021/acsami.1c12171 [133] Li X, Sun J, Zhao W, Lai Y, Yu X, Liu Y 2022 Intergrowth of graphitelike crystals in hard carbon for highly reversible Naion storage Adv. Funct. Mater. 32 2106980 doi: 10.1002/adfm.202106980 [134] Yu X, Xin L, Li X, Wu Z, Liu Y 2022 Completely crystalline carbon containing graphite-like crystal enables 99.5% initial coulombic efficiency for Na-ion batteries Mater. Today 59 25-35 doi: 10.1016/j.mattod.2022.07.013 [135] Hou L, et al 2023 Boosting the reversible, high-rate Na+ storage capability of the hard carbon anode via the synergistic structural tailoring and controlled presodiation Small 19 2207638 doi: 10.1002/smll.202207638 [136] Tang J, Kye D, Pol V 2018 Ultrasound-assisted synthesis of sodium powder as electrode additive to improve cycling performance of sodium-ion batteries J. Power Sources 396 476-82 doi: 10.1016/j.jpowsour.2018.06.067 [137] Wang Y, Lu J, Dai W, Cheng X, Zuo J, Lei H, Liu W, Fu Z 2024 On the practicability of the solid-state electrochemical pre-sodiation technique on hard carbon anodes for sodium-ion batteries Adv. Funct. Mater. 2403841 doi: 10.1002/adfm.202403841 [138] Xiao B, et al 2018 Lithium-pretreated hard carbon as high-performance sodium-ion battery anodes Adv. Energy Mater. 8 1801441 doi: 10.1002/aenm.201801441 [139] Soto F, et al 2017 Tuning the solid electrolyte interphase for selective Li- and Na-ion storage in hard carbon Adv. Mater. 29 1606860 doi: 10.1002/adma.201606860 [140] Liu X, Tan Y, Liu T, Wang W, Li C, Lu J, Sun Y 2019 A simple electrode-level chemical presodiation route by solution spraying to improve the energy density of sodium-ion batterie Adv. Funct. Mater. 29 1903795 doi: 10.1002/adfm.201903795 [141] Fang H, Gao S, Ren M, Huang Y, Cheng F, Chen J, Li F 2023 Dual-function presodiation with sodium diphenyl ketone towards ultra-stable hard carbon anodes for sodium-ion batteries Angew. Chem., Int. Ed. 62 e202214717 doi: 10.1002/anie.202214717 [142] Man Q, Wei C, Tian K, Shen H, Zhang X, Bai X, Xi B, Xiong S, Feng J 2024 Molecular-level design of high flash point solvents enables high-safety and dual-function chemical presodiation of hard carbon and alloy anodes for high-performance sodium-ion batteries Adv. Energy Mater. 14 2401016 doi: 10.1002/aenm.202401016 [143] Li X, Yan P, Engelhard M, Crawford A J, Viswanathan V V, Wang C, Liu J, Sprenkle V L 2016 The importance of solid electrolyte interphase formation for long cycle stability full-cell Na-ion batteries Nano Energy 27 664-72 doi: 10.1016/j.nanoen.2016.07.030 [144] Mao Y, Zhou C, Gong H, Zhang S, Wang X, Liu X, Xiang Q, Sun J 2023 High-efficiency separator capacity-compensation strategy applied to sodium-ion batteries Small 19 2303259 doi: 10.1002/smll.202303259 [145] Shen B, Zhan R, Dai C, Li Y, Hu L, Niu Y, Jiang J, Wang Q, Xu M 2019 Manipulating irreversible phase transition of NaCrO2 towards an effective sodium compensation additive for superior sodium-ion full cells J. Colloid Interface Sci. 553 524-9 doi: 10.1016/j.jcis.2019.06.056 [146] De Ilarduya J M, Otaegui L, Galcerán M, Acebo L, Shanmukaraj D, Rojo T, Armand M 2019 Towards high energy density, low cost and safe Na-ion full-cell using P2-Na0.67[Fe0.5Mn0.5]O2 and Na2C4O4 sacrificial salt Electrochim. Acta 321 134693 doi: 10.1016/j.electacta.2019.134693 [147] Huang Y, Zhao L, Li L, Xie M, Wu F, Chen R 2019 Electrolytes and electrolyte/electrode interfaces in sodium-ion batteries: from scientific research to practical application Adv. Mater. 31 1808393 doi: 10.1002/adma.201808393 [148] Xu K 2014 Electrolytes and interphases in Li-ion batteries and beyond Chem. Rev. 114 11503-618 doi: 10.1021/cr500003w [149] Ponrouch A, Marchante E, Courty M, Tarascon J-M, Palacín M R 2012 In search of an optimized electrolyte for Na-ion batteries Energy Environ. Sci. 5 8572-83 doi: 10.1039/c2ee22258b [150] Ponrouch A, Dedryvère R, Monti D, Demet A E, Ateba Mba J M, Croguennec L, Masquelier C, Johansson P, Palacín M R 2013 Towards high energy density sodium ion batteries through electrolyte optimization Energy Environ. Sci. 6 2361-9 doi: 10.1039/c3ee41379a [151] Goodenough J B, Kim Y 2010 Challenges for rechargeable Li batteries Chem. Mater. 22 587-603 doi: 10.1021/cm901452z [152] Xu Z, Lim K, Park K, Yoon G, Seong W M, Kang K 2018 Engineering solid electrolyte interphase for pseudocapacitive anatase TiO2 anodes in sodium-ion batteries Adv. Funct. Mater. 28 1802099 doi: 10.1002/adfm.201802099 [153] Zhen Y, Sa R, Zhou K, Ding L, Chen Y, Mathur S, Hong Z 2020 Breaking the limitation of sodium-ion storage for nanostructured carbon anode by engineering desolvation barrier with neat electrolytes Nano Energy 74 104895 doi: 10.1016/j.nanoen.2020.104895 [154] Dong R, Zheng L, Bai Y, Ni Q, Li Y, Wu F, Ren H, Wu C 2021 Elucidating the mechanism of fast Na storage kinetics in ether electrolytes for hard carbon anodes Adv. Mater. 33 2008810 doi: 10.1002/adma.202008810 [155] Li C, Xu H, Ni L, Qin B, Ma Y, Jiang H, Xu G, Zhao J, Cui G 2023 Nonaqueous liquid electrolytes for sodium-ion batteries: fundamentals, progress and perspectives Adv. Energy Mater. 13 2301758 doi: 10.1002/aenm.202301758 [156] Tian Z, Zou Y, Liu G, Wang Y, Yin J, Ming J, Alshareef H N 2022 Electrolyte solvation structure design for sodium ion batteries Adv. Sci. 9 2201207 doi: 10.1002/advs.202201207 [157] Zeng F, Xing L, Zhang W, Xie Z, Liu M, Lin X, Tang G, Mo C, Li W 2023 Innovative discontinuous-SEI constructed in ether-based electrolyte to maximize the capacity of hard carbon anode J. Energy Chem. 79 459-67 doi: 10.1016/j.jechem.2022.12.044 [158] Patra J, Huang H, Xue W, Wang C, Helal A S, Li J, Chang J-K 2019 Moderately concentrated electrolyte improves solid-electrolyte interphase and sodium storage performance of hard carbon Energy Storage Mater. 16 146-54 doi: 10.1016/j.ensm.2018.04.022 [159] Jin Y, et al 2022 Low-solvation electrolytes for high-voltage sodium-ion batteries Nat. Energy 7 718-25 doi: 10.1038/s41560-022-01055-0 [160] Komaba S, Ishikawa T, Yabuuchi N, Murata W, Ito A, Ohsawa Y 2011 Fluorinated ethylene carbonate as electrolyte additive for rechargeable Na batteries ACS Appl. Mater. Interfaces 3 4165-8 doi: 10.1021/am200973k [161] Che H, Yang X, Wang H, Liao X-Z, Zhang S S, Wang C, Ma Z-F 2018 Long cycle life of sodium-ion pouch cell achieved by using multiple electrolyte additives J. Power Sources 407 173-9 doi: 10.1016/j.jpowsour.2018.08.025 [162] Yin X, Zhao Y, Wang X, Feng X, Lu Z, Li Y, Long H, Wang J, Ning J, Zhang J 2021 Modulating the graphitic domains of hard carbons derived from mixed pitch and resin to achieve high rate and stable sodium storage Small 18 2105568 doi: 10.1002/smll.202105568 [163] Wang J, Lv W, Ren Q, Yan L, Zhang L, Shi Z 2021 High-performance hard carbon anode prepared via an ingenious green-hydrothermal route Appl. Surf. Sci. 558 149824 doi: 10.1016/j.apsusc.2021.149824 [164] Zhang S, Sun N, Jiang M, Soomro R A, Xu B 2023 Trash to treasure: sulfonation-assisted transformation of waste masks into high-performance carbon anode for sodium-ion batteries Carbon 209 118034 doi: 10.1016/j.carbon.2023.118034 [165] Qin L, Xu S, Lu Z, Wang L, Chen L, Zhang D, Tian J, Wei T, Chen J, Guo C 2023 Cellulose as a novel precursor to construct high-performance hard carbon anode toward enhanced sodium-ion batteries Diam. Relat. Mater. 136 110065 doi: 10.1016/j.diamond.2023.110065 [166] Song Z, Li F, Mao L, Lin W, Zheng L, Huang Y, Wei M, Hong Z 2023 Sustainable fabrication of a practical hard carbon anode for a sodium-ion battery with unprecedented long cycle life ACS Sustain. Chem. Eng. 11 15020-30 doi: 10.1021/acssuschemeng.3c03765 [167] Li C, Sun Y, Wu Q, Liang X, Chen C, Xiang H 2020 A novel design strategy of a practical carbon anode material from a single lignin-based surfactant source for sodium-ion batteries Chem. Commun. 56 6078-81 doi: 10.1039/D0CC01431A [168] Zhang H, Zhang W, Ming H, Pang J, Zhang H, Cao G, Yang Y 2018 Design advanced carbon materials from lignin-based interpenetrating polymer networks for high performance sodium-ion batteries Chem. Eng. J. 341 280-8 doi: 10.1016/j.cej.2018.02.016