Ionogels and eutectogels for stable and long-term EEG and EMG signal acquisition
doi: 10.1088/2752-5724/ad5c84
-
Abstract: AbstractNeurological injuries and disorders have a significant impact on individuals’ quality of life, often resulting in motor and sensory loss. To assess motor performance and monitor neurological disorders, non-invasive techniques such as electroencephalography (EEG) and electromyography (EMG) are commonly used. Traditionally employed wet electrodes with conductive gels are limited by lengthy skin preparation time and allergic reactions. Although dry electrodes and hydrogel-based electrodes can mitigate these issues, their applicability for long-term monitoring is limited. Dry electrodes are susceptible to motion artifacts, whereas hydrogel-based electrodes face challenges related to water-induced instability. Recently, ionogels and eutectogels derived from ionic liquids and deep eutectic solvents have gained immense popularity due to their non-volatility, ionic conductivity, thermal stability, and tunability. Eutectogels, in particular, exhibit superior biocompatibility. These characteristics make them suitable alternatives for the development of safer, robust, and reliable EEG and EMG electrodes. However, research specifically focused on their application for EEG and EMG signal acquisition remains limited. This article explores the electrode requirements and material advancements in EEG and EMG sensing, with a focus on highlighting the benefits that ionogels and eutectogels offer over conventional materials. It sheds light on the current limitations of these materials and proposes areas for further improvement in this field. The potential of these gel-based materials to achieve a seamless interface for high-quality and long-term electrophysiological signal acquisition is emphasized. Leveraging the unique properties of ionogels and eutectogels holds promise for future advancements in EEG and EMG electrode materials, leading to improved monitoring systems and enhanced patient outcomes.
-
Key words:
- ionogel /
- eutectogel /
- electrode /
- electroencephalography /
- electromyography
-
Figure 2. (a) Commercially available wet Ag/AgCl EMG and EEG electrodes. Adapted from [5] with permission from the Royal Society of Chemistry. Reprinted from [16], © 2019 Elsevier B.V. All rights reserved. Reproduced from [17]. CC BY 4.0. (b) An example of a titanium-based dry electrode for surface EMG recording. Reproduced from [15]. CC BY 4.0. (c) An example of conducting polymer-based adhesive dry electrode for EMG and EEG signal acquisition. Reproduced from [18]. CC BY 4.0. (d) An example of conformal and adhesive MXene hydrogel-based electrodes for EMG signal acquisition. Reprinted from [6], © 2023 Elsevier Inc.
Figure 3. (a) Common cations and anions in ILs. Reproduced with permission from [9]. CC BY-NC 3.0. (b) Common hydrogen bond acceptors and donors in DESs. Adapted from [10], with permission from Springer Nature. (c) Ionogel-based electrodes for EMG and blood oxygen monitoring. [11] John Wiley & Sons. © 2023 Wiley-VCH GmbH. (d) Eutectogel electrodes based hydrophobic deep eutectic solvents for underwater EMG recording. Reproduced from [29]. CC BY 4.0.
Table 1. Characteristics of various electrode materials employed for EEG and EMG signal acquisition.
Materials Biocompatibility Mechanical characteristics Impedance SNR Long-term stability Adhesiveness References Traditional Wet electrodes Ag/AgCl Inflammatory and cytotoxicity risk Not flexible 2.8-130 kΩ 24.9 dB Lacks long-term stability Use electrolyte gel for adhesion [4] Metal-based Based Dry electrodes Titanium coated on Stainless steel/Polyurethane Improved biocompatibility during in-vivo tests Not flexible 10 kΩ (SS) at 10-100 Hz & 200-250 kΩ (TPU) at >100 Hz 18.3 dB (SS), 19.2 dB(TPU) v/s 18.3 dB commercial Ag/AgCl — Not adhesive [15] Gold plated pin electrodes Improved biocompatibility, no skin abrasion or irritation Not flexible 66.7 kΩ at 50 Hz — Stable for 60 d Not adhesive [44] Soft Dry Electrodes Carbon fiber and polyurethane(PU)/carbon nanotube(CNT) Biocompatible Reduced rigidity compared to Ag/AgCl 133 kΩ — Suitable for long-term use Not adhesive [45] PEDOT:PSS, WPU, D-sorbitol Biocompatible. No skin irritation observed on prolonged use of 16 h Stretchable with elongation at break ∼ 43% strain 82 kΩ cm2 at 10 Hz 148 kΩ cm2 for Ag/AgCl — Stable impedance for 1 h Adhesive on dry and wet skin [18] Hydrogel based electrodes Polyvinyl alcohol, Polyvinylpyrrolidone, Polydopamine nanoparticles Highly biocompatible. No erythema, eschar or oedema observed on rat skin for 6 h Stretchable with no obvious hysteresis up to 800% strain 3-4 kΩ (1-100 Hz) — Stable impedance for 7 d Adhesive on dry and wet skin [46] Carboxymethyl chitosan, Alginate, MXene Exhibited cytocompatibility Self-healing. Stretchable > 500% strain 20-30 kΩ (100 Hz) 29.7 dB v/s 16.7 dB commercial Ag/AgCl — Adhesive [6] Ionogel based electrodes Sulfobetaine methacrylate, Poly(ethylene glycol) diacrylate IL: 1-butyl-1-methylpyrrolidinium bistrifluoromethanesulfonylimide Good biocompatibility with no significant damage after 72 h attachment Stretchable up to 500% strain 99.1 kΩ cm2 at 100 Hz after 24 h Several hundred kΩ cm2 to 1 MΩ cm2 for Ag/AgCl hydrogel electrode Initial and after 2 weeks: 13.3 dB to 13.5 dB v/s 16.3 dB to 9.2 dB commercial Ag/AgCl Stable signal acquisition for 2 weeks Adhesive on dry and wet skin [11] Eutectogel based electrodes Graphene foam, poly(acrylic acid) (PAAc) DES: choline chloride and urea Biocompatible Stretchable up to 500%-600% strain 99 Ω 37 dB Stable EMG recording even after 2 months Adhesive on dry and sweaty skin [34] -
[1] Iandolo R, Marini F, Semprini M, Laffranchi M, Mugnosso M, Cherif A, De Michieli L, Chiappalone M, Zenzeri J 2019 Perspectives and challenges in robotic neurorehabilitation Appl. Sci. 9 3183 doi: 10.3390/app9153183 [2] Brambilla C, Pirovano I, Mira R M, Rizzo G, Scano A, Mastropietro A 2021 combined use of EMG and EEG techniques for neuromotor assessment in rehabilitative applications: a systematic review Sensors 21 7014 doi: 10.3390/s21217014 [3] Fu Y, Zhao J, Dong Y, Wang X 2020 Dry electrodes for human bioelectrical signal monitoring Sensors 20 3651 doi: 10.3390/s20133651 [4] Liu Q, Yang L, Zhang Z, Yang H, Zhang Y, Wu J 2023 The feature, performance, and prospect of advanced electrodes for electroencephalogram Biosensors 13 101 doi: 10.3390/bios13010101 [5] Hsieh J-C, Li Y, Wang H, Perz M, Tang Q, Tang K W K, Pyatnitskiy I, Reyes R, Ding H, Wang H 2022 Design of hydrogel-based wearable EEG electrodes for medical applications J. Mater. Chem. B 10 7260-80 doi: 10.1039/D2TB00618A [6] Zhang Y, Xu Z, Li M, Yuan Y, Wang W, Zhang L, Wan P 2024 Mussel-inspired self-healing adhesive MXene hydrogel for epidermal electronics Device 2 100253 doi: 10.1016/j.device.2023.100253 [7] Liang Q, Xia X, Sun X, Yu D, Huang X, Han G, Mugo S M, Chen W, Zhang Q 2022 Highly stretchable hydrogels as wearable and implantable sensors for recording physiological and brain neural signals Adv. Sci. 9 e2201059 doi: 10.1002/advs.202201059 [8] Panzer M J 2022 Holding it together: noncovalent cross-linking strategies for ionogels and eutectogels Mater. Adv. 3 7709-25 doi: 10.1039/D2MA00539E [9] Fan X, et al 2023 Ionogels: recent advances in design, material properties and emerging biomedical applications Chem. Soc. Rev. 52 2497-527 doi: 10.1039/D2CS00652A [10] El Achkar T, Greige-Gerges H, Fourmentin S 2021 Basics and properties of deep eutectic solvents: a review Environ. Chem. Lett. 19 3397-408 doi: 10.1007/s10311-021-01225-8 [11] Zhao H, et al 2024 Stretchable multichannel ionotronic electrodes for in situ dualmodal monitoring of muscle-vascular activity Adv. Funct. Mater. 34 2308686 doi: 10.1002/adfm.202308686 [12] Aguzin A, Dominguez-Alfaro A, Criado-Gonzalez M, Velasco-Bosom S, Picchio M L, Casado N, Mitoudi-Vagourdi E, Minari R J, Malliaras G G, Mecerreyes D 2023 Direct ink writing of PEDOT eutectogels as substrate-free dry electrodes for electromyography Mater. Horiz. 10 2516-24 doi: 10.1039/D3MH00310H [13] Wang S, Cheng H, Yao B, He H, Zhang L, Yue S, Wang Z, Ouyang J 2021 Self-adhesive, stretchable, biocompatible, and conductive nonvolatile eutectogels as wearable conformal strain and pressure sensors and biopotential electrodes for precise health monitoring ACS Appl. Mater. Interfaces 13 20735-45 doi: 10.1021/acsami.1c04671 [14] Cheng L, Li J, Guo A, Zhang J 2023 Recent advances in flexible noninvasive electrodes for surface electromyography acquisition npj Flex. Electron. 7 1-26 doi: 10.1038/s41528-023-00273-0 [15] Rodrigues M S, Fiedler P, Küchler N, Domingues R P, Lopes C, Borges J, Haueisen J, Vaz F 2020 Dry electrodes for surface electromyography based on architectured titanium thin films Materials 13 2135 doi: 10.3390/ma13092135 [16] Shahandashti P F, Pourkheyrollah H, Jahanshahi A, Ghafoorifard H 2019 Highly conformable stretchable dry electrodes based on inexpensive flex substrate for long-term biopotential (EMG/ECG) monitoring Sens. Actuators A 295 678-86 doi: 10.1016/j.sna.2019.06.041 [17] Chen K, Ren L, Chen Z, Pan C, Zhou W, Jiang L 2016 Fabrication of micro-needle electrodes for bio-signal recording by a magnetization-induced self-assembly method Sensors 16 1533 doi: 10.3390/s16091533 [18] Zhang L, et al 2020 Fully organic compliant dry electrodes self-adhesive to skin for long-term motion-robust epidermal biopotential monitoring Nat. Commun. 11 4683 doi: 10.1038/s41467-020-18503-8 [19] Yang L, Liu Q, Zhang Z, Gan L, Zhang Y, Wu J 2022 Materials for dry electrodes for the electroencephalography: advances, challenges, perspectives Adv. Mater. Technol. 7 2100612 doi: 10.1002/admt.202100612 [20] Pedrosa P, Fiedler P, Schinaia L, Vasconcelos B, Martins A C, Amaral M H, Comani S, Haueisen J, Fonseca C 2017 Alginate-based hydrogels as an alternative to electrolytic gels for rapid EEG monitoring and easy cleaning procedures Sens. Actuators B 247 273-83 doi: 10.1016/j.snb.2017.02.164 [21] Song Y, Li P, Li M, Li H, Li C, Sun D, Yang B 2017 Fabrication of chitosan/Au-TiO2 nanotube-based dry electrodes for electroencephalography recording Mater. Sci. Eng. C 79 740-7 doi: 10.1016/j.msec.2017.05.114 [22] Ma R, Kim D-H, McCormick M, Coleman T, Rogers J 2010 A stretchable electrode array for non-invasive, skin-mounted measurement of electrocardiography (ECG), electromyography (EMG) and electroencephalography (EEG) 2010 Annual Int. Conf. IEEE Engineering in Medicine and Biology(IEEE) 6405-8 [23] Yang S, et al 2023 Stretchable surface electromyography electrode array patch for tendon location and muscle injury prevention Nat. Commun. 14 6494 doi: 10.1038/s41467-023-42149-x [24] Lee S M, Byeon H J, Lee J H, Baek D H, Lee K H, Hong J S, Lee S-H 2014 Self-adhesive epidermal carbon nanotube electronics for tether-free long-term continuous recording of biosignals Sci. Rep. 4 6074 doi: 10.1038/srep06074 [25] Bishop L, et al 2017 In vivo toxicity assessment of occupational components of the carbon nanotube life cycle to provide context to potential health effects ACS Nano 11 8849-63 doi: 10.1021/acsnano.7b03038 [26] Ding H, Gu Y, Ren Y, Hu C, Qiu Q, Wu D, Mou J, Wu Z, Zhou H 2024 The latest research progress of conductive hydrogels in the field of electrophysiological signal acquisition J. Mater. Chem. 12 3030-52 doi: 10.1039/d4tc00089g [27] Fiedler P, Brodkorb S, Fonseca C, Haueisen J 2009 Novel TiN-based dry EEG electrodes: influence of electrode shape and number on contact impedance and signal quality 12th Mediterranean Conf. on Medical and Biological Engineering and Computing 2010vol 29 418-21 [28] Pan L, et al 2020 A compliant ionic adhesive electrode with ultralow bioelectronic impedance Adv. Mater. 32 e2003723 doi: 10.1002/adma.202003723 [29] de Lacalle J L, Picchio M L, Dominguez-Alfaro A, Serrano R R-M, Marchiori B, Agua I D, Lopez-Larrea N, Criado-Gonzalez M, Malliaras G G, Mecerreyes D 2023 Hydrophobic eutectogels as electrodes for underwater electromyography recording ACS Mater. Lett. 5 3340-6 doi: 10.1021/acsmaterialslett.3c00938 [30] Leleux P, Johnson C, Strakosas X, Rivnay J, Hervé T, Owens R M, Malliaras G G 2014 Ionic liquid gel-assisted electrodes for long-term cutaneous recordings Adv. Healthcare Mater. 3 1377-80 doi: 10.1002/adhm.201300614 [31] Gomes J M, Silva S S, Reis R L 2019 Biocompatible ionic liquids: fundamental behaviours and applications Chem. Soc. Rev. 48 4317-35 doi: 10.1039/C9CS00016J [32] Potka-Wasylka J, de la Guardia M, Andruch V, Vilková M 2020 Deep eutectic solvents vs ionic liquids: similarities and differences Microchem. J. 159 105539 doi: 10.1016/j.microc.2020.105539 [33] Serrano R R-M, VelascoBosom S, DominguezAlfaro A, Picchio M L, Mantione D, Mecerreyes D, Malliaras G G 2023 High density body surface potential mapping with conducting polymer-eutectogel electrode arrays for ECG imaging Adv. Sci. e2301176 doi: 10.1002/advs.202301176 [34] Pan Y, Cui X, Song D, Hu W, Lin X, Liu N 2024 A stretchable and sweat-adhesive 3D graphene eutectogel electrode for EMG monitoring ACS Appl. Nano Mater. 7 12064-71 doi: 10.1021/acsanm.4c01676 [35] Cao J, Su E 2021 Hydrophobic deep eutectic solvents: the new generation of green solvents for diversified and colorful applications in green chemistry J. Clean Prod. 314 127965 doi: 10.1016/j.jclepro.2021.127965 [36] Chai C, Ma L, Chu Y, Li W, Qian Y, Hao J 2023 Extreme-environment-adapted eutectogel mediated by heterostructure for epidermic sensor and underwater communication J. Colloid Interface Sci. 638 439-48 doi: 10.1016/j.jcis.2023.01.147 [37] Ren Y, Guo J, Liu Z, Sun Z, Wu Y, Liu L, Yan F 2019 Ionic liquid-based click-ionogels Science Adv. 5 eaax0648 doi: 10.1126/sciadv.aax0648 [38] Wang M, Zhang P, Shamsi M, Thelen J L, Qian W, Truong V K, Ma J, Hu J, Dickey M D 2022 Tough and stretchable ionogels by in situ phase separation Nat. Mater. 21 359-65 doi: 10.1038/s41563-022-01195-4 [39] Zhang J, Yin J, Li N, Liu H, Wu Z, Liu Y, Jiao T, Qin Z 2022 Simultaneously enhancing the mechanical strength and ionic conductivity of stretchable ionogels enabled by polymerization-induced phase separation Macromolecules 55 10950-9 doi: 10.1021/acs.macromol.2c01838 [40] Cheng Y, Zhu H, Li S, Xu M, Li T, Yang X, Song H 2023 Stretchable, low-hysteresis, and recyclable ionogel by ionic liquid catalyst and mixed ionic liquid-induced phase separation ACS Sustain. Chem. Eng. 11 15031-42 doi: 10.1021/acssuschemeng.3c03791 [41] Zhao B, Yan J, Long F, Qiu W, Meng G, Zeng Z, Huang H, Wang H, Lin N, Liu X-Y 2023 Bioinspired conductive enhanced polyurethane ionic skin as reliable multifunctional sensors Adv. Sci. 10 e2300857 doi: 10.1002/advs.202300857 [42] Ye H, Wu B, Sun S, Wu P 2024 Self-compliant ionic skin by leveraging hierarchical hydrogen bond association Nat. Commun. 15 885 doi: 10.1038/s41467-024-45079-4 [43] Gao Y, Zhou J, Xu F, Huang W, Ma X, Dou Q, Fang Y, Wu L 2023 Highly stretchable, selfhealable and selfadhesive doublenetwork eutectogel based on gellan gum and polymerizable deep eutectic solvent for strain sensing ChemistrySelect 8 e20220446 doi: 10.1002/slct.202204463 [44] Kaveh R, Tetreault N, Gopalan K, Maravilla J, Lustig M, Muller R, Arias A C 2022 Rapid and scalable fabrication of low impedance, 3D dry electrodes for physiological sensing Adv. Mater. Technol. 7 2200342 doi: 10.1002/admt.202200342 [45] Gao K-P, Yang H-J, Wang X-L, Yang B, Liu J-Q 2018 Soft pin-shaped dry electrode with bristles for EEG signal measurements Sens. Actuators A 283 348-61 doi: 10.1016/j.sna.2018.09.045 [46] Han Q, et al 2023 Hydrogel nanoarchitectonics of a flexible and self-adhesive electrode for long-term wireless electroencephalogram recording and high-accuracy sustained attention evaluation Adv. Mater. 35 e2209606 doi: 10.1002/adma.202209606 [47] Yang H, Li C, Tang J 2022 Soft elastomer coatings for ionogels Extrem. Mech. Lett. 54 101761 doi: 10.1016/j.eml.2022.101761