留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Ionogels and eutectogels for stable and long-term EEG and EMG signal acquisition

Asmita Veronica Hnin Yin Yin Nyein I-Ming Hsing

Asmita Veronica, Hnin Yin Yin Nyein, I-Ming Hsing. Ionogels and eutectogels for stable and long-term EEG and EMG signal acquisition[J]. Materials Futures, 2024, 3(3): 033501. doi: 10.1088/2752-5724/ad5c84
Citation: Asmita Veronica, Hnin Yin Yin Nyein, I-Ming Hsing. Ionogels and eutectogels for stable and long-term EEG and EMG signal acquisition[J]. Materials Futures, 2024, 3(3): 033501. doi: 10.1088/2752-5724/ad5c84
Perspective •
OPEN ACCESS

Ionogels and eutectogels for stable and long-term EEG and EMG signal acquisition

doi: 10.1088/2752-5724/ad5c84
More Information
  • Figure  1.  Schematic illustrating the key characteristics of ionogel and eutectogel suitable for EEG and EMG signal recording.

    Figure  2.  (a) Commercially available wet Ag/AgCl EMG and EEG electrodes. Adapted from [5] with permission from the Royal Society of Chemistry. Reprinted from [16], © 2019 Elsevier B.V. All rights reserved. Reproduced from [17]. CC BY 4.0. (b) An example of a titanium-based dry electrode for surface EMG recording. Reproduced from [15]. CC BY 4.0. (c) An example of conducting polymer-based adhesive dry electrode for EMG and EEG signal acquisition. Reproduced from [18]. CC BY 4.0. (d) An example of conformal and adhesive MXene hydrogel-based electrodes for EMG signal acquisition. Reprinted from [6], © 2023 Elsevier Inc.

    Figure  3.  (a) Common cations and anions in ILs. Reproduced with permission from [9]. CC BY-NC 3.0. (b) Common hydrogen bond acceptors and donors in DESs. Adapted from [10], with permission from Springer Nature. (c) Ionogel-based electrodes for EMG and blood oxygen monitoring. [11] John Wiley & Sons. © 2023 Wiley-VCH GmbH. (d) Eutectogel electrodes based hydrophobic deep eutectic solvents for underwater EMG recording. Reproduced from [29]. CC BY 4.0.

    Table  1.   Characteristics of various electrode materials employed for EEG and EMG signal acquisition.

    MaterialsBiocompatibilityMechanical characteristicsImpedanceSNRLong-term stabilityAdhesivenessReferences
    Traditional Wet electrodesAg/AgClInflammatory and cytotoxicity riskNot flexible2.8-130 kΩ24.9 dBLacks long-term stabilityUse electrolyte gel for adhesion[4]
    Metal-based Based Dry electrodesTitanium coated on Stainless steel/PolyurethaneImproved biocompatibility during in-vivo testsNot flexible10 kΩ (SS) at 10-100 Hz & 200-250 kΩ (TPU) at >100 Hz18.3 dB (SS), 19.2 dB(TPU) v/s 18.3 dB commercial Ag/AgClNot adhesive[15]
    Gold plated pin electrodesImproved biocompatibility, no skin abrasion or irritationNot flexible66.7 kΩ at 50 HzStable for 60 dNot adhesive[44]
    Soft Dry ElectrodesCarbon fiber and polyurethane(PU)/carbon nanotube(CNT)BiocompatibleReduced rigidity compared to Ag/AgCl133 kΩSuitable for long-term useNot adhesive[45]
    PEDOT:PSS, WPU, D-sorbitolBiocompatible. No skin irritation observed on prolonged use of 16 hStretchable with elongation at break ∼ 43% strain82 kΩ cm2 at 10 Hz 148 kΩ cm2 for Ag/AgClStable impedance for 1 hAdhesive on dry and wet skin[18]
    Hydrogel based electrodesPolyvinyl alcohol, Polyvinylpyrrolidone, Polydopamine nanoparticlesHighly biocompatible. No erythema, eschar or oedema observed on rat skin for 6 hStretchable with no obvious hysteresis up to 800% strain3-4 kΩ (1-100 Hz)Stable impedance for 7 dAdhesive on dry and wet skin[46]
    Carboxymethyl chitosan, Alginate, MXeneExhibited cytocompatibilitySelf-healing. Stretchable > 500% strain20-30 kΩ (100 Hz)29.7 dB v/s 16.7 dB commercial Ag/AgClAdhesive[6]
    Ionogel based electrodesSulfobetaine methacrylate, Poly(ethylene glycol) diacrylate IL: 1-butyl-1-methylpyrrolidinium bistrifluoromethanesulfonylimideGood biocompatibility with no significant damage after 72 h attachmentStretchable up to 500% strain99.1 kΩ cm2 at 100 Hz after 24 h Several hundred kΩ cm2 to 1 MΩ cm2 for Ag/AgCl hydrogel electrodeInitial and after 2 weeks: 13.3 dB to 13.5 dB v/s 16.3 dB to 9.2 dB commercial Ag/AgClStable signal acquisition for 2 weeksAdhesive on dry and wet skin[11]
    Eutectogel based electrodesGraphene foam, poly(acrylic acid) (PAAc) DES: choline chloride and ureaBiocompatibleStretchable up to 500%-600% strain99 Ω37 dBStable EMG recording even after 2 monthsAdhesive on dry and sweaty skin[34]
    下载: 导出CSV
  • [1] Iandolo R, Marini F, Semprini M, Laffranchi M, Mugnosso M, Cherif A, De Michieli L, Chiappalone M, Zenzeri J 2019 Perspectives and challenges in robotic neurorehabilitation Appl. Sci. 9 3183 doi: 10.3390/app9153183
    [2] Brambilla C, Pirovano I, Mira R M, Rizzo G, Scano A, Mastropietro A 2021 combined use of EMG and EEG techniques for neuromotor assessment in rehabilitative applications: a systematic review Sensors 21 7014 doi: 10.3390/s21217014
    [3] Fu Y, Zhao J, Dong Y, Wang X 2020 Dry electrodes for human bioelectrical signal monitoring Sensors 20 3651 doi: 10.3390/s20133651
    [4] Liu Q, Yang L, Zhang Z, Yang H, Zhang Y, Wu J 2023 The feature, performance, and prospect of advanced electrodes for electroencephalogram Biosensors 13 101 doi: 10.3390/bios13010101
    [5] Hsieh J-C, Li Y, Wang H, Perz M, Tang Q, Tang K W K, Pyatnitskiy I, Reyes R, Ding H, Wang H 2022 Design of hydrogel-based wearable EEG electrodes for medical applications J. Mater. Chem. B 10 7260-80 doi: 10.1039/D2TB00618A
    [6] Zhang Y, Xu Z, Li M, Yuan Y, Wang W, Zhang L, Wan P 2024 Mussel-inspired self-healing adhesive MXene hydrogel for epidermal electronics Device 2 100253 doi: 10.1016/j.device.2023.100253
    [7] Liang Q, Xia X, Sun X, Yu D, Huang X, Han G, Mugo S M, Chen W, Zhang Q 2022 Highly stretchable hydrogels as wearable and implantable sensors for recording physiological and brain neural signals Adv. Sci. 9 e2201059 doi: 10.1002/advs.202201059
    [8] Panzer M J 2022 Holding it together: noncovalent cross-linking strategies for ionogels and eutectogels Mater. Adv. 3 7709-25 doi: 10.1039/D2MA00539E
    [9] Fan X, et al 2023 Ionogels: recent advances in design, material properties and emerging biomedical applications Chem. Soc. Rev. 52 2497-527 doi: 10.1039/D2CS00652A
    [10] El Achkar T, Greige-Gerges H, Fourmentin S 2021 Basics and properties of deep eutectic solvents: a review Environ. Chem. Lett. 19 3397-408 doi: 10.1007/s10311-021-01225-8
    [11] Zhao H, et al 2024 Stretchable multichannel ionotronic electrodes for in situ dualmodal monitoring of muscle-vascular activity Adv. Funct. Mater. 34 2308686 doi: 10.1002/adfm.202308686
    [12] Aguzin A, Dominguez-Alfaro A, Criado-Gonzalez M, Velasco-Bosom S, Picchio M L, Casado N, Mitoudi-Vagourdi E, Minari R J, Malliaras G G, Mecerreyes D 2023 Direct ink writing of PEDOT eutectogels as substrate-free dry electrodes for electromyography Mater. Horiz. 10 2516-24 doi: 10.1039/D3MH00310H
    [13] Wang S, Cheng H, Yao B, He H, Zhang L, Yue S, Wang Z, Ouyang J 2021 Self-adhesive, stretchable, biocompatible, and conductive nonvolatile eutectogels as wearable conformal strain and pressure sensors and biopotential electrodes for precise health monitoring ACS Appl. Mater. Interfaces 13 20735-45 doi: 10.1021/acsami.1c04671
    [14] Cheng L, Li J, Guo A, Zhang J 2023 Recent advances in flexible noninvasive electrodes for surface electromyography acquisition npj Flex. Electron. 7 1-26 doi: 10.1038/s41528-023-00273-0
    [15] Rodrigues M S, Fiedler P, Küchler N, Domingues R P, Lopes C, Borges J, Haueisen J, Vaz F 2020 Dry electrodes for surface electromyography based on architectured titanium thin films Materials 13 2135 doi: 10.3390/ma13092135
    [16] Shahandashti P F, Pourkheyrollah H, Jahanshahi A, Ghafoorifard H 2019 Highly conformable stretchable dry electrodes based on inexpensive flex substrate for long-term biopotential (EMG/ECG) monitoring Sens. Actuators A 295 678-86 doi: 10.1016/j.sna.2019.06.041
    [17] Chen K, Ren L, Chen Z, Pan C, Zhou W, Jiang L 2016 Fabrication of micro-needle electrodes for bio-signal recording by a magnetization-induced self-assembly method Sensors 16 1533 doi: 10.3390/s16091533
    [18] Zhang L, et al 2020 Fully organic compliant dry electrodes self-adhesive to skin for long-term motion-robust epidermal biopotential monitoring Nat. Commun. 11 4683 doi: 10.1038/s41467-020-18503-8
    [19] Yang L, Liu Q, Zhang Z, Gan L, Zhang Y, Wu J 2022 Materials for dry electrodes for the electroencephalography: advances, challenges, perspectives Adv. Mater. Technol. 7 2100612 doi: 10.1002/admt.202100612
    [20] Pedrosa P, Fiedler P, Schinaia L, Vasconcelos B, Martins A C, Amaral M H, Comani S, Haueisen J, Fonseca C 2017 Alginate-based hydrogels as an alternative to electrolytic gels for rapid EEG monitoring and easy cleaning procedures Sens. Actuators B 247 273-83 doi: 10.1016/j.snb.2017.02.164
    [21] Song Y, Li P, Li M, Li H, Li C, Sun D, Yang B 2017 Fabrication of chitosan/Au-TiO2 nanotube-based dry electrodes for electroencephalography recording Mater. Sci. Eng. C 79 740-7 doi: 10.1016/j.msec.2017.05.114
    [22] Ma R, Kim D-H, McCormick M, Coleman T, Rogers J 2010 A stretchable electrode array for non-invasive, skin-mounted measurement of electrocardiography (ECG), electromyography (EMG) and electroencephalography (EEG) 2010 Annual Int. Conf. IEEE Engineering in Medicine and Biology(IEEE) 6405-8
    [23] Yang S, et al 2023 Stretchable surface electromyography electrode array patch for tendon location and muscle injury prevention Nat. Commun. 14 6494 doi: 10.1038/s41467-023-42149-x
    [24] Lee S M, Byeon H J, Lee J H, Baek D H, Lee K H, Hong J S, Lee S-H 2014 Self-adhesive epidermal carbon nanotube electronics for tether-free long-term continuous recording of biosignals Sci. Rep. 4 6074 doi: 10.1038/srep06074
    [25] Bishop L, et al 2017 In vivo toxicity assessment of occupational components of the carbon nanotube life cycle to provide context to potential health effects ACS Nano 11 8849-63 doi: 10.1021/acsnano.7b03038
    [26] Ding H, Gu Y, Ren Y, Hu C, Qiu Q, Wu D, Mou J, Wu Z, Zhou H 2024 The latest research progress of conductive hydrogels in the field of electrophysiological signal acquisition J. Mater. Chem. 12 3030-52 doi: 10.1039/d4tc00089g
    [27] Fiedler P, Brodkorb S, Fonseca C, Haueisen J 2009 Novel TiN-based dry EEG electrodes: influence of electrode shape and number on contact impedance and signal quality 12th Mediterranean Conf. on Medical and Biological Engineering and Computing 2010vol 29 418-21
    [28] Pan L, et al 2020 A compliant ionic adhesive electrode with ultralow bioelectronic impedance Adv. Mater. 32 e2003723 doi: 10.1002/adma.202003723
    [29] de Lacalle J L, Picchio M L, Dominguez-Alfaro A, Serrano R R-M, Marchiori B, Agua I D, Lopez-Larrea N, Criado-Gonzalez M, Malliaras G G, Mecerreyes D 2023 Hydrophobic eutectogels as electrodes for underwater electromyography recording ACS Mater. Lett. 5 3340-6 doi: 10.1021/acsmaterialslett.3c00938
    [30] Leleux P, Johnson C, Strakosas X, Rivnay J, Hervé T, Owens R M, Malliaras G G 2014 Ionic liquid gel-assisted electrodes for long-term cutaneous recordings Adv. Healthcare Mater. 3 1377-80 doi: 10.1002/adhm.201300614
    [31] Gomes J M, Silva S S, Reis R L 2019 Biocompatible ionic liquids: fundamental behaviours and applications Chem. Soc. Rev. 48 4317-35 doi: 10.1039/C9CS00016J
    [32] Potka-Wasylka J, de la Guardia M, Andruch V, Vilková M 2020 Deep eutectic solvents vs ionic liquids: similarities and differences Microchem. J. 159 105539 doi: 10.1016/j.microc.2020.105539
    [33] Serrano R R-M, VelascoBosom S, DominguezAlfaro A, Picchio M L, Mantione D, Mecerreyes D, Malliaras G G 2023 High density body surface potential mapping with conducting polymer-eutectogel electrode arrays for ECG imaging Adv. Sci. e2301176 doi: 10.1002/advs.202301176
    [34] Pan Y, Cui X, Song D, Hu W, Lin X, Liu N 2024 A stretchable and sweat-adhesive 3D graphene eutectogel electrode for EMG monitoring ACS Appl. Nano Mater. 7 12064-71 doi: 10.1021/acsanm.4c01676
    [35] Cao J, Su E 2021 Hydrophobic deep eutectic solvents: the new generation of green solvents for diversified and colorful applications in green chemistry J. Clean Prod. 314 127965 doi: 10.1016/j.jclepro.2021.127965
    [36] Chai C, Ma L, Chu Y, Li W, Qian Y, Hao J 2023 Extreme-environment-adapted eutectogel mediated by heterostructure for epidermic sensor and underwater communication J. Colloid Interface Sci. 638 439-48 doi: 10.1016/j.jcis.2023.01.147
    [37] Ren Y, Guo J, Liu Z, Sun Z, Wu Y, Liu L, Yan F 2019 Ionic liquid-based click-ionogels Science Adv. 5 eaax0648 doi: 10.1126/sciadv.aax0648
    [38] Wang M, Zhang P, Shamsi M, Thelen J L, Qian W, Truong V K, Ma J, Hu J, Dickey M D 2022 Tough and stretchable ionogels by in situ phase separation Nat. Mater. 21 359-65 doi: 10.1038/s41563-022-01195-4
    [39] Zhang J, Yin J, Li N, Liu H, Wu Z, Liu Y, Jiao T, Qin Z 2022 Simultaneously enhancing the mechanical strength and ionic conductivity of stretchable ionogels enabled by polymerization-induced phase separation Macromolecules 55 10950-9 doi: 10.1021/acs.macromol.2c01838
    [40] Cheng Y, Zhu H, Li S, Xu M, Li T, Yang X, Song H 2023 Stretchable, low-hysteresis, and recyclable ionogel by ionic liquid catalyst and mixed ionic liquid-induced phase separation ACS Sustain. Chem. Eng. 11 15031-42 doi: 10.1021/acssuschemeng.3c03791
    [41] Zhao B, Yan J, Long F, Qiu W, Meng G, Zeng Z, Huang H, Wang H, Lin N, Liu X-Y 2023 Bioinspired conductive enhanced polyurethane ionic skin as reliable multifunctional sensors Adv. Sci. 10 e2300857 doi: 10.1002/advs.202300857
    [42] Ye H, Wu B, Sun S, Wu P 2024 Self-compliant ionic skin by leveraging hierarchical hydrogen bond association Nat. Commun. 15 885 doi: 10.1038/s41467-024-45079-4
    [43] Gao Y, Zhou J, Xu F, Huang W, Ma X, Dou Q, Fang Y, Wu L 2023 Highly stretchable, selfhealable and selfadhesive doublenetwork eutectogel based on gellan gum and polymerizable deep eutectic solvent for strain sensing ChemistrySelect 8 e20220446 doi: 10.1002/slct.202204463
    [44] Kaveh R, Tetreault N, Gopalan K, Maravilla J, Lustig M, Muller R, Arias A C 2022 Rapid and scalable fabrication of low impedance, 3D dry electrodes for physiological sensing Adv. Mater. Technol. 7 2200342 doi: 10.1002/admt.202200342
    [45] Gao K-P, Yang H-J, Wang X-L, Yang B, Liu J-Q 2018 Soft pin-shaped dry electrode with bristles for EEG signal measurements Sens. Actuators A 283 348-61 doi: 10.1016/j.sna.2018.09.045
    [46] Han Q, et al 2023 Hydrogel nanoarchitectonics of a flexible and self-adhesive electrode for long-term wireless electroencephalogram recording and high-accuracy sustained attention evaluation Adv. Mater. 35 e2209606 doi: 10.1002/adma.202209606
    [47] Yang H, Li C, Tang J 2022 Soft elastomer coatings for ionogels Extrem. Mech. Lett. 54 101761 doi: 10.1016/j.eml.2022.101761
  • 加载中
图(3) / 表(1)
计量
  • 文章访问数:  286
  • HTML全文浏览量:  130
  • PDF下载量:  35
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-04-29
  • 录用日期:  2024-06-26
  • 修回日期:  2024-06-05
  • 刊出日期:  2024-07-11

目录

    /

    返回文章
    返回