留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Synergistic effect between Co single atoms and Pt nanoparticles for efficient alkaline hydrogen evolution

Chengyong Shu Jingwen Cao Zhuofan Gan Peixi Qiu Zhixu Chen Lian Guanwu Zhongxin Chen Chengwei Deng Wei Tang

Chengyong Shu, Jingwen Cao, Zhuofan Gan, Peixi Qiu, Zhixu Chen, Lian Guanwu, Zhongxin Chen, Chengwei Deng, Wei Tang. Synergistic effect between Co single atoms and Pt nanoparticles for efficient alkaline hydrogen evolution[J]. Materials Futures, 2024, 3(3): 035101. doi: 10.1088/2752-5724/ad521f
Citation: Chengyong Shu, Jingwen Cao, Zhuofan Gan, Peixi Qiu, Zhixu Chen, Lian Guanwu, Zhongxin Chen, Chengwei Deng, Wei Tang. Synergistic effect between Co single atoms and Pt nanoparticles for efficient alkaline hydrogen evolution[J]. Materials Futures, 2024, 3(3): 035101. doi: 10.1088/2752-5724/ad521f
Paper •
OPEN ACCESS

Synergistic effect between Co single atoms and Pt nanoparticles for efficient alkaline hydrogen evolution

doi: 10.1088/2752-5724/ad521f
More Information
  • Figure  1.  Schematic illustration of the synergistic alkaline hydrogen evolution in the Pt-Co@NCS.

    Figure  2.  Structural analysis of Pt-Co@NCS. (a) SEM image of the hierarchically porous Pt-Co@NCS. Inset shows the TEM image of concave structure for promoted diffusion kinetics; (b) Corresponding STEM-HAADF image and (c) EDX elemental mapping; (d), (e) Atomic resolution STEM images, highlighting the co-existence of Pt nanoparticles and Co single atoms; (f) Pt 4f XPS spectra; (g) Pt L3-edge XANES spectra, (h) Fourier transformed Pt L3-edge EXAFS spectra in the R-space, and (i) corresponding wavelet transforms of Pt samples.

    Figure  3.  Elucidation of Co single-atom features in Pt-Co@NCS. (a) The Co K-edge XANES and (b) corresponding EXAFS spectra of Co3O4, CoO, Co foil, Co@NCS, and Pt-Co@NCS; (c), (d) Experimental data (solid lines) and fitting results (dotted lines) for Pt-Co@NCS and Co@NCS. These spectra are k2-weighted, without phase correction; (e), (f) Wavelet transforms of the EXAFS signals.

    Figure  4.  Alkaline hydrogen evolution performance. (a) IR-corrected HER performance of Co@NCS, Pt-Co@NCS, and commercial Pt/C catalysts in 1 M KOH; (b) Tafel slope analysis of Pt-Co@NCS at various Pt loadings (1.25, 2.5, and 5 wt%); (c) Comparative mass activity of Pt-Co@NCS and commercial Pt/C at an overpotential of 100 mV; (d) CO stripping experiments for Co@NCS, Pt@NCS in 1 M KOH electrolyte; (e), (f) LSV and CO stripping experiments for Pt-Co@NCS in H2O and D2O.

    Figure  5.  Durability tests for alkaline HER. (a) Chronopotentiometry profiles over 18 h of Pt/C and Pt-Co@NCS at 40 mA cm-2; (b) LSV curves of Pt-Co@NCS and Pt/C before (BOL) and after (EOL) prolonged HER testing; (c) Setup of the flow electrolyzer and polarization curves with a Ru/Ir anode in 1 M KOH; (d) 6 h stability test under a constant current of 1 A; (e), (f) TEM images of commercial Pt/C, and (g), (h) Pt-Co@NCS before and after HER stability test.

  • [1] Vallem S, Venkateswarlu S, Li Y, Song S, Li M, Bae J 2024 MXene- and MOF-based single-atom catalysts for next-generation batteries chemistry: a synergy of experimental and theoretical insights Energy Storage Mater. 65 103159 doi: 10.1016/j.ensm.2023.103159
    [2] Zhu C, Cun F, Fan Z, Nie Y, Du Q, Liu F, Yang W, Li A 2023 Heterogeneous Fe-Co dual-atom catalyst outdistances the homogeneous counterpart for peroxymonosulfate-assisted water decontamination: new surface collision oxidation path and diatomic synergy Water Res. 241 120164 doi: 10.1016/j.watres.2023.120164
    [3] Xu W, Cao M, Luo J, Mao H, Gu H, Sun Z, Liu Q, Zhang S 2023 Research progress on single atom and particle synergistic catalysts for electrocatalytic reactions Mater. Chem. Front. 7 1992-2013 doi: 10.1039/D2QM01352E
    [4] Zhong Y, et al 2021 Efficient water splitting system enabled by multifunctional platinumfree electrocatalysts Adv. Funct. Mater. 31 2009853 doi: 10.1002/adfm.202009853
    [5] Takizawa T, et al 2017 Titanium fiber plates for bone tissue repair Adv. Mater. 30 1703608 doi: 10.1002/adma.201703608
    [6] Kim E H, Lee M H, Kim J, Ra E C, Lee J H, Lee J S 2023 Synergy between single atoms and nanoclusters of Pd/g-C3N4 catalysts for efficient base-free CO2 hydrogenation to formic acid Chin. J. Catal. 47 214-21 doi: 10.1016/S1872-2067(22)64202-5
    [7] Jiang D, Wan G, Halldin Stenlid J, García-Vargas C E, Zhang J, Sun C, Li J, Abild-Pedersen F, Tassone C J, Wang Y 2023 Dynamic and reversible transformations of subnanometre-sized palladium on ceria for efficient methane removal Nat. Catal. 6 618-27 doi: 10.1038/s41929-023-00983-8
    [8] Li Y, et al 2023 Single-atom Mn catalysts via integration with Mn sub nano-clusters synergistically enhance oxygen reduction reaction Small 20 e2309727 doi: 10.1002/smll.202309727
    [9] Li H, Wang X, Gong X, Liu C, Ge J, Song P, Xu W 2023 “One stone three birds” of a synergetic effect between Pt single atoms and clusters makes an ideal anode catalyst for fuel cells J. Mater. Chem. A 11 14826-32 doi: 10.1039/D3TA01313H
    [10] Cui X, Liu Y, Wang X, Tian X, Wang Y, Zhang G, Liu T, Ding J, Hu W, Chen Y 2024 Rapid high-temperature liquid shock synthesis of high-entropy alloys for hydrogen evolution reaction ACS Nano 18 2948-57 doi: 10.1021/acsnano.3c07703
    [11] Yang M, Mei J, Ren Y, Cui J, Liang S, Sun S 2023 Long-range electron synergy over Pt1-Co1/CN bimetallic single-atom catalyst in enhancing charge separation for photocatalytic hydrogen production J. Energy Chem. 81 502-9 doi: 10.1016/j.jechem.2023.03.020
    [12] Deng P, et al 2023 Atomic insights into synergistic nitroarene hydrogenation over nanodiamond-supported Pt1-Fe1 dual-single-atom catalyst Angew. Chem., Int. Ed. Engl. 62 e202307853 doi: 10.1002/anie.202307853
    [13] Mahmood J, Li F, Jung S M, Okyay M S, Ahmad I, Kim S J, Park N, Jeong H Y, Baek J B 2017 An efficient and pH-universal ruthenium-based catalyst for the hydrogen evolution reaction Nat. Nanotechnol. 12 441-6 doi: 10.1038/nnano.2016.304
    [14] Qiao Z, et al 2019 3D porous graphitic nanocarbon for enhancing the performance and durability of Pt catalysts: a balance between graphitization and hierarchical porosity Energy Environ. Sci. 12 2830-41 doi: 10.1039/C9EE01899A
    [15] Yang W, Liu J, Liu M, Zhao Z, Song Y, Tang X, Luo J, Zeng Q, He X 2018 Self-assembly of core-shell structure PtO2@Pt nanodots and their formation evolution Appl. Surf. Sci. 440 841-5 doi: 10.1016/j.apsusc.2018.01.205
    [16] Jeong Y J, Koo W T, Jang J S, Kim D H, Kim M H, Kim I D 2018 Nanoscale PtO2 catalysts-loaded SnO2 multichannel nanofibers toward highly sensitive acetone sensor ACS Appl. Mater. Interfaces 10 2016-25 doi: 10.1021/acsami.7b16258
    [17] Liu M, Tang W, Xie Z, Yu H, Yin H, Xu Y, Zhao S, Zhou S 2017 Design of highly efficient Pt-SnO2 hydrogenation nanocatalysts using Pt@Sn core-shell nanoparticles ACS Catal. 7 1583-91 doi: 10.1021/acscatal.6b03109
    [18] Subbaraman R, Tripkovic D, Chang K C, Strmcnik D, Paulikas A P, Hirunsit P, Chan M, Greeley J, Stamenkovic V, Markovic N M 2012 Trends in activity for the water electrolyser reactions on 3d M(Ni,Co,Fe,Mn) hydr(oxy)oxide catalysts Nat. Mater. 11 550-7 doi: 10.1038/nmat3313
    [19] Shinde S S, Jung J Y, Wagh N K, Lee C H, Kim D-H, Kim S-H, Lee S U, Lee J-H 2021 Ampere-hour-scale zinc-air pouch cells Nat. Energy 6 592-604 doi: 10.1038/s41560-021-00807-8
    [20] Liu C, Carmo M, Bender G, Everwand A, Lickert T, Young J L, Smolinka T, Stolten D, Lehnert W 2018 Performance enhancement of PEM electrolyzers through iridium-coated titanium porous transport layers Electrochem. Commun. 97 96-99 doi: 10.1016/j.elecom.2018.10.021
    [21] Kang Z, et al 2018 Developing titanium micro/nano porous layers on planar thin/tunable LGDLs for high-efficiency hydrogen production Int. J. Hydrog. Energy 43 14618-28 doi: 10.1016/j.ijhydene.2018.05.139
    [22] Millet P, Ngameni R, Grigoriev S A, Mbemba N, Brisset F, Ranjbari A, Etiévant C 2010 PEM water electrolyzers: from electrocatalysis to stack development Int. J. Hydrog. Energy 35 5043-52 doi: 10.1016/j.ijhydene.2009.09.015
    [23] Panchenko O, et al 2018 In-situ two-phase flow investigation of different porous transport layer for a polymer electrolyte membrane (PEM) electrolyzer with neutron spectroscopy J. Power Sources 390 108-15 doi: 10.1016/j.jpowsour.2018.04.044
    [24] Ledezma-Yanez I, Wallace W D Z, Sebastián-Pascual P, Climent V, Feliu J M, Koper M T M 2017 Interfacial water reorganization as a pH-dependent descriptor of the hydrogen evolution rate on platinum electrodes Nat. Energy 2 17031 doi: 10.1038/nenergy.2017.31
    [25] Kang Z, et al 2017 Thin film surface modifications of thin/tunable liquid/gas diffusion layers for high-efficiency proton exchange membrane electrolyzer cells Appl. Energy 206 983-90 doi: 10.1016/j.apenergy.2017.09.004
    [26] Liu L, Chen T, Chen Z 2024 Understanding the dynamic aggregation in single-atom Catalysis Adv. Sci. 11 e2308046 doi: 10.1002/advs.202308046
    [27] Mo F, Zhou Q, Xue W, Liu W, Xu S, Hou Z, Wang J, Wang Q 2023 The optimized catalytic performance of singleatom catalysts by incorporating atomic clusters or nanoparticles: indepth understanding on their synergisms Adv. Energy Mater. 13 2301711 doi: 10.1002/aenm.202301711
    [28] Chen Z, Liu J, Loh K P 2022 Engineering single atom catalysts for flow production: from catalyst design to reactor understandings Acc. Mater. Res. 4 27-41 doi: 10.1021/accountsmr.2c00183
    [29] Li J, et al 2021 Unveiling the nature of Pt single-atom catalyst during electrocatalytic hydrogen evolution and oxygen reduction reactions Small 17 e2007245 doi: 10.1002/smll.202007245
    [30] Liu S-F, Li A, Zhang Z-H, D-f L 2017 High-temperature acoustic properties of porous titanium fiber metal materials J. Cent. South Univ. 24 1762-6 doi: 10.1007/s11771-017-3584-8
    [31] Liu S, Qian T, Wang M, Ji H, Shen X, Wang C, Yan C 2021 Proton-filtering covalent organic frameworks with superior nitrogen penetration flux promote ambient ammonia synthesis Nat. Catal. 4 322-31 doi: 10.1038/s41929-021-00599-w
    [32] Liu M, Li J, Chi B, Zheng L, Zhang Y, Zhang Q, Tang T, Zheng L, Liao S 2021 Integration of single Co atoms and Ru nanoclusters boosts the cathodic performance of nitrogen-doped 3D graphene in lithium-oxygen batteries J. Mater. Chem. A 9 10747-57 doi: 10.1039/D1TA00538C
    [33] Yuan S, et al 2019 A universal synthesis strategy for single atom dispersed cobalt/metal clusters heterostructure boosting hydrogen evolution catalysis at all pH values Nano Energy 59 472-80 doi: 10.1016/j.nanoen.2019.02.062
    [34] Chen Z, et al 2017 Interface confined hydrogen evolution reaction in zero valent metal nanoparticles-intercalated molybdenum disulfide. Nat. Commun. 8 14548 doi: 10.1038/ncomms14548
    [35] Alloyeau D, Ricolleau C, Mottet C, Oikawa T, Langlois C, Le Bouar Y, Braidy N, Loiseau A 2009 Size and shape effects on the order-disorder phase transition in CoPt nanoparticles Nat. Mater. 8 940-6 doi: 10.1038/nmat2574
    [36] Zhang L, et al 2022 Benzoate anions-intercalated NiFe-layered double hydroxide nanosheet array with enhanced stability for electrochemical seawater oxidation Nano Res. Energy 1 e9120028 doi: 10.26599/NRE.2022.9120028
    [37] Liu Y, et al 2020 A general route to prepare lowrutheniumcontent bimetallic electrocatalysts for pHuniversal hydrogen evolution reaction by using carbon quantum dots Angew. Chem., Int. Ed. 59 1718-26 doi: 10.1002/anie.201913910
    [38] Dai S, You Y, Zhang S, Cai W, Xu M, Xie L, Wu R, Graham G W, Pan X 2017 In situ atomic-scale observation of oxygen-driven core-shell formation in Pt3Co nanoparticles Nat. Commun. 8 204 doi: 10.1038/s41467-017-00161-y
    [39] Dai S, Hou Y, Onoue M, Zhang S, Gao W, Yan X, Graham G W, Wu R, Pan X 2017 Revealing surface elemental composition and dynamic processes involved in facet-dependent oxidation of Pt3Co nanoparticles via in situ transmission electron microscopy Nano Lett. 17 4683-8 doi: 10.1021/acs.nanolett.7b01325
    [40] Lin C, Huang Z, Zhang Z, Zeng T, Chen R, Tan Y, Wu W, Mu S, Cheng N 2020 Structurally ordered Pt3Co nanoparticles anchored on N-doped graphene for highly efficient hydrogen evolution reaction ACS Sustainable Chem. Eng 8 16938-45 doi: 10.1021/acssuschemeng.0c06547
    [41] Sievers G W, et al 2020 Self-supported Pt-CoO networks combining high specific activity with high surface area for oxygen reduction Nat. Mater. 20 208-13 doi: 10.1038/s41563-020-0775-8
    [42] Khan M U, et al 2016 Pt3Co octapods as superior catalysts of CO2 hydrogenation Angew. Chem., Int. Ed. 55 9548-52 doi: 10.1002/anie.201602512
    [43] Wang J, Tan H Y, Kuo T R, Lin S C, Hsu C S, Zhu Y, Chu Y C, Chen T L, Lee J F, Chen H M 2021 In situ identifying the dynamic structure behind activity of atomically dispersed platinum catalyst toward hydrogen evolution reaction Small 17 2005713 doi: 10.1002/smll.202005713
    [44] Sun Z, Liu Q, Yao T, Yan W, Wei S 2015 X-ray absorption fine structure spectroscopy in nanomaterials Sci. China Mater. 58 313-41 doi: 10.1007/s40843-015-0043-4
    [45] Tan H, et al 2022 Engineering a local acid-like environment in alkaline medium for efficient hydrogen evolution reaction Nat. Commun. 13 2024 doi: 10.1038/s41467-022-29710-w
  • 加载中
图(5)
计量
  • 文章访问数:  381
  • HTML全文浏览量:  171
  • PDF下载量:  87
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-03-27
  • 录用日期:  2024-05-29
  • 修回日期:  2024-05-24
  • 刊出日期:  2024-06-14

目录

    /

    返回文章
    返回