Enhancing performance and longevity of solid-state zinc-iodine batteries with fluorine-rich solid electrolyte interphase
doi: 10.1088/2752-5724/ad50f1
-
Abstract: AbstractRechargeable zinc-iodine (ZnI2) batteries have gained popularity within the realm of aqueous batteries due to their inherent advantages, including natural abundance, intrinsic safety, and high theoretical capacity. However, challenges persist in their practical applications, notably battery swelling and vulnerability in aqueous electrolytes, primarily linked to the hydrogen evolution reaction and zinc dendrite growth. To address these challenges, this study presents an innovative approach by designing a solid-state ZnI2 battery featuring a solid perfluoropolyether based polymer electrolyte. The results demonstrate the formation of a solid electrolyte interphase layer on zinc, promoting horizontal zinc growth, mitigating dendrite penetration, and enhancing battery cycle life. Moreover, the solid electrolyte hinders the iodine ion shuttle effect, reducing zinc foil corrosion. Symmetric batteries employing this electrolyte demonstrate excellent cycle performance, maintaining stability for approximately 5000 h at room temperature, while solid-state ZnI2 batteries exhibit over 7000 cycles with a capacity retention exceeding 72.2%. This work offers a promising pathway to achieving reliable energy storage in solid-state ZnI2 batteries and introduces innovative concepts for flexible and wearable zinc batteries.
-
Key words:
- zinc-iodine battery /
- solid electrolyte /
- zinc metal anode /
- electrolyte interphase /
- shuttle effect
-
Figure 1. Schematic illustration of ZnI2 batteries with (a) aqueous ZnSO4 solution and (b) solid PFZ as electrolyte. (c) FTIR spectra of PFZ and PF. (d) Tg comparison of PF polymer and PFZ. (e) LSV curves of the PFZ electrolyte and the liquid electrolyte (2 M aqueous ZnSO4 solution electrolyte) using a two-electrode configuration (stainless steel foil as working electrode and Zn foil as reference and counter electrodes). (f) CV curves of Zn plating/stripping using two-electrodes configuration in PFZ (stainless steel foil as working electrode and Zn foil as reference and counter electrodes) and 2 M aqueous ZnSO4 solution. Inset: Digital photos of the battery cycled in 2 M aqueous ZnSO4 solution electrolyte and PFZ electrolyte. (g) Potentiodynamic polarization curves using two-electrode configuration (zinc foil as working electrode and another zinc foil as reference electrode and counter electrode) showing the corrosion behaviors on zinc metal. (h) EIS spectra of PFZ electrolyte and the fitting curve.
Figure 2. Symmetric batteries performance. (a) Galvanostatic Zn plating and stripping in Zn//ZnSO4//Zn and Zn//PFZ//Zn symmetrical batteries at current densities of 0.2 mA cm-2. The inset is the voltage profile of symmetrical cell at (b)1st hour, (c) 4000th hour. SEM images of cross-section of the zinc foil cycled in (d) 2 M ZnSO4 aqueous solution and g) PFZ. (e) Coulombic efficiency of Zn deposition at the current density of 0.2 mA cm-2 and (f) the details of 1000th cycle, 2000th cycle and 3000th cycle.
Figure 3. Full solid-state Zn//PFZ//I2 batteries performance. (a) Cycle stability and coulombic efficiency of Zn//PFZ//I2 battery at 0.5 C. (b) Voltage profiles at different cycles of Zn//PFZ//I2 battery. (c) Rate performance and charge/discharge profiles of the Zn//PFZ//I2 battery at current densities varying from 0.5 C to 20 C. (d) Rate performance comparison with other zinc iodine batteries with gel electrolyte. (e) CV curves at different scan rates of 0.5 mV s-1, 2 mV s-1, and 5 mV s-1. (f) First 6 cycles charge/discharge curve of Zn//PFZ//I2 soft-pack battery.
Figure 4. Effects on I3- shuttling process in ZnI2 batteries. (a) Photographs of H-shape tanks containing a deep brown triiodide solution (1 M KI + 0.1 M I2, left tank) and a colorless 0.5 M KI solution (right tank), each separated by either a GF separator or PFZ at various time intervals. (b), (c) UV-vis curve of solution in the H-shape right tanks after different time using different separators (GF separator and PFZ). (d) I 3d XPS spectra of Zn surface cycled 10 times with GF as separator etched by 10 keV Ar+ as a function of etching time. (e) I 3d XPS spectra of Zn surface cycled 10 times with PFZ as separator etched by 10 keV Ar+ as a function of etching time. (f), (g) Voltage drops in charge-discharge cycling and self-discharge tests of (f) aqueous ZnI2 battery and (g) solid-state ZnI2 battery.
Figure 5. Characterization of metallic Zn electrode. XRD patterns of Zn anodes at various states of charge and discharge cycled in (a) 2 M ZnSO4 aqueous solution and (b) PFZ. SEM images of Zn anode cycled in (c) 2 M ZnSO4 aqueous solution and (d) PFZ at 0.5 mA cm-2 in the Zn//PFZ//Zn symmetric battery. (e) XRD patterns of Zn anode cycled 5, 50 and 500 times in PFZ. (f), (g) XPS results of Zn anode cycled 5 times in Zn//PFZ//Zn symmetric battery. (h) Raman spectroscopy of Zn anode cycled in 2 M ZnSO4 aqueous solution and PFZ.
-
[1] Sonigara K K, Zhao J, Machhi H K, Cui G, Soni S S 2020 Self-assembled solid-state gel catholyte combating iodide diffusion and self-discharge for a stable flexible aqueous Zn-I2 battery Adv. Energy Mater. 10 2001997 doi: 10.1002/aenm.202001997 [2] Guo Q, Wang H, Sun X, Yang Y, Chen N, Qu L 2022 In situ synthesis of cathode materials for aqueous high-rate and durable Zn-I2 batteries ACS Mater. Lett. 4 1872 doi: 10.1021/acsmaterialslett.2c00608 [3] Zou Y, Liu T, Du Q, Li Y, Yi H, Zhou X, Li Z, Gao L, Zhang L, Liang X 2021 A four-electron Zn-I2 aqueous battery enabled by reversible I-/I2/I+ conversion Nat. Commun. 12 170 doi: 10.1038/s41467-020-20331-9 [4] Wang F, Tseng J, Liu Z, Zhang P, Wang G, Chen G, Wu W, Yu M, Wu Y, Feng X 2020 A stimulus-responsive zinc-iodine battery with smart overcharge self-protection function Adv. Mater. 32 2000287 doi: 10.1002/adma.202000287 [5] Yang H, Qiao Y, Chang Z, Deng H, He P, Zhou H 2020 A metal-organic framework as a multifunctional ionic sieve membrane for long-life aqueous zinc-iodide batteries Adv. Mater. 32 2004240 doi: 10.1002/adma.202004240 [6] Shin J, Lee J, Park Y, Choi J W 2020 Aqueous zinc ion batteries: focus on zinc metal anodes Chem. Sci. 11 2028 doi: 10.1039/D0SC00022A [7] Yang X, Zhang Z, Wu M, Guo Z-P, Zheng Z-J 2023 Reshaping zinc plating/stripping behavior by interfacial water bonding for high-utilization-rate zinc batteries Adv. Mater. 35 2303550 doi: 10.1002/adma.202303550 [8] Naveed A, Rasheed T, Raza B, Chen J, Yang J, Yanna N, Wang J 2022 Addressing thermodynamic instability of Zn anode: classical and recent advancements Energy Storage Mater. 44 206 doi: 10.1016/j.ensm.2021.10.005 [9] Liang P, Yi J, Liu X, Wu K, Wang Z, Cui J, Liu Y, Wang Y, Xia Y, Zhang J 2020 Highly reversible Zn anode enabled by controllable formation of nucleation sites for Zn-based batteries Adv. Funct. Mater. 30 1908528 doi: 10.1002/adfm.201908528 [10] Wang W, Chen S, Liao X, Huang R, Wang F, Chen J, Wang F, Wang H, Wang Y 2023 Regulating interfacial reaction through electrolyte chemistry enables gradient interphase for low-temperature zinc metal batteries Nat. Commun. 14 5443 doi: 10.1038/s41467-023-41276-9 [11] Naveed A, Ali A, Rasheed T, Wang X, Ye P, Li X, Zhou Y, Mingru S, Liu Y 2022 Revisiting recent and traditional strategies for surface protection of Zn metal anode J. Power Sources 525 231122 doi: 10.1016/j.jpowsour.2022.231122 [12] Xie C, Liu Y, Lu W, Zhang H, Li X 2019 Highly stable zinc-iodine single flow batteries with super high energy density for stationary energy storage Energy Environ. Sci. 12 1834 doi: 10.1039/C8EE02825G [13] Tang B, Shan L, Liang S, Zhou J 2019 Issues and opportunities facing aqueous zinc-ion batteries Energy Environ. Sci. 12 3288 doi: 10.1039/C9EE02526J [14] Han D, et al 2020 A corrosion-resistant and dendrite-free zinc metal anode in aqueous systems Small 16 2001736 doi: 10.1002/smll.202001736 [15] Zhao K, Wang C, Yu Y, Yan M, Wei Q, He P, Dong Y, Zhang Z, Wang X, Mai L 2018 Ultrathin surface coating enables stabilized zinc metal anode Adv. Mater. Interfaces 5 1800848 doi: 10.1002/admi.201800848 [16] Mathew V, Schorr N B, Sambandam B, Lambert T N, Kim J 2023 A critical comparison of mildly acidic versus alkaline zinc batteries Acc. Mater. Res. 4 299 doi: 10.1021/accountsmr.2c00221 [17] Quartarone E, Mustarelli P 2011 Electrolytes for solid-state lithium rechargeable batteries: recent advances and perspectives Chem. Soc. Rev. 40 2525 doi: 10.1039/c0cs00081g [18] Manthiram A, Yu X, Wang S 2017 Lithium battery chemistries enabled by solid-state electrolytes Nat. Rev. Mater. 2 16103 doi: 10.1038/natrevmats.2016.103 [19] Kato Y, Hori S, Saito T, Suzuki K, Hirayama M, Mitsui A, Yonemura M, Iba H, Kanno R 2016 High-power all-solid-state batteries using sulfide superionic conductors Nat. Energy 1 16030 doi: 10.1038/nenergy.2016.30 [20] Liu Q, Liu R, He C, Xia C, Guo W, Xu Z-L, Xia B Y 2022 Advanced polymer-based electrolytes in zinc-air batteries eScience 2 453 doi: 10.1016/j.esci.2022.08.004 [21] Xie K, Ren K, Wang Q, Lin Y, Ma F, Sun C, Li Y, Zhao X, Lai C 2023 In situ construction of zinc-rich polymeric solid-electrolyte interface for high-performance zinc anode eScience 3 100153 doi: 10.1016/j.esci.2023.100153 [22] Ferguson C J, Hughes R J, Nguyen D, Pham B T T, Gilbert R G, Serelis A K, Such C H, Hawkett B S 2005 Ab initio emulsion polymerization by RAFT-controlled self-assembly Macromolecules 38 2191 doi: 10.1021/ma048787r [23] Zhang C, et al 2017 PFPE-based polymeric 19F MRI agents: a new class of contrast agents with outstanding sensitivity Macromolecules 50 5953 doi: 10.1021/acs.macromol.7b01285 [24] Wang X, et al 2022 Ultra-stable all-solid-state sodium metal batteries enabled by perfluoropolyether-based electrolytes Nat. Mater. 21 1057 doi: 10.1038/s41563-022-01296-0 [25] Dueramae I, Okhawilai M, Kasemsiri P, Uyama H 2021 High electrochemical and mechanical performance of zinc conducting-based gel polymer electrolytes Sci. Rep. 11 13268 doi: 10.1038/s41598-021-92671-5 [26] Li Y, Wang Z, Li W, Zhang X, Yin C, Li W, Guo K, Zhang X, Wu J 2023 Trinary nanogradients at electrode/electrolyte interface for lean zinc metal batteries Energy Storage Mater. 61 102873 doi: 10.1016/j.ensm.2023.102873 [27] Saal A, Hagemann T, Schubert U S 2021 Polymers for battery applications—active materials, membranes, and binders Adv. Energy Mater. 11 2001984 doi: 10.1002/aenm.202001984 [28] Stolwijk N A, Heddier C, Reschke M, Wiencierz M, Bokeloh J, Wilde G 2013 Salt-concentration dependence of the glass transition temperature in PEO-NaI and PEO-LiTFSI polymer electrolytes Macromolecules 46 8580 doi: 10.1021/ma401686r [29] Zhu Y, Yang G, Zhou H 2022 An aqueous zinc-ion battery working at -50 °C enabled by low-concentration perchlorate-based chaotropic salt electrolyte EcoMat 4 e12165 doi: 10.1002/eom2.12165 [30] Bard A J, Inzelt G, Scholz F 2008 (eds)E BT Electrochemical DictionarySpringer 175-264 [31] Huo S, Sheng L, Xue W, Wang L, Xu H, Zhang H, He X 2023 Challenges of polymer electrolyte with wide electrochemical window for high energy solid-state lithium batteries InfoMat 5 e12394 doi: 10.1002/inf2.12394 [32] Tian H, et al 2022 Three-dimensional Zn-based alloys for dendrite-free aqueous Zn battery in dual-cation electrolytes Nat. Commun. 13 7922 doi: 10.1038/s41467-022-35618-2 [33] Shang W, et al 2021 Establishing high-performance quasi-solid Zn/I2 batteries with alginate-based hydrogel electrolytes ACS Appl. Mater. Interfaces 13 24756 doi: 10.1021/acsami.1c03804 [34] Yuan L, Hao J, Johannessen B, Ye C, Yang F, Wu C, Dou S, Liu H, Qiao S 2023 Hybrid working mechanism enables highly reversible Zn electrodes eScience 3 100096 doi: 10.1016/j.esci.2023.100096 [35] Hou Z, Zhang B 2022 A solid-to-solid metallic conversion electrochemistry toward 91% zinc utilization for sustainable aqueous batteries EcoMat 4 e12265 doi: 10.1002/eom2.12265 [36] Pei A, Zheng G, Shi F, Li Y, Cui Y 2017 Nanoscale nucleation and growth of electrodeposited lithium metal Nano Lett. 17 1132 doi: 10.1021/acs.nanolett.6b04755 [37] Wu X, Dai Y, Li N W, Chen X C, Yu L 2024 Recent progress in ionic liquid-based electrolytes for nonaqueous and aqueous metal batteries eScience 4 100173 doi: 10.1016/j.esci.2023.100173 [38] Wang Y, Wu Z, Azad F M, Zhu Y, Wang L, Hawker C J, Whittaker A K, Forsyth M, Zhang C 2024 Fluorination in advanced battery design Nat. Rev. Mater. 9 119 doi: 10.1038/s41578-023-00623-4 [39] Yang Y, Liu C, Lv Z, Yang Y, Zhang H, Ye M, Chen L, Zhao J, Li C C 2021 Synergistic manipulation of Zn2+ ion flux and desolvation effect enabled by anodic growth of a 3D ZnF2 matrix for long-lifespan and dendrite-free zn metal anodes Adv. Mater. 33 2007388 doi: 10.1002/adma.202007388 [40] Zeng Y, et al 2023 Extreme fast charging of commercial Li-ion batteries via combined thermal switching and self-heating approaches Nat. Commun. 14 3229 doi: 10.1038/s41467-023-38823-9 [41] Yang J, et al 2023 Hetero-polyionic hydrogels enable dendrites-free aqueous Zn-I2 batteries with fast kinetics Adv. Mater. 35 2306531 doi: 10.1002/adma.202306531 [42] Wang M, Ma J, Zhang H, Fu L, Li X, Lu K Bidirectional confined redox catalysis manipulated quasi-solid iodine conversion for shuttle-free solid-state Zn-I2 battery Small 2023 2307021 doi: 10.1002/smll.202307021 [43] Machhi H K, Sonigara K K, Bariya S N, Soni H P, Soni S S 2021 Hierarchically porous metal-organic gel hosting catholyte for limiting iodine diffusion and self-discharge control in sustainable aqueous Zinc-I2 batteries ACS Appl. Mater. Interfaces 13 21426 doi: 10.1021/acsami.1c03812 [44] Zhang S, Hao J, Li H, Zhang P, Yin Z, Li Y, Zhang B, Lin Z, Qiao S 2022 Polyiodide confinement by starch enables shuttle-free zn-iodine batteries Adv. Mater. 34 2201716 doi: 10.1002/adma.202201716 [45] Yang J, Liu H, Zhao X, Zhang K, Zhang X, Ma M, Gu Z, Cao J, Wu X 2024 Janus binder chemistry for synchronous enhancement of iodine species adsorption and redox kinetics toward sustainable aqueous Zn-I2 batteries J. Am. Chem. Soc. 146 6628 doi: 10.1021/jacs.3c12638 [46] Ma L, Ying Y, Chen S, Huang Z, Li X, Huang H, Zhi C 2021 Electrocatalytic iodine reduction reaction enabled by aqueous zinc-iodine battery with improved power and energy densities Angew. Chem., Int. Ed. 60 3791 doi: 10.1002/anie.202014447 [47] Ghica D, Vlaicu I D, Stefan M, Maraloiu V A, Joita A C, Ghica C 2019 Tailoring the dopant distribution in zno: mn nanocrystals Sci. Rep. 9 6894 doi: 10.1038/s41598-019-43388-z [48] Hou Z, Zhang T, Liu X, Xu Z, Liu J, Zhou W, Qian Y, Fan H J, Chao D, Zhao D 2023 A solid-to-solid metallic conversion electrochemistry toward 91% zinc utilization for sustainable aqueous batteries Sci. Adv. 8 eabp8960 doi: 10.1126/sciadv.abp8960 [49] Meng C, He W, Tan H, Wu X, Liu H, Wang J 2023 A eutectic electrolyte for an ultralong-lived Zn//V2O5 cell: an in situ generated gradient solid-electrolyte interphase Energy Environ. Sci. 16 3587 doi: 10.1039/D3EE01447A [50] An Y, Tian Y, Zhang K, Liu Y, Liu C, Xiong S, Feng J, Qian Y 2021 Stable aqueous anode-free zinc batteries enabled by interfacial engineering Adv. Funct. Mater. 31 2101886 doi: 10.1002/adfm.202101886 [51] Tao S, et al 2022 A hydrophobic and fluorophilic coating layer for stable and reversible aqueous zinc metal anodes Chem. Eng. J. 446 136607 doi: 10.1016/j.cej.2022.136607 [52] Cao L, et al 2021 Fluorinated interphase enables reversible aqueous zinc battery chemistries Nat. Nanotechnol. 16 902 doi: 10.1038/s41565-021-00905-4 [53] Ma L, Li Q, Ying Y, Ma F, Chen S, Li Y, Huang H, Zhi C 2021 Toward practical high-areal-capacity aqueous zinc-metal batteries: quantifying hydrogen evolution and a solid-ion conductor for stable zinc anodes Adv. Mater. 33 2007406 doi: 10.1002/adma.202007406 [54] Han D, et al 2022 A non-flammable hydrous organic electrolyte for sustainable zinc batteries Nat. Sustain. 5 205 doi: 10.1038/s41893-021-00800-9 -
mfad50f1supp1.pdf