Synthesis, disorder and Ising anisotropy in a new spin liquid candidate PrMgAl11O19
doi: 10.1088/2752-5724/ad4a93
-
Abstract: AbstractHere we report the successful synthesis of large single crystals of triangular frustrated PrMgAl11O19 using the optical floating zone technique. Single crystal x-ray diffraction (XRD) measurements unveiled the presence of quenched disorder within the mirror plane, specifically ~7% of Pr ions deviating from the ideal 2d site towards the 6h site. Magnetic susceptibility measurements revealed an Ising anisotropy with the c-axis being the easy axis. Despite a large spin-spin interaction that develops below ~10 K and considerable site disorder, the spins do not order or freeze down to at least 50 mK. The availability of large single crystals offers a distinct opportunity to investigate the exotic magnetic state on a triangular lattice with an easy axis out of the plane.
-
Key words:
- spin liquid /
- disorder /
- frustration /
- triangular lattice /
- Ising anisotropy
-
Figure 3. Temperature and field dependence of the dynamic susceptibility of PrMgAl11O19. (a) Temperature dependence of the magnetic susceptibility measured with the magnetic fields applied along the reciprocal a and c directions. (b) Temperature dependence of the inverse susceptibility,
. The red and blue curves are according to the CEF fit and Curie-Weiss fit, respectively. The inset highlights the low-temperature region. (c) Temperature dependence of the real component of the ac susceptibility, (T), measured at various frequencies. (d) Isothermal magnetization measured at various temperatures. The solid lines represent the magnetization calculated from the CEF parameters. Figure 4. Heat capacity from hexaaluminate single crystals. (a)
versus T measured under various magnetic fields. The dashed line represents the phonon contribution obtained from the nonmagnetic counterpart LaMgAl11O19. (b) The magnetic specific heat is obtained by subtracting the phonon contributions (LaMgAl11O19) from the data of PrMgAl11O19. The red line represents a fit, , to the zero field data in the temperature range between 0.2 and 2 K, with α = 1.91(1). (c) Representative change of the magnetic entropy in zero field. (d) Temperature dependence of the magnetic specific heat for NdMgAl11O19 together with a two-level Schottky fit. The inset shows the evolution of the gap as a function of the applied magnetic fields. A fit of to the gap yields gc of 3.92. Table 1. Experimental conditions for the single crystal XRD measurements, and agreement factors for the refinement.
Formula PrMgAl11O19 Space group (No. 194) a, b (Å) 5.587 00(10) c (Å) 21.8732(6) V (Å3) 591.29(2) Z 2 2Θ (°) 3.72 - 82.16 No. of reflections, 125 34, 4.11% No. of independent reflections 614 No. of parameters 48 Index ranges -9 H 10, -10 K 10, -39 L 39 R, wR2a 1.69%, 4.60% Goodness of fit on F2 1.42 Largest difference peak/hole (e/Å3) 0.34/-0.38 Table 2. Refined crystal structure parameters.
Atom occ. x y z Pr1 (2d) 0.928(10) 1/3 2/3 0.75 Pr2 (6 h) 0.024(3) 0.271(5) 0.729(5) 0.75 Al1 (2a) 1 0 0 0 Al2 (4f) 1 1/3 2/3 0.189 98(4) Al3 (4f) 0.5 1/3 2/3 0.472 75(4) Mg (4f) 0.5 1/3 2/3 0.472 75(4) Al4 (12k) 1 0.167 38(4) 0.334 77(9) 0.608 39(2) Al5 (4e) 0.5 0 0 0.2428(3) O1 (6 h) 1 0.181 22(15) 0.3624(3) 0.25 O2 (12k) 1 0.152 14(11) 0.3043(2) 0.446 09(6) O3 (12k) 1 -0.0112(2) 0.494 42(11) 0.348 08(5) O4 (4f) 1 1/3 2/3 0.558 37(10) O5 (4e) 1 0 0 0.348 18(9) -
[1] Balents L 2010 Spin liquids in frustrated magnets Nature 464 199 doi: 10.1038/nature08917 [2] Ma Z, et al 2018 Spin-glass ground state in a triangular-lattice compound YbZnGaO4 Phys. Rev. Lett. 120 087201 doi: 10.1103/PhysRevLett.120.087201 [3] Savary L, Balents L 2017 Disorder-induced quantum spin liquid in spin ice pyrochlores Phys. Rev. Lett. 118 087203 doi: 10.1103/PhysRevLett.118.087203 [4] Wen J-J, et al 2017 Disordered route to the coulomb quantum spin liquid: random transverse fields on spin ice in Pr2Zr2O7 Phys. Rev. Lett. 118 107206 doi: 10.1103/PhysRevLett.118.107206 [5] Murayama H, et al 2020 Effect of quenched disorder on the quantum spin liquid state of the triangular-lattice antiferromagnet 1T−TaS2 Phys. Rev. Res. 2 013099 doi: 10.1103/PhysRevResearch.2.013099 [6] Gao Y, Chen G 2020 Some experimental schemes to identify quantum spin liquids Chin. Phys. B 29 097501 doi: 10.1088/1674-1056/ab9df0 [7] Knolle J, Moessner R 2019 A field guide to spin liquids Annu. Rev. Condens. Matter Phys. 10 451-72 doi: 10.1146/annurev-conmatphys-031218-013401 [8] Yamashita M, et al 2010 Highly mobile gapless excitations in a two-dimensional candidate quantum spin liquid Science 328 1246-8 doi: 10.1126/science.1188200 [9] Ni J M, et al 2019 Absence of magnetic thermal conductivity in the quantum spin liquid candidate EtMe3Sb[Pd(dmit)2]2 Phys. Rev. Lett. 123 247204 doi: 10.1103/PhysRevLett.123.247204 [10] Saber D, Dexpert-Ghys J, Caro P, Lejus A M, Vivien D 1985 Analysis and simulation of optical and magnetic properties of lanthanide aluminates LnMgAl11O19 (Ln = La/Nd,La/Eu,Pr) with magnetoplumbite-like structure J. Chem. Phys. 82 5648-57 doi: 10.1063/1.448551 [11] Kahn A, et al 1981 Preparation, structure, optical and magnetic properties of lanthanide aluminate single crystals (LnMAl11O19) J. Appl. Phys. 52 6864-9 doi: 10.1063/1.328680 [12] Ashtar M, et al 2019 REZnAl11O19 (RE = Pr, Nd, Sm - Tb): a new family of ideal 2D triangular lattice frustrated magnets J. Mater. Chem. C 7 10073-81 doi: 10.1039/C9TC02643F [13] Bu H, et al 2022 Gapless triangular-lattice spin-liquid candidate PrZnAl11O19 Phys. Rev. B 106 134428 doi: 10.1103/PhysRevB.106.134428 [14] Li Y 2019 YbMgGaO4: a triangular-lattice quantum spin liquid candidate Adv. Quantum Technol. 2 1900089 doi: 10.1002/qute.201900089 [15] Petíek V, Dušek M, Palatinus L 2014 Crystallographic computing system JANA2006: general features Z. Kristallogr. 229 345-52 doi: 10.1515/zkri-2014-1737 [16] Rodríguez-Carvajal J 1993 Recent advances in magnetic structure determination by neutron powder diffraction Physica B 192 55-69 doi: 10.1016/0921-4526(93)90108-I [17] See the supplementary materials [18] Cao Y, Pomjakushin V, Gardner J S, Guo H Data to be published [19] Scheie A 2021 PyCrystalField: software for calculation, analysis and fitting of crystal electric field Hamiltonians J. Appl. Cryst. 54 356-62 doi: 10.1107/S160057672001554X [20] Scheie A, Garlea V O, Sanjeewa L D, Xing J, Sefat A S 2020 Crystal-field Hamiltonian and anisotropy in KErSe2 and CsErSe2 Phys. Rev. B 101 144432 doi: 10.1103/PhysRevB.101.144432 [21] Schotte K D, Schotte U 1975 Interpretation of kondo experiments in a magnetic field Phys. Lett. A 55 38-40 doi: 10.1016/0375-9601(75)90386-2 [22] Bredl C D, Steglich F, Schotte K D 1978 Specific heat of concentrated kondo systems: (La, Ce)Al2 and CeAl2 Z. Phys. B 29 327-40 doi: 10.1007/BF01324030 [23] Gopal E 1966 Sepcific Heats at Low TemperaturesPlenum Press [24] Furukawa T, et al 2015 Quantum spin liquid emerging from antiferromagnetic order by introducing disorder Phys. Rev. Lett. 115 077001 doi: 10.1103/PhysRevLett.115.077001 [25] Kimchi I, Nahum A, Senthil T 2018 Valence bonds in random quantum magnets: theory and application to YbMgGaO4 Phys. Rev. X 8 031028 doi: 10.1103/PhysRevX.8.031028 [26] Li Y, et al 2019 Rearrangement of uncorrelated valence bonds evidenced by low-energy spin excitations in YbMgGaO4 Phys. Rev. Lett. 122 137201 doi: 10.1103/PhysRevLett.122.137201 [27] Wu H-Q, Gong S-S, Sheng D N 2019 Randomness-induced spin-liquid-like phase in the spin-12J1−J2 triangular heisenberg model Phys. Rev. B 99 085141 doi: 10.1103/PhysRevB.99.085141 [28] Ma Z, et al 2021 Disorder-induced broadening of the spin waves in the triangular-lattice quantum spin liquid candidate YbZnGaO4 Phys. Rev. B 104 224433 doi: 10.1103/PhysRevB.104.224433 [29] Li Y, Gegenwart P, Tsirlin A A 2020 Spin liquids in geometrically perfect triangular antiferromagnets J. Phys.: Condens. Matter 32 224004 doi: 10.1088/1361-648X/ab724e [30] Hodges J A, et al 2002 First-order transition in the spin dynamics of geometrically frustrated Yb2Ti2O7 Phys. Rev. Lett. 88 077204 doi: 10.1103/PhysRevLett.88.077204 [31] Yaouanc A, Dalmas de Réotier P, Marin C, Glazkov V 2011 Single-crystal versus polycrystalline samples of magnetically frustrated Yb2Ti2O7: specific heat results Phys. Rev. B 84 172408 doi: 10.1103/PhysRevB.84.172408 [32] Ross K A, et al 2012 Lightly stuffed pyrochlore structure of single-crystalline Yb2Ti2O7 grown by the optical floating zone technique Phys. Rev. B 86 174424 doi: 10.1103/PhysRevB.86.174424 [33] Wannier G H 1950 Antiferromagnetism. The triangular ising net Phys. Rev. 79 357-64 doi: 10.1103/PhysRev.79.357 [34] Shen Y, et al 2019 Intertwined dipolar and multipolar order in the triangular-lattice magnet TmMgGaO4 Nat. Commun. 10 4530 doi: 10.1038/s41467-019-12410-3 [35] Li Y, et al 2020 Partial up-up-down order with the continuously distributed order parameter in the triangular antiferromagnet TmMgGaO4 Phys. Rev. X 10 011007 doi: 10.1103/PhysRevX.10.011007 [36] Li H, et al 2020 Kosterlitz-thouless melting of magnetic order in the triangular quantum ising material TmMgGaO4 Nat. Commun. 11 1111 doi: 10.1038/s41467-020-14907-8 [37] Arh T, et al 2022 The Ising triangular-lattice antiferromagnet neodymium heptatantalate as a quantum spin liquid candidate Nat. Mater. 21 416-22 doi: 10.1038/s41563-021-01169-y [38] Ma Z, et al 2024 Possible gapless quantum spin liquid behavior in the triangular-lattice ising antiferromagnet PrMgAl11O19 Phys. Rev. B 109 165143 doi: 10.1103/PhysRevB.109.165143 [39] Gardner J S, Gingras M J P, Greedan J E 2010 Magnetic pyrochlore oxides Rev. Mod. Phys. 82 53-107 doi: 10.1103/RevModPhys.82.53