Recent advances of metal fluoride compounds cathode materials for lithium ion batteries: a review
doi: 10.1088/2752-5724/ad4572
-
Abstract: AbstractAs the most successful new energy storage device developed in recent decades, lithium-ion batteries (LIBs) are ubiquitous in the modern society. However, current commercial LIBs comprising mainly intercalated cathode materials are limited by the theoretical energy density which cannot meet the high storing energy demanded by renewable applications. Compared to intercalation-type cathode materials, low-cost conversion-type cathode materials with a high theoretical specific capacity are expected to boost the overall energy of LIBs. Among the different conversion cathode materials, metal fluorides have become a popular research subject for their environmental friendliness, low toxicity, wide voltage range, and high theoretical specific capacity. In this review, we compare the energy storage performance of intercalation and conversion cathode materials based on thermodynamic calculation and summarize the main challenges. The common conversion-type cathode materials are described and their respective reaction mechanisms are discussed. In particular, the structural flaws and corresponding solutions and strategies are described. Finally, we discussed the prospective of metal fluorides and other conversion cathode materials to guide further research in this important field.
-
Key words:
- lithium-ion batteries /
- metal fluorides /
- cathode materials /
- conversion materials
-
Figure 2. Overpotentials in conversion-type cathode materials showing FeF3 as an example. Reprinted from [40], © 2019 Elsevier Inc.
Figure 3. (a) Crystal structure of FeF2. (b) Schematic diagram of the conversion of FeF2 into a bicontinuous network of Fe nanoparticles and LiF during the first lithiation. (c)-(f) Morphology and spatial distribution of the phases in the initial FeF2-C nanocomposite electrode: (c) BF TEM and (d) Elemental maps of C (blue) and FeF2 (yellow). (e) BF TEM and (f) Elemental maps of Fe (green) and LiF (red). Reprinted with permission from [54]. Copyright (2011) American Chemical Society. (g) Schematic illustration of the diffusion of the reaction front in a single FeF2 particle, using the ‘layer-by-layer’ reaction as the mechanism. Reproduced from [82], with permission from Springer Nature.
Figure 4. (a) Crystal structure of FeF3. (b) Simplified Li-Fe-F ternary phase diagram and reaction paths of FeF3-FeF2 system in different states. Reproduced from [41], with permission from Springer Nature.
Figure 5. Crystal structure of FeFx · mH2O: (a) HTB-FeF3 · 0.33H2O. (b) FeF3 · 0.5H2O. (c) Simplified diagram of FeF3·0.5H2O cross-sectional tetrahedral. Reprinted with permission from [98]. Copyright (2013) American Chemical Society. (d) FeF3 · 3H2O and (e) projection of FeF3 · 3H2O along the [001] direction. Reprinted from [89], Copyright © 2013 Elsevier B.V. All rights reserved.
Figure 6. (a) Rutile FeF2 (P42/mnm) in projection along [001]. (b) Fe octahedral structure in FeOF, Fe deviates from the central position tending to move toward the O atoms. (c) Nonprimitive cell of the lowest energy FeOF structure. Lowest-energy superstructures of (d) FeOF. (e) Li0.25FeOF. (f) Li0.5FeOF. and (g) Li0.75FeOF in the [001] projection. Reprinted figure with permission from [108], Copyright (2013) by the American Physical Society. (h) Structure of highly distorted octahedral coordination of CuF2. Reprinted from [109], Copyright © 2010 Elsevier Inc. Published by Elsevier Inc. All rights reserved. (i) Crystal structure of CuF2 in the monoclinic unit cell. Reprinted from [110], Copyright © 2012 Elsevier Ltd. All rights reserved. (j) Electrochemical curves of CuF2 and EDS elemental maps of Li metal before and after charging CuF2 to 4.5 V. Reprinted with permission from [111]. Copyright (2019) American Chemical Society.
Figure 7. (a) Preparation process of CuF2-SA electrode materials. (b) Mechanism of selective permeation and inhibition of copper dissolution in the Cu-SA layer. (c) Cross-linking effect and coordination structure between Cu2+ and SA. [114] John Wiley & Sons. © 2022 Wiley-VCH GmbH.
Figure 8. (a) Schematic diagram of the formation of hydrated iron-based fluorides from BMIMBF4 ionic liquid and Fe(NO3)3 · 9H2O. [139] John Wiley & Sons. Copyright © 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. (b) Ferrofluoride-converted cathode materials prepared by deep eutectic solvent method and electrochemical performance test. Reprinted from [141], © 2022 Science Press and Dalian Institute of Chemical Physics, Chinese Academy of Sciences. All rights reserved.
Figure 9. (a) Flow diagram of the preparation of pomegranate-like nanostructured TM (TM = FeCo, FeNi)/LiF/C nanocomposites. (b)-(d) Microscopic images of the as-synthesized FeCo/LiF/C nanocomposites. (e) HAADF-STEM image and EDS maps of FeCo/LiF/C composites. Reprinted with permission from [142]. Copyright (2016) American Chemical Society.
Figure 10. Hexagonal cavities in (a) pure FeF3 · 0.33H2O and (b) Fe0.92Mn0.08F3 · 0.33H2O(III). (c) Models of pure FeF3 · 0.33H2O and Mn-doped FeF3 · 0.33H2O and cycling tests. Reprinted with permission from [165]. Copyright (2019) American Chemical Society.
Figure 11. (a) Schematic illustration of the synthesis of Ni-doped FeF3 · 0.33H2O and EDS maps of Fe0.92Ni0.08F3 · 0.33H2O. Reprinted with permission from [168]. Copyright (2020) American Chemical Society. (b) Schematic diagram showing the synthesis of Nb-FeF3 · 0.33H2O@C. (c)-(e) Morphology and elemental distributions of Fe0.97Nb0.03F3 · 0.33H2O@C: (c) FE-SEM. (d) TEM. (e) EDS maps of Fe, C, F, and Nb. [158] John Wiley & Sons. © 2021 Wiley-VCH GmbH.
Figure 12. (a) Schematic and galvanostatic charging-discharging curves of FeF3 · 0.33H2O substituted by O atoms. (b)-(d) Local configureuration and energy band structure of cathode materials based on TMF3 material for cation-anion redox reaction. (b) TMF3. (c) O-doped TMF3. (d) TMn+ (n = 2, 3) cationic and On- (n = 1, 2) redox reaction. Reprinted with permission from [173]. Copyright (2019) American Chemical Society.
Figure 13. (a) and (b) Synthesis of CVD reactions at different temperatures. (c)-(e) Surface morphologies of FeF2 particles with different carbon deposition times. (f) and (g) Cycle test of FE materials at different electrolyte concentrations. [183] John Wiley & Sons. © 2023 Wiley-VCH GmbH.
Figure 14. (a) Schematic illustration of the preparation of FeF3 · 0.33H2O@CNS nanocomposites. (b) SEM images of the FeF3 · 0.33H2O@CNS nanocomposites. Reproduced from [200] with permission from the Royal Society of Chemistry.
Figure 16. (a) Schematic of the preparation of FeF3 · 0.33H2O/rGO. (b) TEM images of FeF3 · 0·33H2O/rGO. Reprinted with permission from [197]. Copyright (2018) American Chemical Society. (c) Schematic illustration of the formation of the GCFF composite. (d) TEM image of GCFF. Reprinted from [201], © 2019 Elsevier B.V. All rights reserved. (e) Schematic of the electron/Li+ diffusion pathways of FeF3 · 0.33H2O (FF), reduction of graphene oxide-loaded FeF3 · 0.33H2O (FF@rGO), and 3D reduced graphene oxide-loaded FeF3 · 0.33H2O (FF@3DrGO). Reproduced from [202]. © IOP Publishing Ltd. All rights reserved.
Figure 17. (a) Schematic showing the fabrication of free-standing FeF3-C NFs cathodes. (b) Comparison of conventional cathodes and flexible, free-standing cathodes. [210] John Wiley & Sons.© 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. (c) SEM picture of FFNA. (d) SEM picture of GQDs@FFNA. (e) AFM image of GQDs. Reprinted from [230], © 2019 Published by Elsevier B.V.
Figure 18. (a) Schematic of the preparation of the 3D honeycomb metal fluoride@carbon composite. (b) and (c) SEM images of FeC3@C. (d) and (e) SEM images of FeF3@C. [144] John Wiley & Sons. © 2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. (f) Schematic synthesis of honeycomb FeF3@C. (g) Electrochemical results of honeycomb FeF3@C tested as a full cell. Reprinted from [233], © 2023 Elsevier B.V. All rights reserved.
Figure 19. (a) Schematic of the synthesis of the MOF-shape CoF2@C nanocomposite. (b) SEM of the Co-MOF-67; (c) SEM of the Co@C composites. (d) and (e) TEM of the Co@C composite. (f) HR-TEM of CoF2@C. Reprinted with permission from [234]. Copyright (2021) American Chemical Society.
Table 1. Theoretical capacity, operating voltage, band gap, volume expansion, voltage hysteresis, and stability in electrolytes of common metal fluorides.
Materials Theoretical capacity (mAh g-1) Theoretical potential (V) Band gap (eV) Theoretical volume expansion (%) Voltage hysteresis (V vs. Li) Stability in the electrolyte FeF2 571 2.66 1.69 16.7 0.5-1 Cation dissolution FeF3 712 2.74 3.11 25.6 0.8-2.0 Cation dissolution CoF2 553 2.80 4.44 21 0.8-2.0 Cation dissolution CuF2 527 3.55 Mott insulator 11.6 0.8-1.0 Cation dissolution NiF2 554 2.96 4.91 28.3 1.0-2.0 Cation dissolution BiF3 302 3.18 Orthorhombic 4.68 Hexagonal 5.07 1.76 0.4-1.5 Cation dissolution Table 2. Summary of electrochemical properties of metal fluorides synthesized using different fluorine sources.
Fluoride source Cathode materials Current density (mA g-1) Capacity (mAh g-1) Cycle number Capacity retention (%) References NF3 FeF3@C 480 >200 1000 84.6 [144] NH4F C/FeOF/FeF3 20 438.3 50 <50 [145] FeF3@mesoporous carbon 142 640 50 90 [146] HF FeF3 · 0.33H2O 20 438.9 160 45.4 [92] FeF3 · 0.33H2O/C 237 276.4 50 73 [147] CFX FeF2/C 20 442 20 <50 [44] NH4HF2 FeF3 · 0.33H2O 20 173.5 100 96.2 [149] FeF3/C 50 346.25 40 46.7 [150] H2SiF6 FeOF-rGO 20 283.2 100 77.2 [104] CoF2-CNTs 100 360 200 93 [121] BMIMBF4 Fe1.9F4.75 · 0.95H2O 14 175 100 83 [154] Nb-FeF3 · 0.33H2O/C 40 540.7 100 64.4 [158] PTFE FeF3 11.75 210 50 70 [156] TFA FeF3 1000 155 100 88 [157] CF3CCH2CCF3 FeF2 20 590 25 <50 [78] CoF2 20 535 25 <50 Table 3. A mini-summary of electrochemical properties of different transition metal fluoride composites.
Cathode materials Current density (mA g-1) Capacity (mAh g-1) Cycle number Capacity retention (%) References TiF3/C 38 727 40 55 [131] MnF2/CNTs 57.7 461 100 84 [117] MnF2/MWCNT 57.7 600 100 80 [116] CoF2/CNTs 100 360 200 93 [121] CoF2/C 110 >400 300 81.9 [125] NiF2/porous carbon 100 >700 20 <50 [118] Fe/LiF/C 25 316 50 95 [187] FeF3 · 0.33H2O/CNT/graphene 47.4 193.1 50 85.48 [188] FeF3 · 0.33H2O/N-doped CNTs 40 219.9 100 73.1 [189] FeF3 ⋅ 0.33H2O/graphitized carbon 1000 129 300 87 [190] FeF2/CMK-3 500 529 100 91 [191] FeF3/C 1200 206 1000 84.1 [144] FeF3 · 0.33H2O/CMK-3 10 000 78 100 97 [192] FeF3 · 0.33H2O/C 200 >160 50 95 [195] FeF3 · 0.33H2O/carbon nanosheet 237 175 200 97.2 [200] FeF3 ⋅ 0.33H2O porous graphene/CNTs 200 162 100 74.1 [201] FeF3 · 0.33H2O/rGO 20 700 30 <50 [93] FeF3 · 0.33H2O/rGO 100 177.8 100 96.7 [197] FeF3 · 0.33H2O/rGO 100 >175 100 98 [198] FeF3 · 0.33H2O/3DrGO 281.25 151.4 1400 66.2 [202] FeF3 · 0.33H2O/NSPC 40 181.4 100 90.7 [199] FeF3/Ni3(NO3)2(NH3)6 71 426 400 70 [203] FeOF/TiO2 100 228 300 92 [204] FeF3/C/LiF 40 400 50 57 [206] FeF2/LiF 10 225 20 >80 [207] FeF3 · 0.33H2O/Ag/C 23.7 168.2 50 76.3 [208] CoF2/Fe2O3 100 >300 400 <60 [127] -
[1] Deng Y, Mou J, He L, Xie F, Zheng Q, Xu C, Lin D 2018 A core-shell structured LiNi0.5Mn1.5O4@LiCoO2 cathode material with superior rate capability and cycling performance Dalton. Trans. 47 367-75 doi: 10.1039/C7DT03963H [2] Yi T-F, Han X, Chen B, Zhu Y-R, Xie Y 2017 Porous sphere-like LiNi0.5Mn1.5O4-CeO2 composite with high cycling stability as cathode material for lithium-ion battery J. Alloys Compd. 703 103-13 doi: 10.1016/j.jallcom.2017.01.342 [3] Ye S H, Bo J K, Li C Z, Cao J S, Sun Q L, Wang Y L 2010 Improvement of the high-rate discharge capability of phosphate-doped spinel LiMn2O4 by a hydrothermal method Electrochim. Acta 55 2972-7 doi: 10.1016/j.electacta.2010.01.018 [4] Wei Q, An Q, Chen D, Mai L, Chen S, Zhao Y, Hercule K M, Xu L, Minhas-Khan A, Zhang Q 2014 One-Pot synthesized bicontinuous hierarchical Li3V2(PO4)3/C mesoporous nanowires for high-rate and ultralong-life lithium-ion batteries Nano Lett. 14 1042-8 doi: 10.1021/nl404709b [5] Mai L, Tian X, Xu X, Chang L, Xu L 2014 Nanowire electrodes for electrochemical energy storage devices Chem. Rev. 114 11828-62 doi: 10.1021/cr500177a [6] Yu F-D, Que L-F, Wang Z-B, Xue Y, Zhang Y, Liu B-S, Gu D-M 2017 Controllable synthesis of hierarchical ball-in-ball hollow microspheres for a high performance layered Li-rich oxide cathode material J. Mater. Chem. A 5 9365-76 doi: 10.1039/C7TA02553J [7] Vu A, Qian Y, Stein A 2012 Porous electrode materials for lithium-ion batteries—how to prepare them and what makes them special Adv. Energy Mater. 2 1056-85 doi: 10.1002/aenm.201200320 [8] Zhang H, Li Z, Yu S, Xiao Q, Lei G, Ding Y 2016 Carbon-encapsulated LiMn2O4 spheres prepared using a polymer microgel reactor for high-power lithium-ion batteries J. Power Sources 301 376-85 doi: 10.1016/j.jpowsour.2015.10.022 [9] Wang J, Tang H, Wang H, Yu R, Wang D 2017 Multi-shelled hollow micro-/nanostructures: promising platforms for lithium-ion batteries Mater. Chem. Front. 1 414-30 doi: 10.1039/C6QM00273K [10] Gent W E, Abate I I, Yang W, Nazar L F, Chueh W C 2020 Design rules for high-valent redox in intercalation electrodes Joule 4 1369-97 doi: 10.1016/j.joule.2020.05.004 [11] Xu G, Liu Z, Zhang C, Cui G, Chen L 2015 Strategies for improving the cyclability and thermo-stability of LiMn2O4-based batteries at elevated temperatures J. Mater. Chem. A 3 4092-123 doi: 10.1039/C4TA06264G [12] Zheng J, Myeong S, Cho W, Yan P, Xiao J, Wang C, Cho J, Zhang J G 2016 Li and Mnrich cathode materials: challenges to commercialization Adv. Energy Mater. 7 1601284 doi: 10.1002/aenm.201601284 [13] Radin M D, Hy S, Sina M, Fang C, Liu H, Vinckeviciute J, Zhang M, Whittingham M S, Meng Y S, Van der Ven A 2017 Narrowing the gap between theoretical and practical capacities in liion layered oxide cathode materials Adv. Energy Mater. 7 1602888 doi: 10.1002/aenm.201602888 [14] Chen R, Luo R, Huang Y, Wu F, Li L 2016 Advanced high energy density secondary batteries with multi-electron reaction materials Adv. Sci. 3 1600051 doi: 10.1002/advs.201600051 [15] Croguennec L, Palacin M R 2015 Recent achievements on inorganic electrode materials for LIBs J. Am. Chem. Soc. 137 3140-56 doi: 10.1021/ja507828x [16] Li W, Erickson E M, Manthiram A 2020 High-nickel layered oxide cathodes for lithium-based automotive batteries Nat. Energy 5 26-34 doi: 10.1038/s41560-019-0513-0 [17] Zhao W, Zhong G, Zheng J, Zheng J, Song J, Gong Z, Chen Z, Zheng G, Jiang Z, Yang Y 2018 Insights into the electrochemical reaction mechanism of a novel cathode material CuNi2(PO4)2/C for Li-ion batteries ACS Appl. Mater. Interfaces 10 3522-9 doi: 10.1021/acsami.7b15086 [18] Jung S-K, et al 2017 Lithium-free transition metal monoxides for positive electrodes in lithium-ion batteries Nat. Energy 2 1-9 doi: 10.1038/nenergy.2016.208 [19] Kim T, Jae W J, Kim H, Park M, Han J M, Kim J 2016 A cathode material for lithium-ion batteries based on graphitized carbon-wrapped FeF3 nanoparticles prepared by facile polymerization J. Mater. Chem. A 4 14857-64 doi: 10.1039/C6TA06696H [20] Shao J, Li X, Wan Z, Zhang L, Ding Y, Zhang L, Qu Q, Zheng H 2013 Low-cost synthesis of hierarchical V2O5 microspheres as high-performance cathode for lithium-ion batteries ACS Appl. Mater. Interfaces 5 7671-5 doi: 10.1021/am401854v [21] Kim U H, Ryu H H, Kim J H, Mücke R, Kaghazchi P, Yoon C S, Sun Y K 2019 Microstructurecontrolled Nirich cathode material by microscale compositional partition for nextgeneration electric vehicles Adv. Energy Mater. 9 1803902 doi: 10.1002/aenm.201803902 [22] Yang L, Yang K, Zheng J, Xu K, Amine K, Pan F 2020 Harnessing the surface structure to enable high-performance cathode materials for LIBs Chem. Soc. Rev. 49 4667-80 doi: 10.1039/D0CS00137F [23] Zhou X, Sun H, Zhou H, Xu Z, Yang J 2017 Enhancing cycling performance of FeF3 cathode by introducing a lightweight high conductive adsorbable interlayer J. Alloys Compd. 723 317-26 doi: 10.1016/j.jallcom.2017.06.266 [24] Wu F, Maier J, Yu Y 2020 Guidelines and trends for next-generation rechargeable lithium and lithium-ion batteries Chem. Soc. Rev. 49 1569-614 doi: 10.1039/c7cs00863e [25] Romano Brandt L, Marie J-J, Moxham T, Förstermann D P, Salvati E, Besnard C, Papadaki C, Wang Z, Bruce P G, Korsunsky A M 2020 Synchrotron x-ray quantitative evaluation of transient deformation and damage phenomena in a single nickel-rich cathode particle Energy Environ. Sci. 13 3556-66 doi: 10.1039/D0EE02290J [26] Liu L, Li M, Chu L, Jiang B, Lin R, Zhu X, Cao G 2020 Layered ternary metal oxides: performance degradation mechanisms as cathodes, and design strategies for high-performance batteries Prog. Mater. Sci. 111 100655 doi: 10.1016/j.pmatsci.2020.100655 [27] Ezawa M 2019 Protected corners Nat. Mater. 18 1266-7 doi: 10.1038/s41563-019-0534-x [28] Olbrich L F, Xiao A W, Pasta M 2021 Conversion-type fluoride cathodes: current state of the art Curr. Opin. Electrochem. 30 100779 doi: 10.1016/j.coelec.2021.100779 [29] Zhou L, Zhang K, Hu Z, Tao Z, Mai L, Kang Y-M, Chou S-L, Chen J 2018 Recent developments on and prospects for electrode materials with hierarchical structures for lithium-ion batteries Adv. Energy Mater. 8 1701415 doi: 10.1002/aenm.201701415 [30] Ji H, et al 2020 Ultrahigh power and energy density in partially ordered lithium-ion cathode materials Nat. Energy 5 213-21 doi: 10.1038/s41560-020-0573-1 [31] Hwang J, et al 2020 Excess-Li localization triggers chemical irreversibility in Li- and Mn-rich layered oxides Adv. Mater. 32 e2001944 doi: 10.1002/adma.202001944 [32] Yang J, Li P, Zhong F, Feng X, Chen W, Ai X, Yang H, Xia D, Cao Y 2020 Suppressing voltage fading of Lirich oxide cathode via building a wellprotected and partiallyprotonated surface by polyacrylic acid binder for cyclestable Liion batteries Adv. Energy Mater. 10 1904264 doi: 10.1002/aenm.201904264 [33] Lee W, Muhammad S, Sergey C, Lee H, Yoon J, Kang Y M, Yoon W S 2020 Advances in the cathode materials for lithium rechargeable batteries Angew. Chem., Int. Ed. Engl. 59 2578-605 doi: 10.1002/anie.201902359 [34] Zuo W, et al 2020 Li-rich cathodes for rechargeable Li-based batteries: reaction mechanisms and advanced characterization techniques Energy Environ. Sci. 13 4450-97 doi: 10.1039/D0EE01694B [35] Saha S, et al 2019 Exploring the bottlenecks of anionic redox in Li-rich layered sulfides Nat. Energy 4 977-87 doi: 10.1038/s41560-019-0493-0 [36] Assat G, Glazier S L, Delacourt C, Tarascon J-M 2019 Probing the thermal effects of voltage hysteresis in anionic redox-based lithium-rich cathodes using isothermal calorimetry Nat. Energy 4 647-56 doi: 10.1038/s41560-019-0410-6 [37] Wang E, Zhao Y, Xiao D, Zhang X, Wu T, Wang B, Zubair M, Li Y, Sun X, Yu H 2020 Composite nanostructure construction on the grain surface of Li-rich layered oxides Adv. Mater. 32 1906070 doi: 10.1002/adma.201906070 [38] Ju L, Wang G, Liang K, Wang M, Sterbinsky G E, Feng Z, Yang Y 2020 Significantly improved cyclability of conversiontype transition metal oxyfluoride cathodes by homologous passivation layer reconstruction Adv. Energy Mater. 10 1903333 doi: 10.1002/aenm.201903333 [39] Wu F, Yushin G 2017 Conversion cathodes for rechargeable lithium and LIBs Energy Environ. Sci. 10 435-59 doi: 10.1039/C6EE02326F [40] Wang L, Wu Z, Zou J, Gao P, Niu X, Li H, Chen L 2019 Li-free cathode materials for high energy density lithium batteries Joule 3 2086-102 doi: 10.1016/j.joule.2019.07.011 [41] Hua X, et al 2021 2021 Revisiting metal fluorides as LIB cathodes Nat. Mater. 20 841-50 doi: 10.1038/s41563-020-00893-1 [42] Bai Y, et al 2017 3D hierarchical nano-flake/micro-flower iron fluoride with hydration water induced tunnels for secondary lithium battery cathodes Nano Energy 32 10-18 doi: 10.1016/j.nanoen.2016.12.017 [43] Tang M, et al 2018 Synthesis of FeF2/carbon composite nanoparticle by one-pot solid state reaction as cathode material for lithium-ion battery J. Mater. Res. Technol. 7 73-76 doi: 10.1016/j.jmrt.2017.05.013 [44] Reddy M A, Breitung B, Kiran Chakravadhanula V S, Helen M, Witte R, Rongeat C, Kübel C, Hahn H, Fichtner M 2018 Facile synthesis of C-FeF2 nanocomposites from CFx: influence of carbon precursor on reversible lithium storage RSC Adv. 8 36802-11 doi: 10.1039/C8RA07378C [45] Yang Z, Zhao S, Pan Y, Wang X, Liu H, Wang Q, Zhang Z, Deng B, Guo C, Shi X 2018 Atomistic insights into FeF3 nanosheet: an ultrahigh-rate and long-life cathode material for Li-ion batteries ACS Appl. Mater. Interfaces 10 3142-51 doi: 10.1021/acsami.7b17127 [46] Zu C-X, Li H 2011 Thermodynamic analysis on energy densities of batteries Energy Environ. Sci. 4 2614-24 doi: 10.1039/c0ee00777c [47] Cao W, Zhang J, Li H 2020 Batteries with high theoretical energy densities Energy Storage Mater. 26 46-55 doi: 10.1016/j.ensm.2019.12.024 [48] Huang Q, Pollard T P, Ren X, Kim D, Magasinski A, Borodin O, Yushin G 2019 Fading mechanisms and voltage hysteresis in FeF2-NiF2 solid solution cathodes for lithium and lithium-ion batteries Small 15 1804670 doi: 10.1002/smll.201804670 [49] Burbano M, Duttine M, Morgan B J, Borkiewicz O J, Chapman K W, Wattiaux A, Demourgues A, Groult H, Salanne M, Dambournet D 2019 Impact of anion vacancies on the local and electronic structures of Iron-based oxyfluoride electrodes J. Phys. Chem. Lett. 10 107-12 doi: 10.1021/acs.jpclett.8b03503 [50] Guo S N, Guo H, Wang X, Zhu Y, Hu J, Yang M, Zhao L, Wang J 2019 Iron trifluoride as a high voltage cathode material for thermal batteries J. Electrochem. Soc. 166 A3599-A605 doi: 10.1149/2.0371915jes [51] Han Y, Hu J, Yin C, Zhang Y, Xie J, Yin D, Li C 2016 Iron-based fluorides of tetragonal tungsten bronze structure as potential cathodes for Na-ion batteries J. Mater. Chem. A 4 7382-9 doi: 10.1039/C6TA02061E [52] Kim S W, Seo D H, Gwon H, Kim J, Kang K 2010 Fabrication of FeF3 Nanoflowers on CNT branches and their application to high power lithium rechargeable batteries Adv. Mater. 22 5260-4 doi: 10.1002/adma.201002879 [53] Hao Z, Fuji M, Zhou J 2019 Diperovskite (NH4)3FeF6/graphene nanocomposites for superior Na-ion storage Sustain. Energy Fuels 3 2828-36 doi: 10.1039/C9SE00439D [54] Wang F, et al 2011 Conversion reaction mechanisms in lithium ion batteries: study of the binary metal fluoride electrodes J. Am. Chem. Soc. 133 18828-36 doi: 10.1021/ja206268a [55] Karki K, Wu L, Ma Y, Armstrong M J, Holmes J D, Garofalini S H, Zhu Y, Stach E A, Wang F 2018 Revisiting conversion reaction mechanisms in lithium batteries: lithiation-driven topotactic transformation in FeF2 J. Am. Chem. Soc. 140 17915-22 doi: 10.1021/jacs.8b07740 [56] Ko J K, Wiaderek K M, Pereira N, Kinnibrugh T L, Kim J R, Chupas P J, Chapman K W, Amatucci G G 2014 Transport, phase reactions, and hysteresis of iron fluoride and oxyfluoride conversion electrode materials for lithium batteries ACS Appl. Mater. Interfaces 6 10858-69 doi: 10.1021/am500538b [57] Li L, Jacobs R, Gao P, Gan L, Wang F, Morgan D, Jin S 2016 Origins of large voltage hysteresis in high-energy-density metal fluoride LIB conversion electrodes J. Am. Chem. Soc. 138 2838-48 doi: 10.1021/jacs.6b00061 [58] Gordon D, Huang Q, Magasinski A, Ramanujapuram A, Bensalah N, Yushin G 2018 Mixed metal difluorides as high capacity conversion-type cathodes: impact of composition on stability and performance Adv. Energy Mater. 8 1800213 doi: 10.1002/aenm.201800213 [59] Naoko Y, Meng J, Baris K, Grey C P 2009 Identifying the local structures formed during lithiation of the conversion material, iron fluoride, in a li ion battery: a solid-state nmr, x-ray diffraction, and pair distribution function analysis study J. Am. Chem. Soc. 131 10525-36 doi: 10.1021/ja902639w [60] Li J, Xu L, Wei K, Ma S, Liu X, Zhao Y, Cui Y 2020 In situ forming of ternary metal fluoride thin films with excellent Li storage performance by pulsed laser deposition Ionics 26 3367-75 doi: 10.1007/s11581-020-03528-2 [61] Liu B, et al 2020 Coupling a sponge metal fibers skeleton with in situ surface engineering to achieve advanced electrodes for flexible lithium-sulfur batteries Adv. Mater. 32 2003657 doi: 10.1002/adma.202003657 [62] Zhang M, et al 2019 Adsorptioncatalysis design in the lithiumsulfur battery Adv. Energy Mater. 10 1903008 doi: 10.1002/aenm.201903008 [63] Chang Q, Luo Z, Fu L, Zhu J, Yang W, Li D, Zhou L 2020 A new cathode material of NiF2 for thermal batteries with high specific power Electrochim. Acta 361 137051 doi: 10.1016/j.electacta.2020.137051 [64] Nitta N, Wu F, Lee J T, Yushin G 2015 Li-ion battery materials: present and future Mater. Today 18 252-64 doi: 10.1016/j.mattod.2014.10.040 [65] Konarov A, Myung S-T, Sun Y-K 2017 Cathode materials for future electric vehicles and energy storage systems ACS Energy Lett. 2 703-8 doi: 10.1021/acsenergylett.7b00130 [66] Banerjee A, Shilina Y, Ziv B, Ziegelbauer J M, Luski S, Aurbach D, Halalay I C 2017 On the oxidation state of manganese ions in li-ion battery electrolyte solutions J. Am. Chem. Soc. 139 1738-41 doi: 10.1021/jacs.6b10781 [67] Zhao H, Li F, Liu X, Xiong W, Chen B, Shao H, Que D, Zhang Z, Wu Y 2015 A simple, low-cost and eco-friendly approach to synthesize single-crystalline LiMn2O4 nanorods with high electrochemical performance for LIBs Electrochim. Acta 166 124-33 doi: 10.1016/j.electacta.2015.03.040 [68] Huang Y, Dong Y, Li S, Lee J, Wang C, Zhu Z, Xue W, Li Y, Li J 2021 Lithium manganese spinel cathodes for lithiumion batteries Adv. Energy Mater. 11 2000997 doi: 10.1002/aenm.202000997 [69] Dou S 2015 Review and prospects of Mn-based spinel compounds as cathode materials for lithium-ion batteries Ionics 21 3001-30 doi: 10.1007/s11581-015-1545-5 [70] Benedek R, Thackeray M M 2006 Reaction energy for LiMn2O4 spinel dissolution in acid Electrochem. Solid-State Lett. 9 A265 doi: 10.1149/1.2188071 [71] Quinlan F T, Sano K, Willey T, Vidu R, Tasaki K, Stroeve P 2001 Surface characterization of the spinel LixMn2O4 cathode before and after storage at elevated temperatures Chem. Mater. 13 4207-12 doi: 10.1021/cm010335v [72] Gmitter A J, Badway F, Rangan S, Bartynski R A, Halajko A, Pereira N, Amatucci G G 2010 Formation, dynamics, and implication of solid electrolyte interphase in high voltage reversible conversion fluoride nanocomposites J. Mater. Chem. 20 4149-61 doi: 10.1039/b923908a [73] Gu W, Magasinski A, Zdyrko B, Yushin G 2015 Metal fluorides nanoconfined in carbon nanopores as reversible high capacity cathodes for Li and Li-ion rechargeable batteries: feF2 as an example Adv. Energy Mater. 5 1401148 doi: 10.1002/aenm.201401148 [74] Gu W, et al 2016 Lithium-iron fluoride battery with in situ surface protection Adv. Funct. Mater. 26 1507-16 doi: 10.1002/adfm.201504848 [75] Gmitter A J, Gural J, Amatucci G G 2012 Electrolyte development for improved cycling performance of bismuth fluoride nanocomposite positive electrodes J. Power Sources 217 21-28 doi: 10.1016/j.jpowsour.2012.05.104 [76] Huang Q, Turcheniuk K, Ren X, Magasinski A, Song A Y, Xiao Y, Kim D, Yushin G 2019 Cycle stability of conversion-type iron fluoride lithium battery cathode at elevated temperatures in polymer electrolyte composites Nat. Mater. 18 1343-9 doi: 10.1038/s41563-019-0472-7 [77] Huang Q, Turcheniuk K, Ren X, Magasinski A, Gordon D, Bensalah N, Yushin G 2019 Insights into the effects of electrolyte composition on the performance and stability of FeF2 conversiontype cathodes Adv. Energy Mater. 9 1803323 doi: 10.1002/aenm.201803323 [78] Armstrong M J, Panneerselvam A, O’Regan C, Morris M A, Holmes J D 2013 Supercritical-fluid synthesis of FeF2 and CoF2 Li-ion conversion materials J. Mater. Chem. A 1 10667-76 doi: 10.1039/c3ta12436c [79] Rangan S, Thorpe R, Bartynski R A, Sina M, Cosandey F, Celik O, Mastrogiovanni D D T 2012 Conversion reaction of FeF2 thin films upon exposure to atomic Lithium J. Phys. Chem. C 116 10498-503 doi: 10.1021/jp300669d [80] Amatucci G G, Pereira N 2007 Fluoride based electrode materials for advanced energy storage devices J. Fluor. Chem. 128 243-62 doi: 10.1016/j.jfluchem.2006.11.016 [81] Ma Y, Garofalini S H 2014 Interplay between the ionic and electronic transport and its effects on the reaction pattern during the electrochemical conversion in an FeF2 nanoparticle Phys. Chem. Chem. Phys. 16 11690-7 doi: 10.1039/C4CP00481G [82] Wang F, Yu H-C, Chen M-H, Wu L, Pereira N, Thornton K, Van der Ven A, Zhu Y, Amatucci G G, Graetz J 2012 Tracking lithium transport and electrochemical reactions in nanoparticles Nat. Commun. 3 1201 doi: 10.1038/ncomms2185 [83] Thorpe R, Rangan S, Whitcomb R, Basaran A C, Saerbeck T, Schuller I K, Bartynski R A 2015 The solid state conversion reaction of epitaxial FeF2 (110) thin films with lithium studied by angle-resolved x-ray photoelectron spectroscopy Phys. Chem. Chem. Phys. 17 15218-25 doi: 10.1039/C5CP01150G [84] Zhao S, Li Y, Yang Z, Wang X, Shi X 2019 Atomic-scale dynamics and storage performance of Na/K on FeF3 nanosheet ACS Appl. Mater. Interfaces 11 17425-34 doi: 10.1021/acsami.9b03077 [85] Li R F, Wu S Q, Yang Y, Zhu Z Z 2010 Structural and electronic properties of Li-ion battery cathode material FeF3 J. Phys. Chem. C 114 16813-7 doi: 10.1021/jp1050518 [86] Yang Y, Gao L, Shen L, Bao N 2021 Self-assembled FeF3 nanocrystals clusters confined in carbon nanocages for high-performance Li-ion battery cathode J. Alloys Compd. 873 159799 doi: 10.1016/j.jallcom.2021.159799 [87] Kumagae K, Okazaki K-I, Matsui K, Horino H, Hirai T, Yamaki J-I, Ogumi Z 2016 Improvement of cycling performance of FeF3-based LIB by boron-based additives J. Electrochem. Soc. 163 A1633-A36 doi: 10.1149/2.0871608jes [88] Wang X, Tan G, Bai Y, Wu F, Wu C 2020 Multi-electron reaction materials for high-energy-density secondary batteries: current status and prospective Electrochem. Energy Rev. 4 35-66 doi: 10.1007/s41918-020-00073-4 [89] Liu L, Guo H, Zhou M, Wei Q, Yang Z, Shu H, Yang X, Tan J, Yan Z, Wang X 2013 A comparison among FeF3·3H2O, FeF3·0.33H2O and FeF3 cathode materials for lithium ion batteries: structural, electrochemical, and mechanism studies J. Power Sources 238 501-15 doi: 10.1016/j.jpowsour.2013.04.077 [90] Li Z, Wang B, Li C, Liu J, Zhang W 2015 Hydrogen-bonding-mediated structural stability and electrochemical performance of iron fluoride cathode materials J. Mater. Chem. A 3 16222-8 doi: 10.1039/C5TA03327F [91] Zhou X, Ding J, Tang J, Yang J, Wang H, Jia M 2019 Tailored MoO3-encapsulated FeF3·0.33H2O composites as high performance cathodes for Li-ion batteries J. Electroanal. Chem. 847 113227 doi: 10.1016/j.jelechem.2019.113227 [92] Zhao L, Xu H, Ru H, Shi Y, Zhuang Q, Cui Y, Ju Z, Cui Y 2021 Nanosized FeF3·0.33H2O as cathode material for high-performance Li-ion batteries J. Electrochem. Soc. 168 030501 doi: 10.1149/1945-7111/abe7a3 [93] Rao R S, Pralong V, Varadaraju U V 2016 Facile synthesis and reversible lithium insertion studies on hydrated iron trifluoride FeF3·0.33H2O Solid State Sci. 55 77-82 doi: 10.1016/j.solidstatesciences.2016.02.008 [94] Lemoine K, Zhang L, Dambournet D, Grenèche J-M, Hémon-Ribaud A, Leblanc M, Borkiewicz O J, Tarascon J-M, Maisonneuve V, Lhoste J 2019 Synthesis by Thermal decomposition of two iron hydroxyfluorides: structural effects of Li insertion Chem. Mater. 31 4246-57 doi: 10.1021/acs.chemmater.9b01252 [95] Yang Z, Zhang Z, Yuan Y, Huang Y, Wang X, Chen X, Wei S 2016 First-principles study of Ti doping in FeF3·0.33H2O Curr. Appl Phys. 16 905-13 doi: 10.1016/j.cap.2016.05.010 [96] Li C, Yin C, Mu X, Maier J 2013 Top-down synthesis of open framework fluoride for lithium and sodium batteries Chem. Mater. 25 962-9 doi: 10.1021/cm304127c [97] Li C, Gu L, Tong J, Tsukimoto S, Maier J 2011 A Mesoporous iron-based fluoride cathode of tunnel structure for rechargeable lithium batteries Adv. Funct. Mater. 21 1391-7 doi: 10.1002/adfm.201002213 [98] Li C, Yin C, Gu L, Dinnebier R E, Mu X, van Aken P A, Maier J 2013 An FeF3.0.5H2O polytype: a microporous framework compound with intersecting tunnels for Li and Na batteries J. Am. Chem. Soc. 135 11425-8 doi: 10.1021/ja402061q [99] Rao R S, Pralong V, Varadaraju U V 2016 Facile synthesis and lithium reversible insertion on iron hydrated trifluorides FeF3·0.5H2O Mater. Lett. 170 130-4 doi: 10.1016/j.matlet.2016.02.008 [100] Ali G, Lee J H, Chang W, Cho B W, Jung H G, Nam K W, Chung K Y 2017 Lithium intercalation mechanism into FeF3.0.5H2O as a highly stable composite cathode material Sci. Rep. 7 42237 doi: 10.1038/srep42237 [101] Burbano M, Duttine M, Borkiewicz O, Wattiaux A, Demourgues A, Salanne M, Groult H, Dambournet D 2015 Anionic ordering and thermal properties of FeF3·3H2O Inorg. Chem. 54 9619-25 doi: 10.1021/acs.inorgchem.5b01705 [102] Zhou H, Sun H, Wang T, Gao Y, Ding J, Xu Z, Tang J, Jia M, Yang J, Zhu J 2019 Low temperature nanotailoring of hydrated compound by alcohols: feF3·3H2O as an example. Preparation of nanosized FeF3·0.33H2O cathode material for Li-ion batteries Inorg. Chem. 58 6765-71 doi: 10.1021/acs.inorgchem.9b00054 [103] Wang M, Li Z, Wang C, Zhao R, Li C, Guo D, Zhang L, Yin L 2017 Novel core-shell FeOF/Ni(OH)2 hierarchical nanostructure for all-solid-state flexible supercapacitors with enhanced performance Adv. Funct. Mater. 27 1701014 doi: 10.1002/adfm.201701014 [104] Park M, Shim J-H, Kim H, Park H, Kim N, Kim J 2018 FeOF ellipsoidal nanoparticles anchored on reduced graphene oxides as a cathode material for sodium-ion batteries J. Power Sources 396 551-8 doi: 10.1016/j.jpowsour.2018.06.071 [105] Fan X, et al 2018 High energy-density and reversibility of iron fluoride cathode enabled via an intercalation-extrusion reaction Nat. Commun. 9 2324 doi: 10.1038/s41467-018-04476-2 [106] Li C, Gu L, Tong J, Maier J 2011 Carbon nanotube wiring of electrodes for high-rate lithium batteries using an imidazolium-based ionic liquid precursor as dispersant and binder: a case study on iron fluoride nanoparticles ACS Nano 5 2930-8 doi: 10.1021/nn1035608 [107] Zhu J, Deng D 2015 Wet-chemical synthesis of phase-pure FeOF nanorods as high-capacity cathodes for sodium-ion batteries Angew. Chem., Int. Ed. Engl. 54 3079-83 doi: 10.1002/anie.201410572 [108] Chevrier V L, Hautier G, Ong S P, Doe R E, Ceder G 2013 First-principles study of iron oxyfluorides and lithiation of FeOF Phys. Rev. B 87 094118 doi: 10.1103/PhysRevB.87.094118 [109] Mansour A N, Badway F, Yoon W S, Chung K Y, Amatucci G G 2010 In situ x-ray absorption spectroscopic investigation of the electrochemical conversion reactions of CuF2-MoO3 nanocomposite J. Solid State 183 3029-38 doi: 10.1016/j.jssc.2010.09.029 [110] Zheng Y, Zhang P, Wu S Q, Wen Y H, Zhu Z Z, Yang Y 2012 First-principles studies on the structural and electronic properties of Li-ion battery cathode material CuF2 Solid State Commun. 152 1703-6 doi: 10.1016/j.ssc.2012.06.018 [111] Omenya F, et al 2019 Intrinsic challenges to the electrochemical reversibility of the high energy density copper(II) fluoride cathode material ACS Appl. Energy 2 5243-53 doi: 10.1021/acsaem.9b00938 [112] Hua X, Robert R, Du L-S, Wiaderek K M, Leskes M, Chapman K W, Chupas P J, Grey C P 2014 Comprehensive study of the CuF2 conversion reaction mechanism in a lithium ion battery J. Phys. Chem. C 118 15169-84 doi: 10.1021/jp503902z [113] Thieu D T, Fawey M H, Bhatia H, Diemant T, Chakravadhanula V S K, Behm R J, Kübel C, Fichtner M 2017 CuF2 as reversible cathode for fluoride ion batteries Adv. Funct. Mater. 27 1701051 doi: 10.1002/adfm.201701051 [114] Xia J, Wang Z, Rodrig N D, Nan B, Zhang J, Zhang W, Lucht B L, Yang C, Wang C 2022 Super-reversible CuF2 cathodes enabled by Cu2+-coordinated alginate Adv. Mater. 34 2205229 doi: 10.1002/adma.202205229 [115] Helen M, Fichtner M, Anji Reddy M 2020 Electrochemical synthesis of carbon-metal fluoride nanocomposites as cathode materials for lithium batteries Electrochem. Commun. 120 106846 doi: 10.1016/j.elecom.2020.106846 [116] Bensalah N, Turki D, Kamand F Z, Saoud K 2018 Hierarchical nanostructured mwcnt-MnF2 composites with stable electrochemical properties as cathode material for lithium ion batteries Phys. Status Solidi a 215 1800151 doi: 10.1002/pssa.201800151 [117] Bensalah N, Turki D, Saoud K 2018 Surfactant-aided impregnation of MnF2 into CNT fabrics as cathode material with high electrochemical performance for lithium ion batteries Mater. Des. 147 167-74 doi: 10.1016/j.matdes.2018.03.045 [118] Oh J, Lim E, Chun J, Jo C 2022 Nickel fluoride (NiF2)/porous carbon nanocomposite synthesized via ammonium fluoride (NH4F) treatment for lithium-ion battery cathode applications J. Power Sources 521 213-21 doi: 10.1016/j.jpowsour.2021.230935 [119] Lee D H, Carroll K J, Calvin S, Jin S, Meng Y S 2012 Conversion mechanism of nickel fluoride and NiO-doped nickel fluoride in Li ion batteries Electrochim. Acta 59 213-21 doi: 10.1016/j.electacta.2011.10.105 [120] Zhang Q, Huang Y T, Chen X, Pan A, Cai Z, Liu S, Zhang Y 2019 CoF2 nanoparticles grown on carbon fiber cloth as conversion reaction cathode for lithium-ion batteries J. Alloys Compd. 805 539-44 doi: 10.1016/j.jallcom.2019.07.034 [121] Wang X, Gu W, Lee J T, Nitta N, Benson J, Magasinski A, Schauer M W, Yushin G 2015 Carbon nanotube-CoF2 multifunctional cathode for lithium ion batteries: effect of electrolyte on cycle stability Small 11 5164-73 doi: 10.1002/smll.201501139 [122] Hu B, Wang X, Wang Y, Wei Q, Song Y, Shu H, Yang X 2012 Effects of amorphous AlPO4 coating on the electrochemical performance of BiF3 cathode materials for LIBs J. Power Sources 218 204-11 doi: 10.1016/j.jpowsour.2012.07.010 [123] Oszajca M F, Kravchyk K V, Walter M, Krieg F, Bodnarchuk M I, Kovalenko M V 2015 Colloidal BiF3 nanocrystals: a bottom-up approach to conversion-type Li-ion cathodes Nanoscale 7 16601-5 doi: 10.1039/C5NR04488J [124] Baumgärtner J F, Krumeich F, Wörle M, Kravchyk K V, Kovalenko M V 2022 Thermal synthesis of conversion-type bismuth fluoride cathodes for high-energy-density Li-ion batteries Chem. Commun. 5 9414-7 doi: 10.1038/s42004-021-00622-y [125] Wang Y, Zhang M, Zhang Y, Wang Y, Liu W, Yang C, Kondratiev V, Wu F 2022 Enhancing electrochemical performance of CoF2-Li batteries via honeycombed nanocomposite cathode Energy Fuels 36 8439-48 doi: 10.1021/acs.energyfuels.2c01309 [126] Wang S, et al 2022 Precisely synthesized LiF-tipped CoF2-nanorod heterostructures improve energy storage capacities Chem. Sci. 13 12367-73 doi: 10.1039/D2SC04008E [127] Cheng Q, Chen Y, Lin X, Liu J, Yuan Z, Cai Y 2020 Hybrid cobalt(II) fluoride derived from a bimetallic zeolitic imidazolate framework as a high-performance cathode for lithium-ion batteries J. Phys. Chem. C 124 8624-32 doi: 10.1021/acs.jpcc.0c01292 [128] Zhao J, Zhang H, Niu C, Zhang J, Zeng Z, Wang X 2021 Investigations of high-pressure properties of MnF2 based on the first-principles method J. Phys. Chem. C 125 21709-17 doi: 10.1021/acs.jpcc.1c06568 [129] Baskurt M, Nair R R, Peeters F M, Sahin H 2021 Ultra-thin structures of manganese fluorides: conversion from manganese dichalcogenides by fluorination Phys. Chem. Chem. Phys. 23 10218-24 doi: 10.1039/D1CP00293G [130] Villa C, Kim S, Lu Y, Dravid V P, Wu J 2019 Cu-substituted NiF2 as a cathode material for Li-ion batteries ACS Appl. Mater. Interfaces 11 647-54 doi: 10.1021/acsami.8b15791 [131] Kitajou A, Eguchi K, Ishado Y, Setoyama H, Okajima T, Okada S 2019 Electrochemical properties of titanium fluoride with high rate capability for LIBs J. Power Sources 419 1-5 doi: 10.1016/j.jpowsour.2019.02.056 [132] Lee J, Kang B 2016 Novel and scalable solid-state synthesis of a nanocrystalline FeF3/C composite and its excellent electrochemical performance Chem. Commun. 52 9414-7 doi: 10.1039/C6CC03706B [133] Khan J, Ullah H, Sajjad M, Bahadar A, Bhatti Z, Soomro F, Hussain Memon F, Iqbal M, Rehman F, Hussain Thebo K 2021 High yield synthesis of transition metal fluorides (CoF2, NiF2, and NH4MnF3) nanoparticles with excellent electrochemical performance Inorg. Chem. Commun. 130 108751 doi: 10.1016/j.inoche.2021.108751 [134] Zhai J, Lei Z, Rooney D, Wang H, Sun K 2018 Self-templated fabrication of micro/nano structured iron fluoride for high-performance lithium-ion batteries J. Power Sources 396 371-8 doi: 10.1016/j.jpowsour.2018.06.048 [135] Krahl T, Marroquin Winkelmann F, Martin A, Pinna N, Kemnitz E 2018 Novel synthesis of anhydrous and hydroxylated CuF2 nanoparticles and their potential for lithium ion batteries Chemistry 24 7177-87 doi: 10.1002/chem.201800207 [136] Jiang A, Xia D, Li M, Qiang L, Fan R, Lin K, Yang Y 2019 Ball milling produced FeF3containing nanothermites: investigations of its thermal and inflaming properties ChemistrySelect 4 12662-7 doi: 10.1002/slct.201902736 [137] Li J, Meng Y, Wang Y, Li X, Lai Y, Guo Y, Wen X, Xiao D 2021 The fluorination-assisted dealloying synthesis of porous reduced graphene oxide-FeF2@carbon for high-performance lithium-ion battery and the exploration of its electrochemical mechanism Inorg. Chem. Front. 8 3273-83 doi: 10.1039/D1QI00273B [138] Tan J, et al 2014 Iron fluoride with excellent cycle performance synthesized by solvothermal method as cathodes for lithium ion batteries J. Power Sources 251 75-84 doi: 10.1016/j.jpowsour.2013.11.004 [139] Li C, Gu L, Tsukimoto S, van Aken P A, Maier J 2010 Low-temperature ionic-liquid-based synthesis of nanostructured iron-based fluoride cathodes for lithium batteries Adv. Mater. 22 3650-4 doi: 10.1002/adma.201000535 [140] Li B, Rooney D W, Zhang N, Sun K 2013 An in situ ionic-liquid-assisted synthetic approach to iron fluoride/graphene hybrid nanostructures as superior cathode materials for lithium ion batteries ACS Appl. Mater. Interfaces 5 5057-63 doi: 10.1021/am400873e [141] Lai C, Chen K, Zheng Y, Meng J, Hu J, Li C 2023 Tailored deep-eutectic solvent method to enable 3D porous iron fluoride bricks for conversion-type lithium batteries J. Energy Chem. 78 178-87 doi: 10.1016/j.jechem.2022.11.004 [142] Fan X, Zhu Y, Luo C, Suo L, Lin Y, Gao T, Xu K, Wang C 2016 Pomegranate-structured conversion-reaction cathode with a built-in Li source for high-energy Li-ion batteries ACS Nano 10 5567-77 doi: 10.1021/acsnano.6b02309 [143] Zhao E, Borodin O, Gao X, Lei D, Xiao Y, Ren X, Fu W, Magasinski A, Turcheniuk K, Yushin G 2018 Lithium-iron (III) fluoride battery with double surface protection Adv. Energy Mater. 8 1800721 doi: 10.1002/aenm.201800721 [144] Wu F, Srot V, Chen S, Lorger S, van Aken P A, Maier J, Yu Y 2019 3D Honeycomb architecture enables a high-rate and long-life iron (III) fluoride-lithium battery Adv. Mater. 31 1905146 doi: 10.1002/adma.201905146 [145] Li W, Li Y, Fang M, Yao X, Li T, Shui M, Shu J 2017 The facile in situ preparation and characterization of C/FeOF/FeF3 nanocomposites as lithium-ion battery cathode materials Ionics 24 1561-9 doi: 10.1007/s11581-017-2334-0 [146] Chun J, et al 2016 Ammonium fluoride mediated synthesis of anhydrous metal fluoride-mesoporous carbon nanocomposites for high-performance lithium ion battery cathodes ACS Appl. Mater. Interfaces 8 35180-90 doi: 10.1021/acsami.6b10641 [147] Wei S, Wang X, Jiang M, Zhang R, Shen Y, Hu H 2016 The FeF3·0.33H2O/C nanocomposite with open mesoporous structure as high-capacity cathode material for lithium/sodium ion batteries J. Alloys Compd. 689 945-51 doi: 10.1016/j.jallcom.2016.08.080 [148] Yang J, Xu Z, Sun H, Zhou X 2016 A three-dimensional interlayer composed of graphene and porous carbon for long-life, high capacity lithium-iron fluoride battery Electrochim. Acta 220 75-82 doi: 10.1016/j.electacta.2016.10.076 [149] Chen G, et al 2019 Enhanced lithium storage capability of FeF3·0.33H2O single crystal with active insertion site exposed Nano Energy 56 884-92 doi: 10.1016/j.nanoen.2018.11.080 [150] Tang M, Zhang Z, Wang Z, Liu J, Yan H, Peng J 2018 High-temperature electrochemical performance of FeF3/C nanocomposite as a cathode material for lithium-ion batteries J. Mater. Eng. Perform. 27 624-9 doi: 10.1007/s11665-018-3167-3 [151] Sina M, Nam K W, Su D, Pereira N, Yang X Q, Amatucci G G, Cosandey F 2013 Structural phase transformation and Fe valence evolution in FeOxF2-x/C nanocomposite electrodes during lithiation and de-lithiation processes J. Mater. Chem. A 1 11629-40 doi: 10.1039/c3ta12109g [152] Pereira N, Badway F, Wartelsky M, Gunn S, Amatucci G G 2009 Iron oxyfluorides as high capacity cathode materials for lithium batteries J. Electrochem. Soc. 156 A407 doi: 10.1149/1.3106132 [153] Lu Y, Wen Z, Rui K, Wu X, Cui Y 2013 Worm-like mesoporous structured iron-based fluoride: facile preparation and application as cathodes for rechargeable lithium ion batteries J. Power Sources 244 306-11 doi: 10.1016/j.jpowsour.2013.01.035 [154] Ma R, Zhou Y, Yao L, Liu G, Zhou Z, Lee J-M, Wang J, Liu Q 2016 Capacitive behaviour of MnF2 and CoF2 submicro/nanoparticles synthesized via a mild ionic liquid-assisted route J. Power Sources 303 49-56 doi: 10.1016/j.jpowsour.2015.10.102 [155] Hu J, Zhang Y, Cao D, Li C 2016 Dehydrating bronze iron fluoride as a high capacity conversion cathode for lithium batteries J. Mater. Chem. A 4 16166-74 doi: 10.1039/C6TA05929E [156] Murugesan V, et al 2019 Lithium insertion mechanism in iron fluoride nanoparticles prepared by catalytic decomposition of fluoropolymer ACS Appl. Energy 2 1832-43 doi: 10.1021/acsaem.8b01983 [157] Guntlin C P, Zünd T, Kravchyk K V, Wörle M, Bodnarchuk M I, Kovalenko M V 2017 Nanocrystalline FeF3 and MF2 (M = Fe, Co, and Mn) from metal trifluoroacetates and their Li(Na)-ion storage properties J. Mater. Chem. A 5 7383-93 doi: 10.1039/C7TA00862G [158] Liu M, Liu J, Chen B, Wu T, Wang G, Chen M, Yang Z, Bai Y, Wang X 2022 Unveiling the role and mechanism of nb doping and in situ carbon coating on improving lithium-ion storage characteristics of rod-like morphology FeF3·0.33H2O Small 18 2105193 doi: 10.1002/smll.202105193 [159] Zhang Z, Yang Z, Li Y, Wang X 2018 Revealing the doping mechanism and effect of cobalt on the HTB-type iron fluoride: a first-principle study J. Phys. Chem. Solids 123 87-96 doi: 10.1016/j.jpcs.2018.07.001 [160] Li J, Xu S, Huang S, Lu L, Lan L, Li S 2017 In situ synthesis of Fe(1-x)CoxF3/MWCNT nanocomposites with excellent electrochemical performance for LIBs J. Mater. Sci. 53 2697-708 doi: 10.1007/s10853-017-1685-2 [161] Liu L, Zhou M, Yi L, Guo H, Tan J, Shu H, Yang X, Yang Z, Wang X 2012 Excellent cycle performance of Co-doped FeF3/C nanocomposite cathode material for lithium-ion batteries J. Mater. Chem. 22 17539-50 doi: 10.1039/c2jm32936k [162] Su J, Nong W, Song H, Li Y, Wang C 2021 Enhanced Li-storage capability and cyclability of iron fluoride cathodes by non-equivalent cobalt doping J. Alloys Compd. 870 159395 doi: 10.1016/j.jallcom.2021.159395 [163] Ali G, Rahman G, Chung K Y 2017 Cobalt-doped pyrochlore-structured iron fluoride as a highly stable cathode material for lithium-ion batteries Electrochim. Acta 238 49-55 doi: 10.1016/j.electacta.2017.04.006 [164] Wei S, Wang X, Yu R, Zhang R, Liu M, Yang Z, Hu H 2017 Ti-doped Fe1-xTixF3·0.33H2O/C nanocomposite as an ultrahigh rate capability cathode materials of lithium ion batteries J. Alloys Compd. 702 372-80 doi: 10.1016/j.jallcom.2017.01.240 [165] Ding J, Zhou X, Wang H, Yang J, Gao Y, Tang J 2019 Mn-doped Fe1- xMnxF3·0.33H2O/C cathodes for li-ion batteries: first-principles calculations and experimental study ACS Appl. Mater. Interfaces 11 3852-60 doi: 10.1021/acsami.8b17069 [166] Lu Y, Huang S, Zhang Z, Huang X, Lan L, Lu L, Li S, Li J, Pan C, Zhao F 2019 Mn-doped FeF3·0.33H2O with enhanced electrochemical performance as cathode materials for lithium-ion batteries Ionics 25 5221-8 doi: 10.1007/s11581-019-03094-2 [167] Wang F, Kim S W, Seo D H, Kang K, Wang L, Su D, Vajo J J, Wang J, Graetz J 2015 Ternary metal fluorides as high-energy cathodes with low cycling hysteresis Nat. Commun. 6 6668 doi: 10.1038/ncomms7668 [168] Liu M, Wang Q, Chen B, Lei H, Liu L, Wu C, Wang X, Yang Z 2020 Band-gap engineering of FeF3·0.33H2O nanosphere via Ni doping as a high-performance lithium-ion battery cathode ACS Sustain. Chem. Eng. 8 15651-60 doi: 10.1021/acssuschemeng.0c05258 [169] Liu M, Chen B, Wu T, Li H, Liu X, Wang G, Chen M, Yang Z, Bai Y, Wang X 2023 rGO-encapsulated Co/Ni dual-doped FeF3·0.33H2O nanoparticles enabling a high-rate and long-life iron (III) fluoride-lithium battery Chem. Eng. J. 451 138774 doi: 10.1016/j.cej.2022.138774 [170] Ding J, Zhou X, Luo C, Xu H, Yang J, Tang J 2022 In situ synthesis of graphene-like N, S co-doped carbon nanosheets/FeF3·0.33H2O composite as cathode material for Li-ion battery J. Mater. Sci. 57 1261-70 doi: 10.1007/s10853-021-06625-3 [171] Ding J, Zhou X, Wang Q, Luo C, Yang J, Tang J 2020 N, S CoDoped porous carbon from antibiotic bacteria residues enables a highperformance FeF3 0.33H2O cathode for Liion batteries ChemElectroChem 7 4931-5 doi: 10.1002/celc.202001353 [172] Lee J, Kang B 2016 Superior electrochemical performance of N-doped nanocrystalline FeF3/C with a single-step solid-state process Chem. Commun. 52 12100-3 doi: 10.1039/C6CC06556B [173] Qiu W, Li Z, Chen K, Li C, Liu J, Zhang W 2019 Stabilizing Low-coordinated O ions to operate cationic and anionic redox chemistry of Li-ion battery materials ACS Appl. Mater. Interfaces 11 37768-78 doi: 10.1021/acsami.9b13463 [174] Kim S, Liu J, Sun K, Wang J, Dillon S J, Braun P V 2017 Improved performance in FeF2 conversion cathodes through use of a conductive 3D scaffold and Al2O3 ALD coating Adv. Funct. Mater. 27 1702783 doi: 10.1002/adfm.201702783 [175] Ma D-L, Cao Z-Y, Wang H-G, Huang X-L, Wang L-M, Zhang X-B 2012 Three-dimensionally ordered macroporous FeF3 and its in situ homogenous polymerization coating for high energy and power density lithium ion batteries Energy Environ. Sci. 5 8538-42 doi: 10.1039/c2ee22568a [176] Zhang R, Wang X, Wei S, Wang X, Liu M, Hu H 2017 Iron fluoride microspheres by titanium dioxide surface modification as high capacity cathode of Li-ion batteries J. Alloys Compd. 719 331-40 doi: 10.1016/j.jallcom.2017.05.185 [177] Fan X, Luo C, Lamb J, Zhu Y, Xu K, Wang C 2015 PEDOT encapsulated FeOF nanorod cathodes for high energy lithium-ion batteries Nano Lett. 15 7650-6 doi: 10.1021/acs.nanolett.5b03601 [178] Li J, Fu L, Xu Z, Zhu J, Yang W, Li D, Zhou L 2018 Electrochemical properties of carbon-wrapped FeF3 nanocomposite as cathode material for lithium ion battery Electrochim. Acta 281 88-98 doi: 10.1016/j.electacta.2018.05.158 [179] Yang J, Xu Z, Zhou H, Tang J, Sun H, Ding J, Zhou X 2017 A cathode material based on the iron fluoride with an ultra-thin Li3FeF6 protective layer for high-capacity Li-ion batteries J. Power Sources 363 244-50 doi: 10.1016/j.jpowsour.2017.07.091 [180] Zeng C, Huang C 2022 High-performance LiF@C-coated FeF3·0.33H2O lithium-ion batteries with an ionic liquid electrolyte ACS Omega 7 688-95 doi: 10.1021/acsomega.1c05341 [181] Zhang W, Ma L, Yue H, Yang Y 2012 Synthesis and characterization of in situ Fe2O3-coated FeF3 cathode materials for rechargeable lithium batteries J. Mater. Chem. 22 24769-75 doi: 10.1039/c2jm34391f [182] Li L, Zhu J, Xu M, Jiang J, Li C M 2017 In situ engineering toward core regions: a smart way to make applicable FeF3@carbon nanoreactor cathodes for li-ion batteries ACS Appl. Mater. Interfaces 9 17992-8000 doi: 10.1021/acsami.7b04256 [183] Zhou X, et al 2023 CryoTEM study of highperformance iron difluoride cathode enabled by low temperature CVD carbon coating Adv. Funct. Mater. 34 2307131 doi: 10.1002/adfm.202307131 [184] Su Y, et al 2022 Enabling long cycle life and high rate iron difluoride based lithium batteries by in situ cathode surface modification Adv. Sci. 9 2201419 doi: 10.1002/advs.202201419 [185] Badway F, Pereira N, Cosandey F, Amatucci G G 2003 Carbon metal fluoride nanocomposites: high-capacity reversible metal fluoride conversion materials as rechargeable positive electrodes for Li batteries J. Electrochem. Soc. 150 A1209-18 doi: 10.1149/1.1596162 [186] Nishijima M, Gocheva I D, Okada S, Doi T, Yamaki J-I, Nishida T 2009 Cathode properties of metal trifluorides in Li and Na secondary batteries J. Power Sources 190 558-62 doi: 10.1016/j.jpowsour.2009.01.051 [187] Fan X, Zhu Y, Luo C, Gao T, Suo L, Liou S-C, Xu K, Wang C 2016 In situ lithiated FeF3/C nanocomposite as high energy conversion-reaction cathode for lithium-ion batteries J. Power Sources 307 435-42 doi: 10.1016/j.jpowsour.2016.01.004 [188] Lu L, Li S, Li J, Lan L, Lu Y, Xu S, Huang S, Pan C, Zhao F 2019 High-performance cathode material of FeF3·0.33H2O modified with carbon nanotubes and graphene for LIBs Nanoscale Res. Lett. 14 1-11 doi: 10.1186/s11671-019-2925-y [189] Ding J, Zhou X, Luo C, Yang J, Tang J 2021 Bamboo-structured N-doped CNTs/FeF3·0.33H2O derived from melamine as a high-performance cathode for Li-ion batteries New J. Chem. 45 18019-24 doi: 10.1039/D1NJ02855C [190] Zhang Q, Liu N N, Sun C Z, Fan L S, Zhang N Q, Sun K N 2019 Ultrasmall iron fluoride nanoparticles embedded in graphitized porous carbon derived from Febased metal organic frameworks as highperformance cathode materials for Li batteries ChemElectroChem 6 2189-94 doi: 10.1002/celc.201900244 [191] Song H, Cui H, Wang C 2015 Extremely high-rate capacity and stable cycling of a highly ordered nanostructured carbon-FeF2 battery cathode J. Mater. Chem. A 3 22377-84 doi: 10.1039/C5TA06297G [192] Li B, Zhang N, Sun K 2014 Confined iron fluoride@CMK-3 nanocomposite as an ultrahigh rate capability cathode for Li-ion batteries Small 10 2039-46 doi: 10.1002/smll.201303375 [193] Zhang R, Wang X, Wang X, Liu M, Wei S, Wang Y, Hu H 2018 Iron fluoride packaged into 3D order mesoporous carbons as high-performance sodium-ion battery cathode material J. Electrochem. Soc. 165 A89-A96 doi: 10.1149/2.0421802jes [194] Thangaian K, Jayamkondan Y 2023 Constructing a mesoporous carbon incorporated FeF3 nanocomposite cathode by one-step impregnation route for Li-ion battery applications New J. Chem. 47 20128-35 doi: 10.1039/D3NJ03987K [195] Fan L, Li B, Zhang N, Sun K 2015 Carbon nanohorns carried iron fluoride nanocomposite with ultrahigh rate lithium ion storage properties Sci. Rep. 5 12154 doi: 10.1038/srep12154 [196] Hu X, Ma M, Mendes R G, Zeng M, Zhang Q, Xue Y, Zhang T, Rümmeli M H, Fu L 2015 Li-storage performance of binder-free and flexible iron fluoride@graphene cathodes J. Mater. Chem. A 3 23930-5 doi: 10.1039/C5TA08014B [197] Qiu D, Fu L, Zhan C, Lu J, Wu D 2018 Seeding iron trifluoride nanoparticles on reduced graphite oxide for LIBs with enhanced loading and stability ACS Appl. Mater. Interfaces 10 29505-10 doi: 10.1021/acsami.8b08526 [198] Zhai J, Lei Z, Rooney D, Sun K 2019 Top-down synthesis of iron fluoride/reduced graphene nanocomposite for high performance lithium-ion battery Electrochim. Acta 313 497-504 doi: 10.1016/j.electacta.2019.04.024 [199] Zhang Q, Wu X, Gong S, Fan L, Zhang N 2019 Iron fluoride nanoparticles embedded in a nitrogen and oxygen dualdoped 3D porous carbon derived from nori for high rate cathode in lithiumion battery ChemistrySelect 4 10334-9 doi: 10.1002/slct.201902478 [200] Zhang L, Yu L, Li O L, Choi S-Y, Saeed G, Kim K H 2021 FeF3·0.33H2O@carbon nanosheets with honeycomb architectures for high-capacity lithium-ion cathode storage by enhanced pseudocapacitance J. Mater. Chem. A 9 16370-83 doi: 10.1039/D1TA03141D [201] Zhang Q, Zhang Y, Yin Y, Fan L, Zhang N 2020 Packing FeF3·0.33H2O into porous graphene/carbon nanotube network as high volumetric performance cathode for lithium ion battery J. Power Sources 447 227303 doi: 10.1016/j.jpowsour.2019.227303 [202] Chen S, Lin J, Shi Q, Cai Z, Cao L, Zhu L, Yuan Z 2020 Nanoscale iron fluoride supported by three-dimensional porous graphene as long-life cathodes for lithium-ion batteries J. Electrochem. Soc. 167 080506 doi: 10.1149/1945-7111/ab88be [203] Jiang J, Li L, Xu M, Zhu J, Li C M 2016 FeF3@thin nickel ammine nitrate matrix: smart configureurations and applications as superior cathodes for Li-ion batteries ACS Appl. Mater. Interfaces 8 16240-7 doi: 10.1021/acsami.6b03949 [204] Li W, et al 2020 2020 FeOF/TiO2 hetero-nanostructures for high-areal-capacity fluoride cathodes ACS Appl. Mater. Interfaces 12 33803-9 doi: 10.1021/acsami.0c09185 [205] Kitajou A, Hokazono M, Taguchi N, Tanaka S, Okada S 2021 Cathode properties of FeF3-V2O5 Glass/C for lithium-ion batteries J. Alloys Compd. 856 157449 doi: 10.1016/j.jallcom.2020.157449 [206] Zhou X, Sun H, Zhou H, Ding J, Xu Z, Bin W, Tang J, Yang J 2018 Enhancing the lithium storage capacity of FeF3 cathode material by introducing C@LiF additive J. Electroanal. Chem. 810 41-47 doi: 10.1016/j.jelechem.2018.01.002 [207] Tawa S, Sato Y, Orikasa Y, Matsumoto K, Hagiwara R 2019 Lithium fluoride/iron difluoride composite prepared by a fluorolytic sol-gel method: its electrochemical behavior and charge-discharge mechanism as a cathode material for lithium secondary batteries J. Power Sources 412 180-8 doi: 10.1016/j.jpowsour.2018.11.046 [208] Li Y, Zhou X, Bai Y, Chen G, Wang Z, Li H, Wu C 2017 Building an electronic bridge via Ag decoration to enhance kinetics of iron fluoride cathode in lithium-ion batteries ACS Appl. Mater. Interfaces 9 19852-60 doi: 10.1021/acsami.7b03980 [209] Li Y, Yao F, Cao Y, Yang H, Feng Y, Feng W 2017 The mediated synthesis of FeF3 nanocrystals through (NH4)3FeF6 precursors as the cathode material for high power lithium ion batteries Electrochim. Acta 253 545-53 doi: 10.1016/j.electacta.2017.09.081 [210] Fu W, Zhao E, Sun Z, Ren X, Magasinski A, Yushin G 2018 Iron Fluoride-Carbon nanocomposite nanofibers as freestanding cathodes for highenergy lithium batteries Adv. Funct. Mater. 28 1801711 doi: 10.1002/adfm.201801711 [211] Li L, Meng F, Jin S 2012 High-capacity lithium-ion battery conversion cathodes based on iron fluoride nanowires and insights into the conversion mechanism Nano Lett. 12 6030-7 doi: 10.1021/nl303630p [212] Kong M, Liu K, Ning J, Zhou J, Song H 2017 Perovskite framework NH4FeF3/carbon composite nanosheets as a potential anode material for Li and Na ion storage J. Mater. Chem. A 5 19280-8 doi: 10.1039/C7TA05466A [213] Chen S, Shi Q, Lin J, Cai Z, Cao L, Zhu L, Yuan Z 2020 Growth behavior and influence factors of three-dimensional hierarchical flower-like FeF3·0.33H2O CrystEngComm 22 5550-7 doi: 10.1039/D0CE00771D [214] Liu M, Liu L, Hu H, Yang L, Yang Z, Wang Y, Wang X 2018 Flowerlike mesoporous FeF3·0.33H2O with 3D hierarchical nanostructure: size-controlled green-synthesis and application as cathodes for Na-ion batteries ACS Appl. Energy 1 7153-63 doi: 10.1021/acsaem.8b01585 [215] Zhou J, Zhang D, Zhang X, Song H, Chen X 2014 Carbon-nanotube-encapsulated FeF2 nanorods for high-performance lithium-ion cathode materials ACS Appl. Mater. Interfaces 6 21223-9 doi: 10.1021/am506236n [216] Wang L-P, Wang T-S, Zhang X-D, Liang J-Y, Jiang L, Yin Y-X, Guo Y-G, Wang C-R 2017 Iron oxyfluorides as lithium-free cathode materials for solid-state Li metal batteries J. Mater. Chem. A 5 18464-8 doi: 10.1039/C7TA05138G [217] Xiao A W, Lee H J, Capone I, Robertson A, Wi T-U, Fawdon J, Wheeler S, Lee H-W, Grobert N, Pasta M 2020 Understanding the conversion mechanism and performance of monodisperse FeF2 nanocrystal cathodes Nat. Mater. 19 644-54 doi: 10.1038/s41563-020-0621-z [218] Liu J, Liu W, Ji S, Wan Y, Gu M, Yin H, Zhou Y 2014 Iron fluoride hollow porous microspheres: facile solution-phase synthesis and their application for Li-ion battery cathodes Chemistry 20 5815-20 doi: 10.1002/chem.201304713 [219] Guan Q, Cheng J, Li X, Ni W, Wang B 2017 Porous CoF2 spheres synthesized by a one-pot solvothermal method as high capacity cathode materials for lithium-ion batteries Chin. J. Chem. 35 48-54 doi: 10.1002/cjoc.201600229 [220] Liu M, Liu L, Li M, Chen B, Lei H, Hu H, Wang X 2020 Preparation and Li/Na ion storage performance of raspberry-like hierarchical FeF3·0.33H2O micro-sized spheres with controllable morphology J. Alloys Compd. 829 154215 doi: 10.1016/j.jallcom.2020.154215 [221] Wei S, Wang X, Liu M, Zhang R, Wang G, Hu H 2018 Spherical FeF3·0.33H2O/MWCNTs nanocomposite with mesoporous structure as cathode material of sodium ion battery J. Energy Chem. 27 573-81 doi: 10.1016/j.jechem.2017.10.032 [222] Chu Q, Xing Z, Tian J, Ren X, Asiri A M, Al-Youbi A O, Alamry K A, Sun X 2013 Facile preparation of porous FeF3 nanospheres as cathode materials for rechargeable lithium-ion batteries J. Power Sources 236 188-91 doi: 10.1016/j.jpowsour.2013.02.026 [223] Li C, Mu X, van Aken P A, Maier J 2013 A high-capacity cathode for lithium batteries consisting of porous microspheres of highly amorphized iron fluoride densified from its open parent phase Adv. Energy Mater. 3 113-9 doi: 10.1002/aenm.201200209 [224] Zhou Y, Wu X, Cheng J, Zhu L, Yuan Z 2024 Facile synthesis of FeF3·0.33H2O@3D N-doped carbon microspheres via self-assembly: an examination of electrochemical cathode dynamics in lithium-ion batteries Electrochim. Acta 475 143621 doi: 10.1016/j.electacta.2023.143621 [225] Wang Y, Xie K, Zhu Y, Tong K, Zhang M, Wu F 2023 Prussian blue microcubes-derived FeF3 cathodes for high-energy and ultra-stable lithium and lithium-ion batteries J. Power Sources 577 233234 doi: 10.1016/j.jpowsour.2023.233234 [226] Lin J, Zhu L, Chen S, Li Q, He Z, Cai Z, Cao L, Yuan Z, Liu J 2019 Self-templated formation of hollow yolk-like spheres iron fluoride as cathode material for high-performance li-ion batteries J. Electrochem. Soc. 166 A2074-82 doi: 10.1149/2.0991910jes [227] Sun H, Zhou H, Xu Z, Ding J, Yang J, Zhou X 2017 Preparation of anhydrous iron fluoride with porous fusiform structure and its application for Li-ion batteries Microporous Mesoporous Mater. 253 10-17 doi: 10.1016/j.micromeso.2017.06.033 [228] Tang Y, An J, Xing H, Wang X, Zhai B, Zhang F, Song Y, Li G 2018 Synthesis of iron-fluoride materials with controlled nanostructures and composition through a template-free solvothermal route for lithium ion batteries New J. Chem. 42 9091-7 doi: 10.1039/C8NJ00932E [229] Lu Y, Wen Z, Jin J, Rui K, Wu X 2014 Hierarchical mesoporous iron-based fluoride with partially hollow structure: facile preparation and high performance as cathode material for rechargeable lithium ion batteries Phys. Chem. Chem. Phys. 16 8556-62 doi: 10.1039/c4cp00568f [230] Zhang Q, Sun C, Fan L, Zhang N, Sun K 2019 Iron fluoride vertical nanosheets array modified with graphene quantum dots as long-life cathode for lithium ion batteries Chem. Eng. J. 371 245-51 doi: 10.1016/j.cej.2019.04.073 [231] Jiang Z, Wang Y, Chen X, Chu F, Jiang X, Kwofie F, Pei Q, Luo S, Arbiol J, Wu F 2023 Multicore-shell iron fluoride@carbon microspheres as a long-life cathode for high-energy lithium batteries J. Mater. Chem. A 11 21541-52 doi: 10.1039/D3TA05054H [232] Xu Y, Xiong W, Huang J, Tang X, Wang H, Liu W, Xiao D, Guo Y, Zhang Y 2023 Pressure-induced growth of coralloid-like FeF2 nanocrystals to enable high-performance conversion cathode J. Energy Chem. 79 291-300 doi: 10.1016/j.jechem.2023.01.006 [233] Wang Y, Zhou P, Zhang M, He Z, Cheng Y, Zhou Y, Wu F 2023 High-performance honeycombed FeF3@C cathodes enabling practical lithium pouch cells and silicon-metal fluoride batteries Energy Storage Mater. 60 102847 doi: 10.1016/j.ensm.2023.102847 [234] Wu F, Srot V, Chen S, Zhang M, van Aken P A, Wang Y, Maier J, Yu Y 2021 Metal-organic framework-derived nanoconfinements of CoF2 and mixed-conducting wiring for high-performance metal fluoride-lithium battery ACS Nano 15 1509-18 doi: 10.1021/acsnano.0c08918 [235] Cheng Q, Pan Y, Chen Y, Zeb A, Lin X, Yuan Z, Liu J 2020 Nanostructured iron fluoride derived from Fe-based metal-organic framework for lithium ion battery cathodes Inorg. Chem. 59 12700-10 doi: 10.1021/acs.inorgchem.0c01783 [236] Zhang L, Ji S, Yu L, Xu X, Liu J 2017 Amorphous FeF3/C nanocomposite cathode derived from metal-organic frameworks for sodium ion batteries RSC Adv. 7 24004-10 doi: 10.1039/C7RA03592F