Annual research review of perovskite solar cells in 2023
doi: 10.1088/2752-5724/ad42ba
-
Abstract: AbstractPerovskite (PVK) solar cells (PSCs) have garnered considerable research interest owing to their cost-effectiveness and high efficiency. A systematic annual review of the research on PSCs is essential for gaining a comprehensive understanding of the current research trends. Herein, systematic analysis of the research papers on PSCs reporting key findings in 2023 was conducted. Based on the results, the papers were categorized into six classifications, including regular n-i-p PSCs, inverted p-i-n PSCs, PVK-based tandem solar cells, PVK solar modules, device stability, and lead toxicity and green solvents. Subsequently, a detailed overview and summary of the annual research advancements within each classification were presented. Overall, this review serves as a valuable resource for guiding future research endeavors in the field of PSCs.
-
Key words:
- perovskite solar cells /
- annual review /
- systematic review
-
Figure 4. (a) Efficiencies of small cells (red), mini-modules (blue), and submodules (black) recorded in 2023 [5, 11]. (b) ETL initiated disordered growth of PVK films at the buried interface. Reproduced from [2], with permission from Springer Nature. (c) Schematic of the thermodynamic driving force and the kinetics of the oriented nucleation of PVK films. Reproduced from [1], with permission from Springer Nature.
Figure 5. (a) Energy levels of perovskite, PbS, Cu2S and spiro-OMeTAD and (b) best J-V data tested in reverse (RS) and forward (FS) scans of PSCs of pristine PSC device and treated by Cu-HBT after thermal treatment; (a), (b) [39] John Wiley & Sons. © 2023 Wiley-VCH GmbH. (c) The energy levels of fabricated CsPbI2Br-based PSCs and (d) J-V characteristics of devices with different HTL; (c), (d) [42] John Wiley & Sons. © 2023 Wiley-VCH GmbH. (e) The schematic energy level alignment of TiO2, perovskite films, HTL and Au electrode and (f) J-V curves under 100 mW cm−2 irradiation (AM 1.5) condition. (e), (f) [38] John Wiley & Sons. © 2023 Wiley-VCH GmbH.
Figure 6. (a) Cross-sectional SEM image. (b) J-V curves of the highest-performing PSCs. (c) Electrical conductivity of the HTM films of spiro-OMeTAD doped by Li/Co/t-BP and DPI-TPFB. The inset shows the undoped spiro-OMeTAD film. (a)-(c) [55] John Wiley & Sons. © 2023 Wiley-VCH GmbH. (d) Schematic of the interaction between transDACH and CsSnI3. (e) Electrostatic potential surfaces of CsSnI3 and CsSnI3-transDACH (negative and positive electrostatic potentials are indicated in red and blue, respectively). (f) J-V curves of champion CsSnI3-based PSCs doped with various transDACH contents. (d)-(f) [27] John Wiley & Sons. © 2022 Wiley-VCH GmbH. (g) SEM images of pristine and Bi3+-doped CsSnI3 PVK films. (h) J-V curves of PSCs with pristine and Bi3+-doped CsSnI3 PVKs. (g), (h) Reprinted from [56], © 2023 Elsevier B.V. All rights reserved.
Figure 7. Representative proceedings on Pb-based inverted PSCs in 2023 [60-65]. (a), (c) From [60]. Reprinted with permission from AAAS. From [61]. Reprinted with permission from AAAS. (b), (d)-(f) Reproduced from [62], with permission from Springer Nature. Reproduced from [63], with permission from Springer Nature. Reproduced from [64]. CC BY 4.0. Reproduced from [65], with permission from Springer Nature.
Figure 8. (a) Energy diagram of PSCs (with MMI treatment) and (b) J-V performance of PSCs with and without MMI treatment and hysteresis. [128] John Wiley & Sons. © 2023 Wiley-VCH GmbH. (c) Schematic illustration of the inverted IPSCs (with ABA treated) and (d) J-V curves of the champion control and ABA treated p-i-n IPSCs under one-sun illumination. [129] John Wiley & Sons. © 2023 Wiley-VCH GmbH. (e) Energy level structure diagram of IPSC and (f) J-V curves of control device and ISE-device. [126] John Wiley & Sons. © 2023 Wiley-VCH GmbH.
Figure 9. (a) DFT calculations of optimized slab models for pristine Sn PVK with VSn and VI defects and In- and Br-co-doped Sn PVK (VSn and VI are the Sn and I vacancies, respectively). (b) Summarized PCEs and Voc values for the reported advanced TPSCs. (a), (b) [138] John Wiley & Sons. © 2023 Wiley-VCH GmbH. (c) Comparison of the FFs of 0.05-AET TPSC with previously reported TPSCs, revealing the highest FF achieved. High-resolution XPS spectra showing the Sn 3d regions of (d) control and (e) 0.05-AET Sn-based PVKs. (f) GIWAXS patterns of 0.05-AET Sn-based PVK films. (c)-(f) [136] John Wiley & Sons. © 2023 Wiley-VCH GmbH.
Figure 10. (a) Characteristic J-V curves of TPSCs incorporated with different ETLs (four regional isomers of DCBA, namely trans-2, trans-3, trans-4, and e). [140] John Wiley & Sons. © 2023 Wiley-VCH GmbH. (b) Characteristic J-V curves of TPSCs incorporated with C60BB and C70BB. Reprinted with permission from [141]. Copyright (2023) American Chemical Society. (c) Energy diagram of Sn PSCs incorporated with SnOx HTL. Reprinted with permission from [142]. Copyright (2023) American Chemical Society (d) J-V curves of the devices made of PQx, TQx, PQxD, and TQxD. [143] John Wiley & Sons. © 2023 Wiley-VCH GmbH. (e) SAM-embedded NiOx for oxidation suppression. (f) Contact potential difference for NiOx and 2PADBC-embedded NiOx films. (e), (f) [144] John Wiley & Sons. © 2023 Wiley-VCH GmbH. (g) Structure of Sn-based PSCs inserted with Sn metal on both the upper and lower surfaces of the PVK layer. [145] John Wiley & Sons. © 2023 Wiley-VCH GmbH.
Figure 11. (a) J-V characteristic curves of the CsSnI3 solar cells based on without CBZ and with CBZ. Insets: SEM Images the pristine CsSnI3 and CsSnI3:CBZ films. [125] John Wiley & Sons. © 2023 Wiley-VCH GmbH. (b) Photocurrent density-voltage curves of the optimized C-CsSnI3 and S-CsSnI3 PSCs. Insets: SEM images of S-CsSnI3 and C-CsSnI3 films. Reproduced from [151] with permission from the Royal Society of Chemistry.
Figure 12. (a) Strong hydrogen bonding (O−H···O) linking adjacent spacing sheets in (GABA)2MA3Pb4I13 crystal, which enhanced the PCE of the corresponding 2D RP PSCs. [160] John Wiley & Sons. © 2023 Wiley-VCH GmbH. (b) Devices based on two unique semiconductor spacers with strong interactions, with PCEs increasing considerably from 15.66% to 18.56%. [162] John Wiley & Sons. © 2023 Wiley-VCH GmbH. (c) Chemical structure and DFT-calculated energy levels of the BPhMA spacer. Reproduced with permission. (d) Chemical structure and DFT-calculated energy levels of the BThMA spacer. (c), (d) [163] John Wiley & Sons. © 2023 Wiley-VCH GmbH. (e) Synthetic routes of two organic spacer cations, BTFAI and TTFAI. [164] John Wiley & Sons. © 2023 Wiley-VCH GmbH. (f) Schematic of (A(FA)3Pb4I13)-based DJ 2D PVKs and chemical structure of all-organic spacers studied herein. [165] John Wiley & Sons. © 2023 Wiley-VCH GmbH.
Figure 13. (a) Hypothesized crystallization mechanism of BDA/FA, BDA/FA-MACl, and BDA/FA-MACl & PbCl2 films. BDA/FA film comprises a δ phase and low-dimensional phase, while BDA/FA-MACl film gradually exhibits the appearance of both δ and low-dimensional phases as chlorine evaporates. BDA/FA-MACl & PbCl2 film, grown epitaxially under the induction of preformed seeds, yields a highly robust α phase 2D PVK. [166] John Wiley & Sons. © 2023 Wiley-VCH GmbH. (b) Schematic of an n = 5 RP PVK (PEA)2MA4Pb5I16 film and corresponding charged defect sites in PVKs. (c) PBN molecular structure and possible function of each functional group, including the benzene group (green), nitrone group (blue), and t-butyl group (purple). (b), (c) [167] John Wiley & Sons. © 2023 Wiley-VCH GmbH.
Figure 14. Niche research directions of 2D PVKs. (1) Large-area fabrication of 2D PSMs: schematic of the PVK coating process, optical image of the large-area FA0.4MA0.6−xGAxPbI3 PVK film prepared on the SnO2/CATNI sample, and front view optical images of the planar n-i-p PSMs. [170] John Wiley & Sons. © 2023 Wiley-VCH GmbH. (2) New fabrication technique of imprinting transfer: schematic of the solvent-free transfer-imprinting-assisted growth process. Reprinted with permission from [114]. Copyright (2023) American Chemical Society. (3) Construction of 2D/3D/2D PVKs: schematic of the device structure. [171] John Wiley & Sons. © 2023 Wiley-VCH GmbH. (4) Design of a novel carrier transport layer: the proposed passivation mechanism of PVKs influenced by different polymers. [68] John Wiley & Sons. © 2023 Wiley-VCH GmbH. (5) Machine learning-enhanced high-throughput exploration: summary of the design of experimental approach for 2D PVKs. [172] John Wiley & Sons. © 2023 The Authors. Advanced Energy Materials published by Wiley-VCH GmbH.
Figure 16. (a) Schematic of the blade coating method. Reproduced from [235], with permission from Springer Nature. (b) Illustration of the chelation of the LCMs (in the HTL) with Pb2+ ions at the bottom side of the PVK films. (c) I-V curves of the control and target modules. (b), (c) From [245]. Reprinted with permission from AAAS. (d) (Ⅰ) Electric dipole moment and (Ⅱ) polar solvation energy of DMSO, NMP, and DMI. (e) Schematic of the nucleation and crystallization of (Ⅰ) DMF/DMSO, (Ⅱ) 2-Me/NMP, and (Ⅲ) 2-Me/DMI complexes based on LaMer mechanism. (d), (e) [246] John Wiley & Sons. © 2023 The Authors. Advanced Energy Materials published by Wiley-VCH GmbH. (f) Schematic of the crystallization of control and double-chain QACS-based PVK. (g) I-V curves of the champion DMDO module. The left inset shows the steady-state power output and current of the champion module. The right inset shows an image of the module. (f), (g) Reprinted from [247], © 2023 Elsevier Inc. (h) Structure of the PVK bifacial module. P1, P2, and P3 are the three scribing lines in thin-film modules connected in series. (i) An image of the PVK bifacial module from the front and rear sides with Ag grids, respectively. The aperture area size of the module is 39 mm × 55 mm. (j) I-V curves of the champion bifacial module with light coming from the front and rear sides. (h)-(j) Reproduced from [234], with permission from Springer Nature.
Figure 17. (a) Schematic of slot-die coating. [251] John Wiley & Sons. © 2023 Wiley-VCH GmbH. (b) Comparison of PVK layer homogeneity for two precursor inks: 92-vol% 2-Me/8-vol% NMP/0-vol% ACN and 46-vol% 2-Me/8-vol% NMP/46-vol% mixed inks. (Ⅰ) Images of the as-coated wet PVK film; (Ⅱ) sketches of the meniscus and resulting ribbing phenomena are illustrated; and (Ⅲ) images of the annealed PVK film and corresponding top-view (above) and cross-sectional (below) SEM images. (c) I-V curves of a PSM; the inset is a corresponding optical image. (b), (c) Reproduced from [249]. CC BY 4.0. (d) Schematic of the locally supersaturated PVK precursor inks. (e) Changes in surface tension and dynamic viscosity of PVK precursor inks with different DCB contents. (f) Contact angles of the corresponding PVK precursor ink with different DCB contents measured on the NiO-coated ITO substrate. (g) In situ optical microscopy images with a scale bar 100 μm showing the crystal growth process in conventional PVK ink (CPI) and LSPI-based PVK films (t0 represents the PVK wet film state and tn represents the initiation of nucleation and grain growth). (d)-(g) [250] John Wiley & Sons. © 2023 Wiley-VCH GmbH. (h) DFT calculations of FABP-treated films. Yellow (cyan) denotes the charge accumulation (losses) of the FAPbI3 surface with (Ⅰ) FA vacancy passivated by pentafluoroanilinium cation; (Ⅱ) I vacancy passivated by pentafluorobenzyl phosphonate anion; and (Ⅲ) Pb vacancy passivated by pentafluoroanilinium cation. (i) I-V curve of the best-performing passivated PSMs (inset: PSM with 13 subcells). (h), (i) [251] John Wiley & Sons. © 2023 Wiley-VCH GmbH.
Figure 18. (a) Schematic of spraying coating. Reprinted from [236], © 2022 Elsevier B.V. All rights reserved. (b) Schematic of the drying behavior of droplets sprayed in dry air and humid air. (c) Optical microscopy (OM) images of the films prepared by spraying the trace solution on CsI/PbI2 film in dry and humid air; insets are the corresponding OM images of freshly formed films without annealing after complete spraying. (b), (c) Reprinted from [253], © 2023 Elsevier Ltd. All rights reserved (d) Schematic of inkjet printing. [237] John Wiley & Sons. © 2021 Wiley-VCH GmbH. (e) Image of the aged PVK precursor inks. (f) Top-view and cross-sectional SEM images of the PVK layer fabricated on top of the m-TiO2 layer using (Ⅰ), (Ⅲ) 1.8 M DMF- and (Ⅱ), (IV) 0.8 M GVL-based PVK precursor inks. (e), (f) Reproduced from [254]. CC BY 4.0. (g) Diagram of the screen printing method for the deposition of PVK films. Reproduced from [238], with permission from Springer Nature. (h) Schematic of the growth process of the PVK NCs in the mesoporous layer based on (Ⅰ) MAAc and (Ⅱ) MAAc/MAPa solvent systems. [255] John Wiley & Sons. © 2023 Wiley-VCH GmbH.
Figure 19. (a) Schematic of CVD. (b) Schematic of spontaneous nucleation crystallization and recrystallization processes. (c) In situ XRD patterns of PVK films obtained during the treatment. (a)-(c) [256] John Wiley & Sons. © 2023 Wiley-VCH GmbH. (d) SEM images (cross-section images on top and top-view images on bottom). PbI2 film deposited by (Ⅰ) evaporation and (Ⅱ) solution process. PVK film deposited by (Ⅲ) evaporation and (IV) solution process. [257] John Wiley & Sons. © 2023 Wiley-VCH GmbH. (e) Schematic of the ETL/PVSK interface passivation with H2KNO3S. (f) Schematic of the nucleation and growth of PVKs. (g) Schematic of the seed growth of PVKs. (e)-(g) [258] John Wiley & Sons. © 2023 The Authors. Advanced Energy Materials published by Wiley-VCH GmbH.
Figure 20. (a) Water and oxygen causing degradation in formamidinium-based halide PVKs. Reproduced from [287]. CC BY 4.0. (b) Encapsulation structures of PSCs with (left) and without the external gap (right). Reprinted from [278], © 2023 Elsevier Inc. (c) Schematics representing the thin-film single-junction PSC architecture before final encapsulation into a module and strategies to circumvent the hygroscopic nature of MHP and hole/electron contacts. [289] John Wiley & Sons. © 2023 Wiley-VCH GmbH. (d) Structural transformation of FAPbI3 under humid conditions. Reprinted with permission from [290]. Copyright (2022) American Chemical Society.
Figure 21. (a) Schematic of the 2D PVK film formation process using HAc. Reprinted with permission from [297]. Copyright (2023) American Chemical Society. (b) Illustrations of the tensile/compressive strains of PVK film and their effects. Reprinted with permission from [298]. Copyright (2023) American Chemical Society. (c) Proposed scheme of enhanced ion exchange for thermally induced halide mixing to form mixed-halide PVKs. The scheme shows the passivation of trap states at grain boundaries by BMIMBF4. Reprinted with permission from [270]. Copyright (2023) American Chemical Society. (d) Scheme of the unencapsulated PSCs (left), PSCs with UV resin encapsulation (middle), and PSCs with CFDP encapsulation (right). Reproduced from [299]. CC BY 4.0.
Figure 22. (a) HOMO energies of organic HTLs measured by UPS, where the VBM positions of PVKs are marked as dashed lines. (b) Schematic of reactions between I2 and HTLs with different HOMO levels. (a), (b) Reprinted with permission from [303]. Copyright (2023) American Chemical Society. (c) Thermodynamic origin of the photostability of the 2D PVK PEA2Pb(I1−xBrx)4. Reproduced from [304]. CC BY 4.0.
Figure 23. (a) Chemical structures of P1 and P2 molecules. Reprinted with permission from [306]. Copyright (2023) American Chemical Society. (b) Fabrication process of the HTL using different vacuum deposition techniques, including the control, SD, and MISD. [307] John Wiley & Sons. © 2023 Wiley-VCH GmbH. (c) Chemical structure of b-CD. Reproduced from [308] with permission from the Royal Society of Chemistry. (d) Structure of uracil. [266] John Wiley & Sons. © 2023 Wiley-VCH GmbH. (e) Si-substituted spirobifluorene hole-transporting material for PSCs. Reprinted with permission from [273]. Copyright (2023) American Chemical Society.
Figure 24. Schematic of PVK material degradation and overview of ISOS protocols for the properties of PVK materials and devices. Reprinted from [294], © 2023 Published by Elsevier Inc.
Figure 25. (a) Advantages of using GVL-based PVK precursor solution. Reproduced from [331], with permission from Springer Nature. (b) Pb(NO3)2 and PbI2 films were prepared from pure Pb(NO3)2 solution and PbCO3 NFs, respectively. Red and yellow arrows indicate mp-TiO2 substrates and Pb(NO3)2 films, respectively. Reproduced from [332] with permission from the Royal Society of Chemistry. (c) Schematic of crystallization under different relative humidity. Reproduced from [333] with permission from the Royal Society of Chemistry.
Figure 26. (a) Architecture of a semitransparent device with the TiO2 layer. (b) Pb concentration of PSCs with and without TiO2 (left) for 10 d in 10 ml of water. (a), (b) Reproduced from [345], with permission from Springer Nature. (c) Hunting mechanism of spider web from molecular composition to overall structure. (d) Pb SQEs of the damaged U-PSC, G-PSC, and BG-PSC in the Yellow River water. (c), (d) Reproduced from [346]. CC BY 4.0. (e) Schematic of lead capturing by crosslinking HPβCD-BTCA supramolecular complex. (f) Comparison of Pb sequestration for the damaged PSCs with or without HPβCD-BTCA. (e), (f) Reproduced from [347], with permission from Springer Nature.
Table 1. Summary of the performance of two-terminal PVK-based tandem solar cells.
Voc Jsc FF PCE Type Structure (V) (mA cm−2) (%) (%) References PVK/silicon Ag finger/MgF2/IZO/SnO2/PDAI/LiF/C60/PVK/2PACz/IZO/nc-Si(n)/a-Si(i)/c-Si/a-Si(i)/IZO/MgF2/Ag 1.949 20.9 80.5 32.8 [186] Ag contact/LiF/IZO/SnO2/PI + C60/PVK/2PACz/TCO/Si heterojunction 1.98 20.24 81.18 32.5 [187] Ag finger/MgF2/IZO/SnO2/C60/PVK/Me-4PACz/ITO/nc-SiH(n+/p+)/a-SiH(i/n)/c-Si/a-SiH(i)/nc-Si:H(p)/ITO/Ag 1.91 20.47 79.8 31.25 [188] Ag finger/MgF2/IZO/SnO2/C60/PVK/NiO/MeO-2PACz/ITO/a-Si:H(i/n)/c-Si(n)/a-Si:H(i/p)/ITO/Ag 1.941 20.1 76.6 29.8 [197] Ag finger/LiFx/IZO/BCP/C60/PVK/MeO/poly-Si(p+)/poly-Si(n+)/SiOx/c-Si/SiOx/poly-Si(p+)/Cr/Ag 1.83 19.7 81.0 29.2 [198] PDMS/Ag/IZO/SnO2/C60/PVK/HTL/ITO/a-Si:H(n)/a-Si:H(i)/c-Si/a-Si:H(i)/a-Si:H(P)/ITO 1.86 19.77 79.38 29.25 [199] Ag finger/MgFx/IZO/BCP:Ag/C60/PVK/IZO/SAM/poly-Si(n)/SiOx/c-Si(n)/SiOx/poly-Si(p)/Cr/Ag 1.85 19.4 81.8 29.3 [200] PVK/PVK ITO/NiO/SAM/WBG PVK/C60/SnO2/Au/PEDOT:PSS/NBG PVK/C60/BCP/Cu 2.112 16.5 81.9 28.5 [189] FTO/NiOx/Me-4PACz/WBG PVK/C60/SnOx/Au/PEDOT:PSS/NBG PVK/C60/SnOx/Ag 2.14 15.6 84.0 28.1 [191] ITO/NiO/SAM/WBG PVK/C60/ALD-SnO2/IC-CH/NBG PVK/C60/ALD-SnO2/Cu 2.11 16.7 79.5 28.1 [201] ITO/NiOx-SAM/WBG PVK/C60/ALD-SnO2/ITO NCs/NBG PVK/C60/ALD-SnO2/Cu 2.135 16.2 81.5 28.1 [202] ITO/2PACz/WBG PVK/C60/ALD-SnO2/Au/PEDOT:PSS/NBG PVK/C60/BCP/Cu 2.11 16.02 82.2 27.84 [190] ITO/SAM/WBG PVK/C60/SnO2/IZO/PEDOT:PSS/NBG PVK/C60/SnO2/Cu 2.11 15.37 83.13 27.01 (1 cm2) [203] PVK/organic ITO/Cl@MZO/CsPbI2Br/PM6/MoO3/Ag/PFN-Br/PM6:BTP-eC9/MoO3/Ag 2.152 13.89 80.57 24.07 [204] ITO/NiOx/2PACz/FA0.8Cs0.2Pb(I0.5Br0.5)3/C60/BCP/Au/MoOx/PM6:PM7:Y6:PC71BM/C60/BCP/Ag 2.14 14.17 80.71 24.47 [192] FTO/c-TiO2/mp-TiO2/CsPbI2.2Br0.8/PTACl/PBDB-T/MoO3/Ag/ZnO/PDIN/PM6:Y6:PC61BM/MoO3/Ag 2.11 13.65 80.1 23.07 [205] ITO/MeO-2PACz/FA0.8Cs0.2Pb(I0.6Br0.4)3/C60/CC1-P/ITO/MoO3/PM6:BTP-eC9:PC71BM/TPMA/Ag 2.09 14.58 78.99 24.07 [206] ITO/ZnO/SnO2/MAFm/CsPbI2Br/MAFm/PDCBT/MoO3/Au/ZnO/BCP/PM6:CH1007/MoO3/Ag 2.10 14.23 77.70 23.21 [207] ITO/4PADCB/FAMACsPb(I0.5Br0.5)3/C60/SnO2/Au/MoO3/PM6:BTP-eC9:PCBM/PNDIT-F3N/Ag 2.197 14.15 77.6 24.12 [193] Table 2. Summary of the performance of four-terminal PVK-based tandem solar cells.
Type Structure Top cell PCE (%) Bottom cell PCE (%) Total PCE (%) References PVK/silicon Top: ITO/SnO2/PVK/Spiro-OMeTAD/MoO3/IZO/Au 22.6 7.7 30.3 [194] Bottom: PERL silicon cell Top: ITO/SnO2/ZnO/PVK/Spiro-OMeTAD/MoO3/ITO 19.15 9.68 28.83 [208] Bottom: TOPCon silicon cell Top: ITO/MeO-2PACz/PVK/C60/BCP:Ag/IZO/MgFx 19.2 9.2 28.4 [209] Bottom: TOPCon silicon cell PVK/PVK Top: ITO/MeO-2PACz/1.66 eV PVK/C60/SnO2/ITO 20.13 7.93 28.06 [195] Bottom: ITO/PEDOT:PSS/1.25 eV PVK/C60/BCP/Cu Top: ITO/MeO-2PACz/PVK/C60/SnO2/ITO 19.82 7.25 27.07 [210] Bottom: ITO/PEDOT:PSS/1.25 eV PVK/C60/BCP/Cu Top: ITO/DCB-BPA/1.77 eV PVK/C60/SnO2/IZO 17.87 9.03 26.9 [211] Bottom: ITO/PEDOT:PSS/1.25 eV PVK/C60/BCP/Cu PVK/CIGS Top: ITO/NiOx/PVK/C60/SnOx/ITO/LiF 21.8 7.3 29.9 [196] Bottom: Mo/CIGS/CdS/i-ZnO/ZnO:Al Top: ITO/poly-TPD/PVK/C60/SnOx/IZO 19.1 9.3 28.4 [212] Bottom: Mo/CIGS/CdS/i-ZnO/AZO PVK/organic Top: ITO/SnO2/ZnO/CsPbI2.25Br0.75/PTAA/MoO3/ITO 15.52 6.82 22.34 [213] Bottom: ITO/PEDOT:PSS/D18-Cl-B:N3:PC61BM/PDIN/Ag Table 3. Summary of the device stability research progress.
PVK composition Structure Max PCE Condition Stability Strategy References Rb0.05Cs0.05MA0.05FA0.85Pb(I0.95Br0.05)3 p-i-n 25.5% 25 °C-85 °C; white light-emitting diode at 1.2 sun; and 85% RH <8% degradation after approximately 2560 h; >1000 h at 85 °C Improving the ion-blocking properties of the self-SAM HTL [81] FA0.85Cs0.15Pb(I0.95Br0.05)3 p-i-n 22.26% 75 °C; 1 sun-equivalent white-light LED 93% of the initial efficiency of the device retained after continuous operation for 1000 h Modulation of PVK decomposition with a robust Bi/Al2O3/parylene multibarrier [312] CsMAFAPbI3 p-i-n 21.91% 55 ± 5 °C; AM 1.5 illumination; and in the air. The encapsulated device retained 81% of its original PCE after 1000 h Synthesized a crosslinked fluoropropyl methylsiloxane-dimethylsiloxane multiblock polymer (CFDP) with good thermal stability [299] FA0.9Cs0.1PbI3 p-i-n 24.1% 85 °C; simulated AM 1.5G illumination; and in an N2 atmosphere Maintained 90% of the initial efficiency after ∼1500 h Ammonium cation, PEAMA+, with a high acid dissociation constant (pKa) [267] FA0.79MA0.16Cs0.05PbI3 p-i-n 22.5% 85 °C; 1-sun illumination; and 50% RH The device showed superior stability with almost no efficiency loss after MPP tracking at 85 °C for 2000 h The ‘physical’ passivation method by producing AlOx interlayers grown by ALD at the PVK/charge extraction layer heterojunction [268] Cs0.05(MA0.17FA0.83)0.95Pb(I0.83Br0.17)3 p-i-n 19.12% UVO: ultraviolet photons in the wavelength range of 200 nm The devices retained their initial PCEs of 17.0% after 20 min of exposure A silicon oxide barrier layer [313] (AA)2MA4Pb5I16 p-i-n 18.55% 30 °C-40 °C; LED illumination (AM 1.5G, 100 mW cm−2); and under a N2 environment. The device decayed slowly and maintained 80% of its initial PCE after 400 h Introduced CH3COOH(HAc) as a cosolvent [297] FAPbI3 n-i-p 21.42% 70 °C; in the dark; and N2 environment. The devices had 2% efficiency loss at 70 °C Developed a strategy of doping m-MTDATA HTLs with MoO3 [275] (FAPbI3)x(MAPbBr3)1−x n-i-p 22.5% At ambient temperature; under 1-sun illumination; and in an Ar atmosphere The PSC retained 92.9% of its initial PCE after continuous light illumination for 120 h The center carbon of Spiro-MeOTAD was substituted with a Si atom [273] CsPbI3−xBrx n-i-p 20.59% 25 °C; Newport solar simulator (94 043 A) with an AM 1.5G spectrum, light intensity: 100 mW cm−2; and 25% RH When the devices were aged for 3055 h, the optimized PSCs retained 91% of their initial PCE A TrMAPbX3 (X = Br and I) PVK with a linearly rotatable skeleton was synthesized [302] 0.97(FAPbI3) 0.03(MAPbBr3) n-i-p 23.22% 28 °C; under AM 1.5G 1-sun (100 mW cm−2) illumination; and 30% RH. The device maintained 87% of its initial PCE after 2000 h An efficient passivation material (K2-PDT) was developed [314] Cs0.05FA0.95PbI3 p-i-n 24.29% Room temperature; 1-sun illumination; and an inert atmosphere The device maintained 75% of its initial PCE for up to 450 h (thermal stress and operational stability) Compositional engineering using a single Cs-doped crystal [178] FA0.9Cs0.1PbI2.8Br0.2 n-i-p 23.17% 100 mW cm−2, white LED and N2 atmosphere Devices maintained 89.7% of their initial PCEs Molecular engineering of nanographene-based HTMs and interface modifiers [315] CsPbI1.5Br1.5 p-i-n 4.25% At room temperature; under AM 1.5G light; and in an ambient atmosphere CsPbI1.5Br1.5 retained approximately 90% PCE under 1 sun AM 1.5G illumination for 12 h Polyvinylpyrrolidone (PVP) polymer-assisted in situ crystallization [316] Cs0.09FAI0.91PbI3 n-i-p 20.26% 75 °C; 1 sun-equivalent illumination; and nitrogen environment PSCs retained >80% of their original PCE after an operando stability test at 200 h and 75 °C Infiltration of TiOx via vapor-phase infiltration (VPI) [280] (FA0.83MA0.17)0.95Cs0.05Pb(I0.83Br0.17)3 p-i-n 20.67% 1-sun illumination and 40%-50% RH The unencapsulated device retained 95% of PCE after 3000 h A mixing engineering strategy that combined Me-4PACz SAM with conjugated polyelectrolyte PFN-Br [272] (FAPbI3)0.97(MAPbBr3)0.03 n-i-p 24.0% 40 °C; continuous 1-sun illumination; and in N2 environment. Device retained 88% of its initial PCE after 2000 h at 40 °C and 1-sun illumination Bifunctional aromatic ligands [306] CsPb0.6Sn0.4I3 p-i-n 16.79% 1 sun illumination (100 mW cm−2) and in an N2-filled glovebox The device retained 90% retention of its initial PCE after 958 h under continuous illumination A surface Sn (IV) hydrolysis (SSH) method [264] Sn PVK p-i-n 12.1% In dark and an N2 atmosphere After dark storage measurements (∼2800 h), the PCE increased from 6.4% to 7.5% Surface modification of PEDOT:PSS with aromatic diammonium acetate [150] CsCl-FAPbI3 n-i-p 23.20% 25 °C and under 45%−65% RH The device maintained 60% of its initial PCE after 1056 h Residual chlorides were eliminated by post-heat treatment (PHT) [317] FA0.6MA0.4PbI3 p-i-n 23.1% 1-sun (AM 1.5G) illumination and in a nitrogen-filled glovebox The SC-PSC lost approximately 25% of its initial PCE after ∼730 h of MPPT Hydrophilic SAM MeO-2PACz HTL [177] (Cs0.05FA0.80MA0.15)Pb(I0.95Br0.05)3; FAPbI3 n-i-p 23.50% and 24.61% 1 sun illumination PCE stabilized at 23.63% initially and then decreased to 23.23% after 300 s at a constant potential and maximum power The organic salt of bidentate imidazole [298] Cs0.05MA0.85FA0.10Pb(I0.97Br0.03)3 n-i-p 22.92% At room temperature; 100 mW cm−2 simulated AM 1.5G irradiation; and 65 ± 5% RH Approximately 88% of initial PCE was retained after aging 2900 h A spontaneous internal encapsulation strategy by constructing a dual interfacial PVK heterojunction at the top and buried interfaces of the 3D PVK film [318] FA0.9MA0.03Cs0.07PbI2.76Br0.24 n-i-p 22.3% AM 1.5G illumination and in ambient conditions with 30% RH Retained >90% of the initial PCE after 5200 h A molecular implantation-assisted sequential doping (MISD) approach [307] FAMACsPb(ICl)3 n-i-p 24.23% 40 °C-50 °C; an LED array with an intensity of 100 mW cm−2; and in a box with continuous N2 flow Maintained >90% of its initial PCE after tracking at its MPP for ∼6000 h Introduced uracil as a bifunctional additive into PVK films [266] FA0.95Cs0.05PbI3 p-i-n 23.91% White LED illumination (100 mW cm−2) and in a nitrogen atmosphere The devices maintained >93% of their initial PCEs after 1680 h of MPP tracking In situ chemical crosslinking of the polymer TFEMA [310] FAPbxSn1−xI3 p-i-n 23.7% 50 ± 5 °C; 1-sun illumination; and in air Retained 88% of its initial PCE for 1000 h Tailored octylammonium tetrafluoroborate (OABF4) additive [319] Rb0.05Cs0.05(FA0.83MA0.17)0.95Pb(I0.83Br0.17)3 n-i-p 21.95% Room temperature; 1-sun illumination; and N2 atmosphere Almost no degradation after >1000 h of MPP tracking Functionalized 2D titanium carbide (Ti3C2) MXene [274] MAPb(I1−xBrx)3 p-i-n 21.23% 85 °C and in a nitrogen atmosphere 80% of the initial PCE was reached after >3500 h A simplified dual-source vacuum deposition method [320] Cs0.05MA0.15FA0.8Pb(I0.75Br0.25)3 n-i-p 24.12% 20 °C and in dry air (RH: 10%-20%) The devices maintained >90% of their initial PCE after 8000 h A uniform polymer internal package layer constructed using thermally triggered cross-linkable monomers [279] Cs0.05(MA0.17FA0.83)0.95Pb(I0.83Br0.17)3 p-i-n 15.26% 20 °C and 40% RH Maintained 75% of the initial PCE after 600 h Evaluated the effectiveness of oxygen, sulfur, and selenium-based interface passivator molecules [295] (CsPbI3)0.05[(FAPbI3)0.90(MAPbBr3)0.10]0.95 p-i-n 20.64% In ambient environment with 45% RH Retained 80% of its PCE after 350 h The use of polyoxometalate complex [(C8H17)4N]4 [SiW12O40] (TOASiW12) as the cathode layer [277] FA0.95Cs0.05PbI3 p-i-n 24.5% 40 °C; 1-sun illumination and in N2 atmosphere Initial PCE of ∼23% and stabilized at ∼23.5% for >3500 h Lewis base diphosphine molecule of 1,3-bis(diphenylphosphino)propane (DPPP) [294] MAPbI3 p-i-n 20.55% Ambient air and 30% relative humidity After 1900 h, the device maintained 89% of its initial PCE By incorporating a natural 1D material, ethyl cellulose (EC), within the PVK films [311] PVK-PbI2 heterojunction n-i-p 24.23% 65 °C; continuous AM 1.5G illumination (100 mW cm−2); and N2 atmosphere No obvious PCE degradation after illumination aging for 200 h A high-quality PVK-PbI2 heterojunction film was constructed [265] FAxMA1−xPbI3 n-i-p 18.76% 30 °C and 80% relative humidity. The PSCs maintained 95% of their initial efficiency after 2400 h An organic-inorganic hybrid material (AlxOyCz) was grown by plasma-enhanced MLD (PEMLD) [281] FAxCs1−xPbI3 n-i-p 24.26% 25 ± 5 °C and under 1-sun illumination; Maintained 94.7% of their initial efficiencies after operating for 1000 h A pre-embedding mixed A-cation halide strategy [305] FAPbI3 n-i-p 24.7% 85 °C and AM 1.5G conditions After 500 h of aging, the cells exhibited an average PCE retention rate of 92% SBF-FC hole-transporting material, with a high glass-transition temperature [276] Cs0.05FA0.95PbI3 p-i-n 23.2% 25 °C; ISOS-L-1; and in the N2 glovebox PSCs retained 91.8% of the highest efficiency after MPP tracking for 1000 h By introducing β-cyclodextrin (β-CD) iodine trapping agent [308] FAPbI3 n-i-p 25.0% 85 °C; under N2; and 60 ± 10% relative humidity Retained >92% of their initial efficiency for 1000 h Introduced alkylammonium formates (AAFos) [260] HA2PbI2Br2 passivated FACsPbI3 PVK n-i-p 24.29% 1-sun illumination and a nitrogen atmosphere Retained ∼93% of its initial PCE after 1000 h Developed HA2PbI2Br2-passivated FAC-based PVK [259] -
[1] Shi P, et al 2023 Oriented nucleation in formamidinium perovskite for photovoltaics Nature 620 323-7 doi: 10.1038/s41586-023-06208-z [2] Luo C, Zheng G, Gao F, Wang X, Zhan C, Gao X, Zhao Q 2023 Engineering the buried interface in perovskite solar cells via lattice-matched electron transport layer Nat. Photon. 17 856-64 doi: 10.1038/s41566-023-01247-4 [3] Park J, Kim J, Yun H S, Paik M J, Noh E, Mun H J, Kim M G, Shin T J, Seok S I 2023 Controlled growth of perovskite layers with volatile alkylammonium chlorides Nature 616 724-30 doi: 10.1038/s41586-023-05825-y [4] Yan L, et al 2023 Fabrication of perovskite solar cells in ambient air by blocking perovskite hydration with guanabenz acetate salt Nat. Energy 8 1158-67 doi: 10.1038/s41560-023-01358-w [5] Huang Z, et al 2023 Anion-π interactions suppress phase impurities in FAPbI3 solar cells Nature 623 531-7 doi: 10.1038/s41586-023-06637-w [6] Chen Y, Wang Q, Yao Y, Yang J, Tang W, Qiu W, Wu Y, Peng Q 2023 Synergistic transition metal ion co-doping and multiple functional additive passivation for realizing 25.30% efficiency perovskite solar cells Energy Environ. Sci. 16 5243-54 doi: 10.1039/D3EE02475J [7] Wang Y, Feng M, Chen H, Ren M, Wang H, Miao Y, Chen Y, Zhao Y 2023 Highly crystalized Cl-doped SnO2 nanocrystals for stable aqueous dispersion toward high-performance perovskite photovoltaics Adv. Mater. 36 2305849 doi: 10.1002/adma.202305849 [8] Guo H, Xiang W, Fang Y, Li J, Lin Y 2023 Molecular bridge on buried interface for efficient and stable perovskite solar cells Angew. Chem., Int. Ed. 62 e202304568 doi: 10.1002/anie.202304568 [9] Xu R, et al 2023 Optimizing the buried interface in flexible perovskite solar cells to achieve over 24% efficiency and long-term stability Adv. Mater. 36 2308039 doi: 10.1002/adma.202308039 [10] Sheng W, He J, Yang J, Cai Q, Xiao S, Zhong Y, Tan L, Chen Y 2023 Multifunctional metal-organic frameworks capsules modulate reactivity of lead iodide toward efficient perovskite solar cells with UV resistance Adv. Mater. 35 2301852 doi: 10.1002/adma.202301852 [11] NREL Best Research-Cell Efficiency Chart(available at: https://www.nrel.gov/pv/cell-efficiency.html) [12] Yang L, et al 2023 25.24%-efficiency FACsPbI3 perovskite solar cells enabled by intermolecular esterification reaction of dl-carnitine hydrochloride Adv. Mater. 35 2211545 doi: 10.1002/adma.202211545 [13] Sun X, Li D, Zhao L, Zhang Y, Hu Q, Russell T P, Liu F, Wei J, Li H 2023 (111)-dominated perovskite films by antisolvent engineering Adv. Mater. 35 2301115 doi: 10.1002/adma.202301115 [14] Li M, et al 2023 Orientated crystallization of FA-based perovskite via hydrogen-bonded polymer network for efficient and stable solar cells Nat. Commun. 14 573 doi: 10.1038/s41467-023-36224-6 [15] Meng Y, et al 2023 Epitaxial growth of α-FAPbI3 at a well-matched heterointerface for efficient perovskite solar cells and solar modules Adv. Mater. 36 2309208 doi: 10.1002/adma.202309208 [16] Ge Y, Wang H, Wang C, Wang C, Guan H, Shao W, Wang T, Ke W, Tao C, Fang G 2023 Intermediate phase engineering with 2,2-azodi(2-methylbutyronitrile) for efficient and stable perovskite solar cells Adv. Mater. 35 2210186 doi: 10.1002/adma.202210186 [17] Yue W, Yang H, Cai H, Xiong Y, Zhou T, Liu Y, Zhao J, Huang F, Cheng Y-B, Zhong J 2023 Printable high-efficiency and stable FAPbBr3 perovskite solar cells for multifunctional building-integrated photovoltaics Adv. Mater. 35 2301548 doi: 10.1002/adma.202301548 [18] Zhao C, et al 2023 Stabilization of FAPbI3 with multifunctional alkali-functionalized polymer Adv. Mater. 35 2211619 doi: 10.1002/adma.202211619 [19] Hu Y, et al 2024 Seed-mediated growth for high-efficiency perovskite solar cells: the important role of seed surface Angew. Chem., Int. Ed. 63 e202316154 doi: 10.1002/anie.202316154 [20] Yang T, et al 2023 Amidino-based Dion-Jacobson 2D perovskite for efficient and stable 2D/3D heterostructure perovskite solar cells Joule 7 574-86 doi: 10.1016/j.joule.2023.02.003 [21] Rui Y, Jin Z, Fan X, Li W, Li B, Li T, Wang Y, Wang L, Liang J 2022 Defect passivation and electrical conductivity enhancement in perovskite solar cells using functionalized graphene quantum dots Mater. Futures 1 045101 doi: 10.1088/2752-5724/ac9707 [22] You S, et al 2023 Bifunctional hole-shuttle molecule for improved interfacial energy level alignment and defect passivation in perovskite solar cells Nat. Energy 8 515-25 doi: 10.1038/s41560-023-01249-0 [23] Alharbi E A, et al 2023 Cooperative passivation of perovskite solar cells by alkyldimethylammonium halide amphiphiles Joule 7 183-200 doi: 10.1016/j.joule.2022.11.013 [24] Wu J, Li M-H, Fan J-T, Li Z B, Fan X-H, Xue D J, Hu J-S 2023 Regioselective multisite atomic-chlorine passivation enables efficient and stable perovskite solar cells J. Am. Chem. Soc. 145 5872 doi: 10.1021/jacs.2c13307 [25] Guo J, Meng G, Zhang X, Huang H, Shi J, Wang B, Hu X, Yuan J, Ma W 2023 Dual-interface modulation with covalent organic framework enables efficient and durable perovskite solar cells Adv. Mater. 35 2302839 doi: 10.1002/adma.202302839 [26] Yi Z, Xiao B, Li X, Luo Y, Jiang Q, Yang J 2023 Novel dual-modification strategy using Ce-containing compounds toward high-performance flexible perovskite solar cells Nano Energy 109 108241 doi: 10.1016/j.nanoen.2023.108241 [27] Li X R, et al 2023 Trans-spatial structure additive passivated Sn(ii) for high-efficiency CsSnI3 perovskite solar cells fabricated in humid air Chemnanomat 9 e202200481 doi: 10.1002/cnma.202200481 [28] Ren Y, Ren M, Xie X, Wang J, Cai Y, Yuan Y, Zhang J, Wang P 2021 A spiro-OMeTAD based semiconductor composite with over 100 °C glass transition temperature for durable perovskite solar cells Nano Energy 81 105655 doi: 10.1016/j.nanoen.2020.105655 [29] He L, Zhang Y, Wei Y, Cai Y, Zhang J, Wang P 2023 A helicene-based semiconducting polymer for stable and efficient perovskite solar cells Matter 6 4013-31 doi: 10.1016/j.matt.2023.09.006 [30] Eperon G E, Paternò G M, Sutton R J, Zampetti A, Haghighirad A A, Cacialli F, Snaith H J 2015 Inorganic caesium lead iodide perovskite solar cells J. Mater. Chem. A 3 19688-95 doi: 10.1039/C5TA06398A [31] Mali S S, Patil J V, Shao J-Y, Zhong Y-W, Rondiya S R, Dzade N Y, Hong C K 2023 Phase-heterojunction all-inorganic perovskite solar cells surpassing 21.5% efficiency Nat. Energy 8 989-1001 doi: 10.1038/s41560-023-01310-y [32] Khan U, Rauf A, Feng S, Akbar A R, Peng G, Zheng Q, Wu R, Khan M, Peng Z, Liu F 2023 Thermally stable and efficient CsF-doped all-inorganic CsPbIBr2 perovskite solar cells exceeding 15% PCE Inorg. Chem. Commun. 153 110862 doi: 10.1016/j.inoche.2023.110862 [33] Liu X, Lian H, Zhou Z, Zou C, Xie J, Zhang F, Yuan H, Yang S, Hou Y, Yang H G 2022 Stoichiometric dissolution of defective CsPbI2Br surfaces for inorganic solar cells with 17.5% efficiency Adv. Energy Mater. 12 2103933 doi: 10.1002/aenm.202103933 [34] Zhou Q, Duan J, Du J, Guo Q, Zhang Q, Yang X, Duan Y, Tang Q 2021 Tailored lattice “tape” to confine tensile interface for 11.08%-efficiency all-inorganic CsPbBr3 perovskite solar cell with an ultrahigh voltage of 1.702 V Adv. Sci. 8 2101418 doi: 10.1002/advs.202101418 [35] Jeong M J, Jeon S W, Kim S Y, Noh J H 2023 High fill factor CsPbI2Br perovskite solar cells via crystallization management Adv. Energy Mater. 13 2300698 doi: 10.1002/aenm.202300698 [36] Xiao H, Zuo C, Zhang L, Zhang W, Hao F, Yi C, Liu F, Jin H, Ding L 2023 Efficient inorganic perovskite solar cells made by drop-coating in ambient air Nano Energy 106 108061 doi: 10.1016/j.nanoen.2022.108061 [37] Sun N, et al 2024 Tailoring crystallization dynamics of CsPbI3 for scalable production of efficient inorganic perovskite solar cells Adv. Funct. Mater. 34 2309894 doi: 10.1002/adfm.202309894 [38] Li Z, Wang J, Deng Y, Xi J, Zhang Y, Liu C, Guo W 2023 Undoped hole transport layer toward efficient and stable inorganic perovskite solar cells Adv. Funct. Mater. 33 2214562 doi: 10.1002/adfm.202214562 [39] Wang G-E, Xiao G-B, Li C-P, Fu Z-H, Cao J, Xu G 2023 Directional defect management in perovskites by in situ decomposition of organic metal chalcogenides for efficient solar cells Angew. Chem., Int. Ed. 62 e202313833 doi: 10.1002/anie.202313833 [40] Kang C, Xu S, Rao H, Pan Z, Zhong X 2023 All-inorganic CsPb2I4Br/CsPbI2Br 2D/3D bulk heterojunction boosting carbon-based CsPbI2Br perovskite solar cells with an efficiency of over 15% ACS Energy Lett. 8 909-16 doi: 10.1021/acsenergylett.2c02060 [41] Luo M, Wang S, Zhu Z, Shi B, Wang P, Hou G, Huang Q, Zhao Y, Zhang X 2024 Novel cathode buffer layer enabling over 21.6%/20.9% efficiency in wide bandgap/inorganic perovskite solar cells Nano Energy 121 109162 doi: 10.1016/j.nanoen.2023.109162 [42] Zhang N, et al 2023 Illumination enhanced crystallization and defect passivation for high performance CsPbI3 perovskite solar cells by sacrificing dye Adv. Funct. Mater. 33 2303873 doi: 10.1002/adfm.202303873 [43] Liu C, et al 2023 Retarding solid-state reactions enable efficient and stable all-inorganic perovskite solar cells and modules Sci. Adv. 9 eadg0087 doi: 10.1126/sciadv.adg0087 [44] Yue Y, Yang R, Zhang W, Cheng Q, Zhou H, Zhang Y 2024 Cesium cyclopropane acid-aided crystal growth enables efficient inorganic perovskite solar cells with a high moisture tolerance Angew. Chem., Int. Ed. 63 e202315717 doi: 10.1002/anie.202315717 [45] Wang H, Yang M, Cai W, Zang Z 2023 Suppressing phase segregation in CsPbIBr2 films via anchoring halide ions toward underwater solar cells Nano Lett. 23 4479-86 doi: 10.1021/acs.nanolett.3c00815 [46] Wu X, Wang S, Zhang J, Shiu H-W, Hsu Y-J, Yan H, Zhu J, Lu X 2023 Bypassing the non-perovskite yellow phase: revealing and regulating the crystallization pathways for efficient all-inorganic perovskite solar cells Nano Energy 117 108907 doi: 10.1016/j.nanoen.2023.108907 [47] Liao Y, et al 2023 Anti-dissociation passivation via bidentate anchoring for efficient carbon-based CsPbI2.6Br0.4 solar cells Adv. Funct. Mater. 33 2214784 doi: 10.1002/adfm.202214784 [48] Wu L, et al 2023 Stabilization of inorganic perovskite solar cells with a 2D Dion-Jacobson passivating layer Adv. Mater. 35 2304150 doi: 10.1002/adma.202304150 [49] Xiao H, Zuo C, Yan K, Jin Z, Cheng Y, Tian H, Xiao Z, Liu F, Ding Y, Ding L 2023 Highly efficient and air-stable inorganic perovskite solar cells enabled by polylactic acid modification Adv. Energy Mater. 13 2300738 doi: 10.1002/aenm.202300738 [50] Zhang H, et al 2023 Tailored cysteine-derived molecular structures toward efficient and stable inorganic perovskite solar cells Adv. Mater. 35 2301140 doi: 10.1002/adma.202301140 [51] Zhang H, et al 2022 Fluorinecontaining passivation layer via surface chelation for inorganic perovskite solar cells Angew. Chem., Int. Ed. 62 e202216634 doi: 10.1002/anie.202216634 [52] Ren W, Ren J, Wu Y, Li S, Sun Q, Hao Y 2024 An extraordinary antisolvent ethyl cyanoformate for achieving high efficiency and stability P3HT-based CsPbI3 perovskite solar cells Adv. Funct. Mater. 34 2311260 doi: 10.1002/adfm.202311260 [53] Liu Y, Xu T, Xu Z, Zhang H, Yang T, Wang Z, Xiang W, Liu S 2024 Defect passivation and lithium ion coordination via hole transporting layer modification for high performance inorganic perovskite solar cells Adv. Mater. 36 2306982 doi: 10.1002/adma.202306982 [54] Chu X, et al 2023 Surface in situ reconstruction of inorganic perovskite films enabling long carrier lifetimes and solar cells with 21% efficiency Nat. Energy 8 372-80 doi: 10.1038/s41560-023-01220-z [55] Hu M, Risqi A M, Wu J, Chen L, Park J, Lee S-U, Yun H-S, Park B-W, Brabec C J, Seok S I 2023 Highly stable n-i-p structured formamidinium tin triiodide solar cells through the stabilization of surface Sn2+ cations Adv. Funct. Mater. 33 2300693 doi: 10.1002/adfm.202300693 [56] Wang G Q, Cheng L, Bi J Y, Chang J R, Meng F N 2024 B-site doping with bismuth ion enhances the efficiency and stability of inorganic CsSnI3 perovskite solar cell Mater. Lett. 354 135394 doi: 10.1016/j.matlet.2023.135394 [57] Chung I, Song J-H, Im J, Androulakis J, Malliakas C D, Li H, Freeman A J, Kenney J T, Kanatzidis M G 2012 CsSnI3: semiconductor or metal? High electrical conductivity and strong near-infrared photoluminescence from a single material. High hole mobility and phase-transitions J. Am. Chem. Soc. 134 8579-87 doi: 10.1021/ja301539s [58] Li B, Chang B, Pan L, Li Z, Fu L, He Z, Yin L 2020 Tin-based defects and passivation strategies in tin-related perovskite solar cells ACS Energy Lett. 5 3752-72 doi: 10.1021/acsenergylett.0c01796 [59] Wu T, Cui D, Liu X, Luo X, Su H, Segawa H, Zhang Y, Wang Y, Han L 2021 Additive engineering toward highperformance tin perovskite solar cells Solar RRL 5 2100034 doi: 10.1002/solr.202100034 [60] Zhang S, et al 2023 Minimizing buried interfacial defects for efficient inverted perovskite solar cells Science 380 404-9 doi: 10.1126/science.adg3755 [61] Li Z, et al 2023 Stabilized hole-selective layer for high-performance inverted p-i-n perovskite solar cells Science 382 284-9 doi: 10.1126/science.ade9637 [62] Park S M, et al 2023 Low-loss contacts on textured substrates for inverted perovskite solar cells Nature 624 289-94 doi: 10.1038/s41586-023-06745-7 [63] Chen R, et al 2023 Reduction of bulk and surface defects in inverted methylammonium- and bromide-free formamidinium perovskite solar cells Nat. Energy 8 839-49 doi: 10.1038/s41560-023-01288-7 [64] Liang Z, et al 2023 Homogenizing out-of-plane cation composition in perovskite solar cells Nature 624 557-63 doi: 10.1038/s41586-023-06784-0 [65] Tan Q, et al 2023 Inverted perovskite solar cells using dimethylacridine-based dopants Nature 620 545-51 doi: 10.1038/s41586-023-06207-0 [66] Tiwari N, Arianita Dewi H, Erdenebileg E, Narayan Chauhan R, Mathews N, Mhaisalkar S, Bruno A 2021 Advances and potentials of NiOx surface treatments for p−i−n perovskite solar cells Solar RRL 6 2100700 doi: 10.1002/solr.202100700 [67] Yin X, Guo Y, Xie H, Que W, Kong L B 2019 Nickel oxide as efficient hole transport materials for perovskite solar cells Solar RRL 3 230452 doi: 10.1002/solr.201900001 [68] Pan Z, et al 2023 Sidechain functionalized polymer holetransporting materials with defect passivation effect for highly efficient inverted quasi2D perovskite solar cells Adv. Funct. Mater. 33 2304881 doi: 10.1002/adfm.202304881 [69] Zhao P, He D, Li S, Cui H, Yang Y, Chen W, Salah A S, Feng Y, Zhang B 2023 Design of a unique holetransporting molecule via introducing a chloroinvolved chelating moiety for highperformance inverted perovskite solar cells Adv. Funct. Mater. 34 2308795 doi: 10.1002/adfm.202308795 [70] Li H, et al 2023 2D/3D heterojunction engineering at the buried interface towards high-performance inverted methylammonium-free perovskite solar cells Nat. Energy 8 946-55 doi: 10.1038/s41560-023-01295-8 [71] Li Z, Li B, Wu X, Sheppard S A, Zhang S, Gao D, Long N J, Zhu Z 2022 Organometallic-functionalized interfaces for highly efficient inverted perovskite solar cells Science 376 416-20 doi: 10.1126/science.abm8566 [72] Di Girolamo D, Matteocci F, Piccinni M, Di Carlo A, Dini D 2020 Anodically electrodeposited NiO nanoflakes as hole selective contact in efficient air processed p-i-n perovskite solar cells Solar Energy Mater. Solar Cells 205 110288 doi: 10.1016/j.solmat.2019.110288 [73] Zhou Q, Qiu J, Wang Y, Yu M, Liu J, Zhang X 2021 Multifunctional chemical bridge and defect passivation for highly efficient inverted perovskite solar cells ACS Energy Lett. 6 1596-606 doi: 10.1021/acsenergylett.1c00291 [74] Zhou Q S, Qiu J M, Zhuang R S, Mei X Y, Hua Y, Zhang X L 2023 Understanding the dopant of hole-transport polymers for efficient inverted perovskite solar cells with high electroluminescence J. Mater. Chem. A 11 5199-211 doi: 10.1039/D2TA08443K [75] Li B, et al 2020 Reduced bilateral recombination by functional molecular interface engineering for efficient inverted perovskite solar cells Nano Energy 78 105249 doi: 10.1016/j.nanoen.2020.105249 [76] Stolterfoht M, et al 2018 Visualization and suppression of interfacial recombination for high-efficiency large-area pin perovskite solar cells Nat. Energy 3 847-54 doi: 10.1038/s41560-018-0219-8 [77] Xu H, et al 2023 Constructing robust heterointerfaces for carrier viaduct via interfacial molecular bridges enables efficient and stable inverted perovskite solar cells Energy Environ. Sci. 16 5792-804 doi: 10.1039/D3EE02591H [78] Ali F, RoldánCarmona C, Sohail M, Nazeeruddin M K 2020 Applications of selfassembled monolayers for perovskite solar cells interface engineering to address efficiency and stability Adv. Energy Mater. 10 2002989 doi: 10.1002/aenm.202002989 [79] Liu M, Bi L, Jiang W, Zeng Z, Tsang S W, Lin F R, Jen A K Y 2023 Compact holeselective selfassembled monolayers enabled by disassembling micelles in solution for efficient perovskite solar cells Adv. Mater. 35 2304415 doi: 10.1002/adma.202304415 [80] Wu T, et al 2023 Graphenelike conjugated molecule as holeselective contact for operationally stable inverted perovskite solar cells and modules Adv. Mater. 35 2300169 doi: 10.1002/adma.202300169 [81] Jiang Q, Tirawat R, Kerner R A, Gaulding E A, Xian Y, Wang X, Newkirk J M, Yan Y, Berry J J, Zhu K 2023 Towards linking lab and field lifetimes of perovskite solar cells Nature 623 313-8 doi: 10.1038/s41586-023-06610-7 [82] Zheng X, et al 2023 Co-deposition of hole-selective contact and absorber for improving the processability of perovskite solar cells Nat. Energy 8 462-72 doi: 10.1038/s41560-023-01227-6 [83] Peng W, et al 2023 Reducing nonradiative recombination in perovskite solar cells with a porous insulator contact Science 379 683-90 doi: 10.1126/science.ade3126 [84] Li L, et al 2022 Flexible all-perovskite tandem solar cells approaching 25% efficiency with molecule-bridged hole-selective contact Nat. Energy 7 708-17 doi: 10.1038/s41560-022-01045-2 [85] Ren Z, Cui Z, Shi X, Wang L, Dou Y, Wang F, Lin H, Yan H, Chen S 2023 Poly(carbazole phosphonic acid) as a versatile hole-transporting material for p-i-n perovskite solar cells and modules Joule 7 2894-904 doi: 10.1016/j.joule.2023.10.014 [86] Huang Y, et al 2023 Stabilization of αphase FAPbI3 via buffering interfacial region for efficient p-i-n perovskite solar cells Adv. Funct. Mater. 33 2302375 doi: 10.1002/adfm.202302375 [87] Yu S, et al 2023 Homogenized NiOx nanoparticles for improved hole transport in inverted perovskite solar cells Science 382 1399-404 doi: 10.1126/science.adj8858 [88] Li C, et al 2023 Rational design of Lewis base molecules for stable and efficient inverted perovskite solar cells Science 379 690-4 doi: 10.1126/science.ade3970 [89] Li G, et al 2023 Highly efficient p-i-n perovskite solar cells that endure temperature variations Science 379 399-403 doi: 10.1126/science.add7331 [90] Li F, et al 2023 Hydrogen-bond-bridged intermediate for perovskite solar cells with enhanced efficiency and stability Nat. Photon. 17 478-84 doi: 10.1038/s41566-023-01180-6 [91] Jiang X, et al 2023 Strain regulation via pseudo halidebased ionic liquid toward efficient and stable αFAPbI3 inverted perovskite solar cells Adv. Energy Mater. 13 2300700 doi: 10.1002/aenm.202300700 [92] Wang T, et al 2023 Synergistic defect healing and device encapsulation via structure regulation by silicone polymer enables durable inverted perovskite photovoltaics with high efficiency Adv. Energy Mater. 14 2302552 doi: 10.1002/aenm.202302552 [93] Yuan X, Li R, Xiong Z, Li P, Odunmbaku G O, Sun K, Deng Y, Chen S 2023 Synergistic crystallization modulation and defects passivation via additive engineering stabilize perovskite films for efficient solar cells Adv. Funct. Mater. 33 2215096 doi: 10.1002/adfm.202215096 [94] Li J, et al 2023 The synergistic effect of pemirolast potassium on carrier management and strain release for highperformance inverted perovskite solar cells Adv. Funct. Mater. 33 2301956 doi: 10.1002/adfm.202301956 [95] Yang J, Sheng W, Li X, Zhong Y, Su Y, Tan L, Chen Y 2023 Synergistic toughening and selfhealing strategy for highly efficient and stable flexible perovskite solar cells Adv. Funct. Mater. 33 2214984 doi: 10.1002/adfm.202214984 [96] Pan T, et al 2023 Surfaceenergyregulated growth of αphase Cs0.03FA0.97PbI3 for highly efficient and stable inverted perovskite solar cells Adv. Mater. 220852235 doi: 10.1002/adma.202208522 [97] Zhou Q, Qiu J, Zhuang R, Yu M, Liu J, Hua Y, Ding L, Zhang X 2023 Ionic liquid-induced multisite synergistic interactions for highly efficient inverted perovskite solar cells ACS Appl. Mater. Interfaces 15 40676-86 doi: 10.1021/acsami.3c08980 [98] Castriotta L A, et al 2023 A universal multi-additive strategy to enhance efficiency and stability in inverted perovskite solar cells Nano Energy 109 108268 doi: 10.1016/j.nanoen.2023.108268 [99] Xie L, Liu J, Li J, Liu C, Pu Z, Xu P, Wang Y, Meng Y, Yang M, Ge Z 2023 A deformable additive on defects passivation and phase segregation inhibition enables the efficiency of inverted perovskite solar cells over 24% Adv. Mater. 35 2302752 doi: 10.1002/adma.202302752 [100] Li L, et al 2023 Buriedinterface engineering enables efficient and 1960hour ISOSL2I stable inverted perovskite solar cells Adv. Mater. 36 2303869 doi: 10.1002/adma.202303869 [101] Cassella E J, et al 2023 Binary solvent system used to fabricate fully annealingfree perovskite solar cells Adv. Energy Mater. 13 2203468 doi: 10.1002/aenm.202203468 [102] Fang Y, et al 2023 Tailoring precursor chemistry enabled room temperatureprocessed perovskite films in ambient air for efficient and stable solar cells with improved reproducibility Adv. Funct. Mater. 33 2303674 doi: 10.1002/adfm.202303674 [103] Li M, et al 2023 In situ surface reconstruction toward planar heterojunction for efficient and stable FAPbI3 quantum dot solar cells Adv. Mater. 36 2309890 doi: 10.1002/adma.202309890 [104] Shen L, et al 2023 Iondiffusion management enables allinterface defect passivation of perovskite solar cells Adv. Mater. 35 2301624 doi: 10.1002/adma.202301624 [105] Wang J, Wang K, Zhang C, Liu S, Guan X, Liang C, Chen C C, Xie F 2023 Surface cleaning and passivation strategy for durable inverted formamidinium-cesium triiodide perovskite solar cells Adv. Energy Mater. 13 2302169 doi: 10.1002/aenm.202302169 [106] Zheng Y, Wu X, Zhuang R, Tian C, Sun A, Tang C, Liu Y, Hua Y, Chen C C 2023 Managing interfacial hotcarrier cooling and extraction kinetics for inverted mafree perovskite solar cells over 23% efficiency via Dion-Jacobson 2D capping layer Adv. Funct. Mater. 33 2300576 doi: 10.1002/adfm.202300576 [107] Ramakrishnan S, Song D, Xu Y, Zhang X, Aksoy G, Cotlet M, Li M, Zhang Y, Yu Q 2023 Solventmediated formation of quasi2D DionJacobson phases on 3D perovskites for inverted solar cells over 23% efficiency Adv. Energy Mater. 13 2302240 doi: 10.1002/aenm.202302240 [108] Guo H, Wang X, Li C, Hu H, Zhang H, Zhang L, Zhu W H, Wu Y 2023 Immobilizing surface halide in perovskite solar cells via calix[4]pyrrole Adv. Mater. 35 2301871 doi: 10.1002/adma.202301871 [109] Li D, et al 2023 Surface regulation with polymerized small molecular acceptor towards efficient inverted perovskite solar cells Adv. Energy Mater. 13 2204247 doi: 10.1002/aenm.202204247 [110] He Z, Li M, Jia H, Yu R, Zhang Y, Wang R, Dong Y, Liu X, Xu D, Tan Z 2023 Managing interfacial charged defects with multiple active sited macrocyclic valinomycin for efficient and stable inverted perovskite solar cells Adv. Mater. 35 2304918 doi: 10.1002/adma.202304918 [111] Zhang X, et al 2023 Minimizing the interface-driven losses in inverted perovskite solar cells and modules ACS Energy Lett. 8 2532-42 doi: 10.1021/acsenergylett.3c00697 [112] Guo X, et al 2023 Mitigating surface deficiencies of perovskite single crystals enables efficient solar cells with enhanced moisture and reverse-bias stability Adv. Funct. Mater. 33 2213995 doi: 10.1002/adfm.202213995 [113] Jiang Q, et al 2022 Surface reaction for efficient and stable inverted perovskite solar cells Nature 611 278-83 doi: 10.1038/s41586-022-05268-x [114] Jiang N, Zhang H-W, Liu Y-F, Wang Y-F, Yin D, Feng J 2023 Transfer-imprinting-assisted growth of 2D/3D perovskite heterojunction for efficient and stable flexible inverted perovskite solar cells Nano Lett. 23 6116-23 doi: 10.1021/acs.nanolett.3c01614 [115] Qian Y, Li J, Cao H, Ren Z, Dai X, Huang T, Zhang S, Qiu Y, Yang L, Yin S 2023 Passivating perovskites in air via an alternating cation interlayer phase formed by benzylamine vapor fumigation Adv. Funct. Mater. 33 2214731 doi: 10.1002/adfm.202214731 [116] Shi W, Zhuang Q, Zhou R, Hou X, Zhao X, Kong J, Fuchter M J 2023 Enantiomerically pure fullerenes as a means to enhance the performance of perovskite solar cells Adv. Energy Mater. 13 2300054 doi: 10.1002/aenm.202300054 [117] Sun X, et al 2023 VOC of inverted perovskite solar cells based on ndoped PCBM exceeds 1.2 V: interface energy alignment and synergistic passivation Adv. Energy Mater. 13 2302191 doi: 10.1002/aenm.202302191 [118] Shui Q-J, et al 2023 Evaporable fullerene indanones with controlled amorphous morphology as electron transport layers for inverted perovskite solar cells J. Am. Chem. Soc. 145 27307-15 doi: 10.1021/jacs.3c07192 [119] Xiao M, et al 2023 Engineering amorphous-crystallized interface of ZrNx barriers for stable inverted perovskite solar cells Adv. Mater. 35 2301684 doi: 10.1002/adma.202301684 [120] Liu N, et al 2023 Multifunctional anticorrosive interface modification for inverted perovskite solar cells Adv. Energy Mater. 13 2300025 doi: 10.1002/aenm.202300025 [121] Liu A, Li X, Zhang W, Yang H, Guo X, Lu C, Yuan H, OuYang W, Fang J 2023 Ag electrode anticorrosion in inverted perovskite solar cells Adv. Funct. Mater. 34 2307310 doi: 10.1002/adfm.202307310 [122] Cai P, et al 2023 Tetrabutylammonium bromide functionalized Ti3C2Tx MXene as versatile cathode buffer layer for efficient and stable inverted perovskite solar cells Adv. Funct. Mater. 33 2300113 doi: 10.1002/adfm.202300113 [123] Qin W, et al 2023 Suppressing non-radiative recombination in metal halide perovskite solar cells by synergistic effect of ferroelasticity Nat. Commun. 14 256 doi: 10.1038/s41467-023-35837-1 [124] Ali W, Qin W, Tian H, Guo J, Feng Z, Li C 2023 Tuning lattice structure of ferroelastic twin-domains achieving efficient perovskite solar cells ACS Energy Lett. 8 5070-8 doi: 10.1021/acsenergylett.3c01936 [125] Duan C, Zou F, Wen Q, Qin M, Li J, Chen C, Lu X, Ding L, Yan K 2023 A bifunctional carbazide additive for durable CsSnI3 perovskite solar cells Adv. Mater. 35 2300503 doi: 10.1002/adma.202300503 [126] Sun H, et al 2023 Surface defects management by in situ etching with methanol for efficient inverted inorganic perovskite solar cells Adv. Funct. Mater. 33 2213913 doi: 10.1002/adfm.202213913 [127] Wang S, Li M-H, Zhang Y, Jiang Y, Xu L, Wang F, Hu J-S 2023 Surface n-type band bending for stable inverted CsPbI3 perovskite solar cells with over 20% efficiency Energy Environ. Sci. 16 2572-8 doi: 10.1039/D3EE00423F [128] Xu T, Xiang W, Yang J, Kubicki D J, Tress W, Chen T, Fang Z, Liu Y, Liu S 2023 Interface modification for efficient and stable inverted inorganic perovskite solar cells Adv. Mater. 35 2303346 doi: 10.1002/adma.202303346 [129] Wang S, Wang P, Shi B, Sun C, Sun H, Qi S, Huang Q, Xu S, Zhao Y, Zhang X 2023 Inorganic perovskite surface reconfiguration for stable inverted solar cells with 20.38% efficiency and its application in tandem devices Adv. Mater. 35 2300581 doi: 10.1002/adma.202300581 [130] Pu X, Cao Q, Su J, Yang J, Wang T, Zhang Y, Chen H, He X, Chen X, Li X 2023 One-step construction of a perovskite/TiO2 heterojunction toward highly stable inverted all-layer-inorganic CsPbI2Br perovskite solar cells with 17.1% efficiency Adv. Energy Mater. 13 2301607 doi: 10.1002/aenm.202301607 [131] Peng Z, et al 2023 Reducing open-circuit voltage losses in all-inorganic perovskite cells by dedoping ACS Energy Lett. 8 2077-85 doi: 10.1021/acsenergylett.3c00173 [132] Chen H, et al 2023 Regulating surface potential maximizes voltage in all-perovskite tandems Nature 613 676-81 doi: 10.1038/s41586-022-05541-z [133] Li T, He F, Liang J, Qi Y 2023 Functional layers in efficient and stable inverted tin-based perovskite solar cells Joule 7 1966-91 doi: 10.1016/j.joule.2023.08.002 [134] Wang J, et al 2023 Oriented attachment of tin halide perovskites for photovoltaic applications ACS Energy Lett. 8 1590-6 doi: 10.1021/acsenergylett.2c02776 [135] Chang B, Li H, Wang L, Pan L, Wu Y, Liu Z, Yin L 2023 Molecular ferroelectric with directional polarization field for efficient tinbased perovskite solar cells Adv. Funct. Mater. 33 2305852 doi: 10.1002/adfm.202305852 [136] Li T, Zhang Z, He F, Deng L, Yang Y, Mo X, Zhan Y, Liang J 2023 Alleviating the crystallization dynamics and suppressing the oxidation process for tinbased perovskite solar cells with fill factors exceeding 80% Adv. Funct. Mater. 33 2308457 doi: 10.1002/adfm.202308457 [137] Zheng C, et al 2023 Dual effects of slow recrystallization and defects passivation achieve efficient tinbased perovskite solar cells with good stability up to one year Adv. Funct. Mater. 33 2212106 doi: 10.1002/adfm.202212106 [138] Liu G, Jiang X, Feng W, Yang G, Chen X, Ning Z, Wu W Q 2023 Synergic electron and defect compensation minimizes voltage loss in leadfree perovskite solar cells Angew. Chem., Int. Ed. 62 e202305551 doi: 10.1002/anie.202305551 [139] Rao H, Su Y, Liu G, Zhou H, Yang J, Sheng W, Zhong Y, Tan L, Chen Y 2023 Monodisperse adductsinduced homogeneous nucleation towards highquality tinbased perovskite film Angew. Chem., Int. Ed. 62 e202306712 doi: 10.1002/anie.202306712 [140] Sun C, et al 2023 Welldefined fullerene bisadducts enable highperformance tinbased perovskite solar cells Adv. Mater. 35 2205603 doi: 10.1002/adma.202205603 [141] Yang P, et al 2023 Efficient tin-based perovskite solar cells enabled by precisely synthesized single-isomer fullerene bisadducts with regulated molecular packing J. Am. Chem. Soc. 146 2494-502 doi: 10.1021/jacs.3c10515 [142] Kitamura T, et al 2023 Sn perovskite solar cells with tin oxide nanoparticle layer as hole transport layer ACS Energy Lett. 8 3565-8 doi: 10.1021/acsenergylett.3c01448 [143] Afraj S N, Kuan C H, Lin J S, Ni J S, Velusamy A, Chen M C, Diau E W G 2023 Quinoxalinebased Xshaped sensitizers as selfassembled monolayer for tin perovskite solar cells Adv. Funct. Mater. 33 2213939 doi: 10.1002/adfm.202213939 [144] Li B, Zhang C, Gao D, Sun X, Zhang S, Li Z, Gong J, Li S, Zhu Z 2023 Suppressing oxidation at perovskite-NiOx interface for efficient and stable tin perovskite solar cells Adv. Mater. 36 2309768 doi: 10.1002/adma.202309768 [145] Wang L, et al 2023 14.31% power conversion efficiency of Snbased perovskite solar cells via efficient reduction of Sn4+ Angew. Chem., Int. Ed. 62 e202307228 doi: 10.1002/anie.202307228 [146] Song D, Ramakrishnan S, Xu Y, Yu Q 2023 Designing effective hole transport layers in tin perovskite solar cells ACS Energy Lett. 8 4162-72 doi: 10.1021/acsenergylett.3c01410 [147] Balasaravanan R, et al 2023 Triphenylamine (TPA)functionalized structural isomeric polythiophenes as dopant free holetransporting materials for tin perovskite solar cells Adv. Energy Mater. 13 2302047 doi: 10.1002/aenm.202302047 [148] Kuan C H, Balasaravanan R, Hsu S M, Ni J S, Tsai Y T, Zhang Z X, Chen M C, Diau E W G 2023 Dopantfree pyrrolopyrrolebased (PPr) polymeric holetransporting materials for efficient tinbased perovskite solar cells with stability over 6000 h Adv. Mater. 35 2300681 doi: 10.1002/adma.202300681 [149] Aktas E, et al 2023 One-step solution deposition of tin-perovskite onto a self-assembled monolayer with a DMSO-free solvent system ACS Energy Lett. 8 5170-4 doi: 10.1021/acsenergylett.3c02098 [150] Song D, Li H, Xu Y, Yu Q 2023 Amplifying hole extraction characteristics of PEDOT:PSS via post-treatment with aromatic diammonium acetates for tin perovskite solar cells ACS Energy Lett. 8 3280-7 doi: 10.1021/acsenergylett.3c00583 [151] Sun Q, Gu A, Yu H, Shen Y, Wang M 2023 A single crystal derived precursor for improving the performance of CsSnI3 perovskite solar cells J. Mater. Chem. A 11 17292-7 doi: 10.1039/D3TA02892E [152] Meng X, Wu T, Liu X, He X, Noda T, Wang Y, Segawa H, Han L 2020 Highly reproducible and efficient FASnI3 perovskite solar cells fabricated with volatilizable reducing solvent J. Phys. Chem. Lett. 11 2965-71 doi: 10.1021/acs.jpclett.0c00923 [153] Yan L, Ma J, Li P, Zang S, Han L, Zhang Y, Song Y 2022 Chargecarrier transport in quasi2D Ruddlesden-Popper perovskite solar cells Adv. Mater. 34 2106822 doi: 10.1002/adma.202106822 [154] Cao Q, Li P, Chen W, Zang S, Han L, Zhang Y, Song Y 2022 Two-dimensional perovskites: impacts of species, components, and properties of organic spacers on solar cells Nano Today 43 101394 doi: 10.1016/j.nantod.2022.101394 [155] Peng S, Ma J, Li P, Zang S, Zhang Y, Song Y 2022 Regulation of quantum wells width distribution in 2D perovskite films for photovoltaic application Adv. Funct. Mater. 32 2205289 doi: 10.1002/adfm.202205289 [156] Zhao R, Guo L, Zhu H, Zhang T, Li P, Zhang Y, Song Y 2023 Regulation of quantum wells width distribution in quasi2D perovskite films for highperformance photodetectors Adv. Mater. 35 2301232 doi: 10.1002/adma.202301232 [157] Li P, Zhang Y, Liang C, Xing G, Liu X, Li F, Liu X, Hu X, Shao G, Song Y 2018 Phase pure 2D perovskite for highperformance 2D-3D heterostructured perovskite solar cells Adv. Mater. 30 1805323 doi: 10.1002/adma.201805323 [158] Li P, Liu X, Zhang Y, Liang C, Chen G, Li F, Su M, Xing G, Tao X, Song Y 2020 Lowdimensional Dion-Jacobsonphase leadfree perovskites for highperformance photovoltaics with improved stability Angew. Chem., Int. Ed. 59 6909-14 doi: 10.1002/anie.202000460 [159] Zhu H, Ma J, Li P, Zang S, Zhang Y, Song Y 2022 Low-dimensional Sn-based perovskites: evolution and future prospects of solar cells Chem 8 2939-60 doi: 10.1016/j.chempr.2022.07.027 [160] Li P, et al 2023 Dredging the chargecarrier transfer pathway for efficient lowdimensional RuddlesdenPopper perovskite solar cells Angew. Chem., Int. Ed. 62 e202217910 doi: 10.1002/anie.202217910 [161] Zhang Y, et al 2023 Highly efficient and stable fabased quasi2D Ruddlesden-Popper perovskite solar cells by the incorporation of βfluorophenylethanamine cations Adv. Mater. 35 2210836 doi: 10.1002/adma.202210836 [162] Chen M, Dong X, Xin Y, Gao Y, Fu Q, Wang R, Xu Z, Chen Y, Liu Y 2023 Crystal growth regulation of Ruddlesden-Popper perovskites via selfassembly of semiconductor spacers for efficient solar cells Angew. Chem., Int. Ed. 63 e202315943 doi: 10.1002/anie.202315943 [163] Dong X, Chen M, Wang R, Ling Q, Hu Z, Liu H, Xin Y, Yang Y, Wang J, Liu Y 2023 Quantum confinement breaking: orbital coupling in 2D Ruddlesden-Popper perovskites enables efficient solar cells Adv. Energy Mater. 13 2301006 doi: 10.1002/aenm.202301006 [164] Wang R, Dong X, Ling Q, Hu Z, Gao Y, Chen Y, Liu Y 2023 Nucleation and crystallization in 2D RuddlesdenPopper perovskites using formamidiniumbased organic semiconductor spacers for efficient solar cells Angew. Chem., Int. Ed. 62 e202314690 doi: 10.1002/anie.202314690 [165] Ahmad S, Guan M, Kim J, He X, Ren Z, Zhang H, Su H, Choy W C H 2023 Highquality purephase MAfree formamdinium DionJacobson 2D perovskites for stable unencapsulated photovoltaics Adv. Energy Mater. 14 2302774 doi: 10.1002/aenm.202302774 [166] Wu G, et al 2023 Crystallinity and phase control in formamidiniumbased Dion-Jacobson 2D perovskite via seedinduced growth for efficient photovoltaics Adv. Mater. 35 2303061 doi: 10.1002/adma.202303061 [167] Kim J H, et al 2023 Efficient and stable quasi2D Ruddlesden-Popper perovskite solar cells by tailoring crystal orientation and passivating surface defects Adv. Mater. 35 2302143 doi: 10.1002/adma.202302143 [168] Chen L, et al 2023 In situ SnSe deposition as passivation for scalable and stable quasi-2D lead-tin perovskite solar cells Energy Environ. Sci. 16 5315-24 doi: 10.1039/D3EE02507A [169] Qin Z, Pols M, Qin M, Zhang J, Yan H, Tao S, Lu X 2023 Over-18%-efficiency quasi-2D Ruddlesden-Popper Pb-Sn mixed perovskite solar cells by compositional engineering ACS Energy Lett. 8 3188-95 doi: 10.1021/acsenergylett.3c00853 [170] Wang H, Yang F, Li X, Zhang P 2023 Fully printed highperformance quasitwodimensional perovskite solar cells via multifunctional interfacial engineering Adv. Funct. Mater. 34 2312250 doi: 10.1002/adfm.202312250 [171] Zhang Y, Zhang Y, Niu B, Huang Y, Wu H, Fu W, Chen H 2023 Construction of 2D/3D/2Dstructured perovskite for highperformance and stable solar cells Adv. Funct. Mater. 33 2307949 doi: 10.1002/adfm.202307949 [172] Meftahi N, et al 2023 Machine learning enhanced highthroughput fabrication and optimization of quasi2D Ruddlesden-Popper perovskite solar cells Adv. Energy Mater. 13 2203859 doi: 10.1002/aenm.202203859 [173] Wu M, et al 2023 Crystallization regulation by self-assembling liquid crystal template enables efficient and stable perovskite solar cells Angew. Chem., Int. Ed. 62 e202313472 doi: 10.1002/anie.202313472 [174] Pandey S, Ko J, Park B, Byun J, Lee M-J 2023 Single crystal perovskite-based solar cells: growth, challenges, and potential strategies Chem. Eng. J. 466 143019 doi: 10.1016/j.cej.2023.143019 [175] Lou Y, Zhang S, Gu Z, Wang N, Wang S, Zhang Y, Song Y 2023 Perovskite single crystals: dimensional control, optoelectronic properties, and applications Mater. Today 62 225-50 doi: 10.1016/j.mattod.2022.11.009 [176] Ghasemi M, Yuan S, Fan J, Jia B, Wen X 2023 Challenges in the development of metal-halide perovskite single crystal solar cells J. Mater. Chem. A 11 3822-48 doi: 10.1039/D2TA08827D [177] Almasabi K, et al 2023 Hole-transporting self-assembled monolayer enables efficient single-crystal perovskite solar cells with enhanced stability ACS Energy Lett. 8 950-6 doi: 10.1021/acsenergylett.2c02333 [178] Lintangpradipto M N, Zhu H, Shao B, Mir W J, Gutierrez-Arzaluz L, Turedi B, Abulikemu M, Mohammed O F, Bakr O M 2023 Single-crystal methylammonium-free perovskite solar cells with efficiencies exceeding 24% and high thermal stability ACS Energy Lett. 8 4915-22 doi: 10.1021/acsenergylett.3c01935 [179] Liu N, Li N, Jiang C, Lv M, Wu J, Chen Z 2024 Perovskite single crystals with self-cleaning surface for efficient photovoltaics Angew. Chem., Int. Ed. 63 202314089 doi: 10.1002/anie.202314089 [180] Song Z, Gao Y, Zou Y, Zhang H, Wang R, Chen Y, Chen Y, Liu Y 2024 Single-crystal-assisted in situ phase reconstruction enables efficient and stable 2D/3D perovskite solar cells J. Am. Chem. Soc. 146 1657-66 doi: 10.1021/jacs.3c12446 [181] Han B, et al 2023 Rational design of ferroelectric 2D perovskite for improving the efficiency of flexible perovskite solar cells over 23% Angew. Chem., Int. Ed. 62 e202217526 doi: 10.1002/anie.202217526 [182] Chen Z, et al 2023 Perovskite grain-boundary manipulation using room-temperature dynamic self-healing “ligaments” for developing highly stable flexible perovskite solar cells with 23.8% efficiency Adv. Mater. 35 e2300513 doi: 10.1002/adma.202300513 [183] Liu C, et al 2023 Concurrent top and buried surface optimization for flexible perovskite solar cells with high efficiency and stability Adv. Funct. Mater. 33 2212698 doi: 10.1002/adfm.202212698 [184] Meng Y, et al 2023 Preburied ETL with bottomup strategy toward flexible perovskite solar cells with efficiency over 23% Adv. Funct. Mater. 33 2214788 doi: 10.1002/adfm.202214788 [185] Cai W, et al 2023 Interfacial engineering for efficient low-temperature flexible perovskite solar cells Angew. Chem., Int. Ed. 62 e202309398 doi: 10.1002/anie.202309398 [186] Aydin E, et al 2023 Enhanced optoelectronic coupling for perovskite/silicon tandem solar cells Nature 623 732-8 doi: 10.1038/s41586-023-06667-4 [187] Mariotti S, et al 2023 Interface engineering for high-performance, triple-halide perovskite-silicon tandem solar cells Science 381 63-69 doi: 10.1126/science.adf5872 [188] Chin X Y, et al 2023 Interface passivation for 31.25%-efficient perovskite/silicon tandem solar cells Science 381 59-63 doi: 10.1126/science.adg0091 [189] Lin R, et al 2023 All-perovskite tandem solar cells with 3D/3D bilayer perovskite heterojunction Nature 620 994-1000 doi: 10.1038/s41586-023-06278-z [190] Zhou S, et al 2023 Aspartate all-in-one doping strategy enables efficient all-perovskite tandems Nature 624 69-73 doi: 10.1038/s41586-023-06707-z [191] Liu C, et al 2023 Bimolecularly passivated interface enables efficient and stable inverted perovskite solar cells Science 382 810-5 doi: 10.1126/science.adk1633 [192] Wang X, et al 2023 Highly efficient perovskite/organic tandem solar cells enabled by mixed-cation surface modulation Adv. Mater. 35 2305946 doi: 10.1002/adma.202305946 [193] An Y, et al 2023 Optimizing crystallization in wide-bandgap mixed halide perovskites for high-efficiency solar cells Adv. Mater. 36 e2306568 doi: 10.1002/adma.202306568 [194] Duong T, et al 2023 Bulk incorporation with 4methylphenethylammonium chloride for efficient and stable methylammoniumfree perovskite and perovskitesilicon tandem solar cells Adv. Energy Mater. 13 2203607 doi: 10.1002/aenm.202203607 [195] Guan H, et al 2023 Regulating crystal orientation via ligand anchoring enables efficient wide-bandgap perovskite solar cells and tandems Adv. Mater. 36 2307987 doi: 10.1002/adma.202307987 [196] Liang H, et al 2023 29.9%-efficient, commercially viable perovskite/CuInSe2 thin-film tandem solar cells Joule 7 2859-72 doi: 10.1016/j.joule.2023.10.007 [197] Liu Z, et al 2023 Reducing perovskite/C60 interface losses via sequential interface engineering for efficient perovskite/silicon tandem solar cell Adv. Mater. 36 2308370 doi: 10.1002/adma.202308370 [198] Zheng J, Ying Z, Yang Z, Lin Z, Wei H, Chen L, Yang X, Zeng Y, Li X, Ye J 2023 Polycrystalline silicon tunnelling recombination layers for high-efficiency perovskite/tunnel oxide passivating contact tandem solar cells Nat. Energy 8 1250-61 doi: 10.1038/s41560-023-01382-w [199] Ren N, et al 2023 Multifunctional additive CdAc2 for efficient perovskite-based solar cells Adv. Mater. 35 2211806 doi: 10.1002/adma.202211806 [200] Li X, et al 2023 Surface reconstruction for efficient and stable monolithic perovskite/silicon tandem solar cells with greatly suppressed residual strain Adv. Mater. 35 2211962 doi: 10.1002/adma.202211962 [201] Liu C, et al 2023 Efficient all-perovskite tandem solar cells with low-optical-loss carbazolyl interconnecting layers Angew. Chem., Int. Ed. 62 e202313374 doi: 10.1002/anie.202313374 [202] Wen J, et al 2023 Heterojunction formed via 3D-to-2D perovskite conversion for photostable wide-bandgap perovskite solar cells Nat. Commun. 14 7118 doi: 10.1038/s41467-023-43016-5 [203] He R, et al 2023 Improving interface quality for 1-cm2 all-perovskite tandem solar cells Nature 618 80-86 doi: 10.1038/s41586-023-05992-y [204] Jiang S, Wang R, Li M, Yu R, Wang F, Tan Z 2024 Synergistic electrical and light management enables efficient monolithic inorganic perovskite/organic tandem solar cells with over 24% efficiency Energy Environ. Sci. 17 219-26 doi: 10.1039/D3EE02940A [205] Mali S S, Patil J V, Steele J A, Nazeeruddin M K, Kim J H, Hong C K 2024 All-inorganic halide perovskites for air-processed “n-i-p” monolithic perovskite/organic hybrid tandem solar cells exceeding 23% efficiency Energy Environ. Sci. 17 1046-60 doi: 10.1039/D3EE02763E [206] Ma Z, Dong Y, Wang R, Xu Z, Li M, Tan Z 2023 Transparent recombination electrode with dualfunctional transport and protective layer for efficient and stable monolithic perovskite/organic tandem solar cells Adv. Mater. 35 2307502 doi: 10.1002/adma.202307502 [207] Sun S Q, et al 2023 Allinorganic perovskitebased monolithic perovskite/organic tandem solar cells with 23.21% efficiency by dualinterface engineering Adv. Energy Mater. 13 2204347 doi: 10.1002/aenm.202204347 [208] Li Z, et al 2023 In situ epitaxial growth of blocking structure in mixed-halide wide-band-gap perovskites for efficient photovoltaics Joule 7 1363-81 doi: 10.1016/j.joule.2023.04.009 [209] Wu M, et al 2023 Reconstruction of the indium tin oxide surface enhances the adsorption of highdensity selfassembled monolayer for perovskite/silicon tandem solar cells Adv. Funct. Mater. 33 2304708 doi: 10.1002/adfm.202304708 [210] Zhang W, et al 2023 Bottom-up modification boosts the performance of narrow-bandgap lead-tin perovskite single-junction and tandem solar cells Energy Environ. Sci. 16 5852-62 doi: 10.1039/D3EE02010J [211] Yi Z, et al 2024 Achieving a high open-circuit voltage of 1.339 V in 1.77 eV wide-bandgap perovskite solar cells via self-assembled monolayers Energy Environ. Sci. 17 202-9 doi: 10.1039/D3EE02839A [212] Liu X, et al 2023 Over 28% efficiency perovskite/Cu(InGa)Se2 tandem solar cells: highly efficient sub-cells and their bandgap matching Energy Environ. Sci. 16 5029-42 doi: 10.1039/D3EE00869J [213] Liu L, et al 2023 2022 4-terminal inorganic perovskite/organic tandem solar cells offer 22% efficiency Nano-Micro Lett. 15 23 doi: 10.1007/s40820-022-00995-2 [214] Chittiboina G V, Singareddy A, Agarwal A, Bhatia S, Nair P R 2023 Intrinsic degradation-dependent energy yield estimates for perovskite/silicon tandem solar cells under field conditions ACS Energy Lett. 8 2927-34 doi: 10.1021/acsenergylett.3c00614 [215] Li R, et al 2023 UV encapsulated monolithic perovskite/silicon tandem solar cells for hundred-watt power system ACS Energy Lett. 8 2414-22 doi: 10.1021/acsenergylett.3c00275 [216] Xu Z, et al 2023 Reverse-bias resilience of monolithic perovskite/silicon tandem solar cells Joule 7 1992-2002 doi: 10.1016/j.joule.2023.07.017 [217] Zeng Y, et al 2023 Efficiency-loss analysis of monolithic perovskite/silicon tandem solar cells by identifying the patterns of a dual two-diode model’s current-voltage curves J. Semicond. 44 082702 doi: 10.1088/1674-4926/44/8/082702 [218] Zheng J, et al 2023 Efficient monolithic perovskite-Si tandem solar cells enabled by an ultra-thin indium tin oxide interlayer Energy Environ. Sci. 16 1223-33 doi: 10.1039/D2EE04007G [219] Qiao L, Ye T, Wang P, Wang T, Zhang L, Sun R, Kong W, Yang X 2023 Crystallization enhancement and ionic defect passivation in widebandgap perovskite for efficient and stable allperovskite tandem solar cells Adv. Funct. Mater. 24 2308908 [220] Zhao Y, et al 2023 Reduced 0.418 V VOC-deficit of 1.73 eV wide-bandgap perovskite solar cells assisted by dual chlorides for efficient all-perovskite tandems Energy Environ. Sci. 16 2080-9 doi: 10.1039/D2EE04087E [221] Yang F, et al 2024 Minimizing interfacial recombination in 1.8 ev triplehalide perovskites for 27.5% efficient allperovskite tandems Adv. Mater. 36 2307743 doi: 10.1002/adma.202307743 [222] Huang L, et al 2023 Efficient narrow-bandgap mixed tin-lead perovskite solar cells via natural tin oxide doping Adv. Mater. 35 2301125 doi: 10.1002/adma.202301125 [223] Luo J, et al 2023 Improved carrier management via a multifunctional modifier for high-quality low-bandgap Sn-Pb perovskites and efficient all-perovskite tandem solar cells Adv. Mater. 35 2300352 doi: 10.1002/adma.202300352 [224] Sun H, et al 2023 Scalable solution-processed hybrid electron transport layers for efficient all-perovskite tandem solar modules Adv. Mater. 36 2308706 doi: 10.1002/adma.202308706 [225] Shi Y, Sun J, Zhou J, Wen T, Zou C, Liu D, Liu F, Yang S, Deng Y, Yang Z 2023 Highspeed deposition of largearea narrowbandgap perovskite films for allperovskite tandem solar minimodules Adv. Funct. Mater. 33 2307209 doi: 10.1002/adfm.202307209 [226] Ma T, et al 2023 Hole transport layer-free low-bandgap perovskite solar cells for efficient all-perovskite tandems Adv. Mater. 32 2308240 doi: 10.1002/adma.202308240 [227] Wang R, Han M, Wang Y, Zhao J, Zhang J, Ding Y, Zhao Y, Zhang X, Hou G 2023 Recent progress on efficient perovskite/organic tandem solar cells J. Energy Chem. 83 158-72 doi: 10.1016/j.jechem.2023.04.036 [228] Xie G, Li H, Wang X, Fang J, Lin D, Wang D, Li S, He S, Qiu L 2023 Phase segregation and voltage loss mitigated highly efficient perovskite-organic tandem solar cells with a simple ambipolar SnOx interconnecting layer Adv. Funct. Mater. 33 2308794 doi: 10.1002/adfm.202308794 [229] Tang Y, et al 2023 Solvent engineering of scalable deposited wide-bandgap perovskites for efficient monolithic perovskite-organic tandem solar cells Nano Energy 114 108653 doi: 10.1016/j.nanoen.2023.108653 [230] Sun J, Ding L 2023 Perovskite/organic tandem solar cells J. Semicond. 44 020201 doi: 10.1088/1674-4926/44/2/020201 [231] Yao Q, et al 2023 Dual subcells modification enables highefficiency n-i-p type monolithic perovskite/organic tandem solar cells Adv. Funct. Mater. 33 2212599 doi: 10.1002/adfm.202212599 [232] Hu X, Li J, Wang C, Cui H, Liu Y, Zhou S, Guan H, Ke W, Tao C, Fang G 2023 Antimony potassium tartrate stabilizes wide-bandgap perovskites for inverted 4-T all-perovskite tandem solar cells with efficiencies over 26% Nano-Micro Lett. 15 103 doi: 10.1007/s40820-023-01078-6 [233] Park N-G, Zhu K 2020 Scalable fabrication and coating methods for perovskite solar cells and solar modules Nat. Rev. Mater. 5 333-50 doi: 10.1038/s41578-019-0176-2 [234] Gu H, et al 2023 Design optimization of bifacial perovskite minimodules for improved efficiency and stability Nat. Energy 8 675-84 doi: 10.1038/s41560-023-01254-3 [235] Deng Y, Zheng X, Bai Y, Wang Q, Zhao J, Huang J 2018 Surfactant-controlled ink drying enables high-speed deposition of perovskite films for efficient photovoltaic modules Nat. Energy 3 560-6 doi: 10.1038/s41560-018-0153-9 [236] Jia Z, Peng J, Yu L, Jiang T, Li Y, Yao F, Ren F, Lin Q 2022 Spray-coating of AgI incorporated metal halide perovskites for high-performance x-ray detection Chem. Eng. J. 450 138229 doi: 10.1016/j.cej.2022.138229 [237] Zhang L, et al 2021 Ambient inkjet-printed high-efficiency perovskite solar cells: manipulating the spreading and crystallization behaviors of picoliter perovskite droplets Solar RRL 5 2100106 doi: 10.1002/solr.202100106 [238] Chen C, et al 2022 Perovskite solar cells based on screen-printed thin films Nature 612 266-71 doi: 10.1038/s41586-022-05346-0 [239] Ávila J, Momblona C, Boix P P, Sessolo M, Bolink H J 2017 Vapor-deposited perovskites: the route to high-performance solar cell production? Joule 1 431-42 doi: 10.1016/j.joule.2017.07.014 [240] Tait J G, Merckx T, Li W, Wong C, Gehlhaar R, Cheyns D, Turbiez M, Heremans P 2015 Determination of solvent systems for blade coating thin film photovoltaics Adv. Funct. Mater. 25 3393-8 doi: 10.1002/adfm.201501039 [241] Chao L, Niu T, Gao W, Ran C, Song L, Chen Y, Huang W 2021 Solvent engineering of the precursor solution toward large-area production of perovskite solar cells Adv. Mater. 33 2005410 doi: 10.1002/adma.202005410 [242] Hu Y, Chu Y, Wang Q, Zhang Z, Ming Y, Mei A, Rong Y, Han H 2019 Standardizing perovskite solar modules beyond cells Joule 3 2076-85 doi: 10.1016/j.joule.2019.08.015 [243] Deng Y, Van Brackle C H, Dai X, Zhao J, Chen B, Huang J 2019 Tailoring solvent coordination for high-speed, room-temperature blading of perovskite photovoltaic films Sci. Adv. 5 eaax7537 doi: 10.1126/sciadv.aax7537 [244] Chen S, Dai X, Xu S, Jiao H, Zhao L, Huang J 2021 Stabilizing perovskite-substrate interfaces for high-performance perovskite modules Science 373 902-7 doi: 10.1126/science.abi6323 [245] Fei C, et al 2023 Lead-chelating hole-transport layers for efficient and stable perovskite minimodules Science 380 823-9 doi: 10.1126/science.ade9463 [246] Chung J, et al 2023 Engineering perovskite precursor inks for scalable production of high-efficiency perovskite photovoltaic modules Adv. Energy Mater. 13 2300595 doi: 10.1002/aenm.202300595 [247] Wang L, et al 2023 Surfactant engineering for perovskite solar cells and submodules Matter 6 2987-3005 doi: 10.1016/j.matt.2023.06.039 [248] Li J, et al 2021 20.8% slot-die coated MAPbI3 perovskite solar cells by optimal DMSO-content and age of 2-ME based precursor inks Adv. Energy Mater. 11 2003460 doi: 10.1002/aenm.202003460 [249] Li J, et al 2023 Ink design enabling slot-die coated perovskite solar cells with >22% power conversion efficiency, micro-modules, and 1 year of outdoor performance evaluation Adv. Energy Mater. 13 2203898 doi: 10.1002/aenm.202203898 [250] Sangale S S, Kwon S-N, Patil P, Lee H-J, Na S-I 2023 Locally supersaturated inks for a slot-die process to enable highly efficient and robust perovskite solar cells Adv. Energy Mater. 13 2300537 doi: 10.1002/aenm.202300537 [251] Rana P J S, et al 2023 Molecular locking with all-organic surface modifiers enables stable and efficient slot-die-coated methyl-ammonium-free perovskite solar modules Adv. Mater. 35 2210176 doi: 10.1002/adma.202210176 [252] Fan B, Xiong J, Zhang Y, Gong C, Li F, Meng X, Hu X, Yuan Z, Wang F, Chen Y 2022 A bionic interface to suppress the coffee-ring effect for reliable and flexible perovskite modules with a near-90% yield rate Adv. Mater. 34 2201840 doi: 10.1002/adma.202201840 [253] Yu X, et al 2023 Moisture control enables high-performance sprayed perovskite solar cells under ambient conditions Mater. Today Energy 37 101391 doi: 10.1016/j.mtener.2023.101391 [254] Chalkias D A, Mourtzikou A, Katsagounos G, Kalarakis A N, Stathatos E 2023 Development of greener and stable inkjet-printable perovskite precursor inks for all-printed annealing-free perovskite solar mini-modules manufacturing Small Methods 7 2300664 doi: 10.1002/smtd.202300664 [255] Chen C, Ran C, Guo C, Yao Q, Wang J, Niu T, Li D, Chao L, Xia Y, Chen Y 2023 Fully screenprinted perovskite solar cells with 17% efficiency via tailoring confined perovskite crystallization within mesoporous layer Adv. Energy Mater. 13 2302654 doi: 10.1002/aenm.202302654 [256] Wang Y, et al 2023 Grain boundary elimination via recrystallization-assisted vapor deposition for efficient and stable perovskite solar cells and modules Adv. Mater. 35 2304625 doi: 10.1002/adma.202304625 [257] Tan L, et al 2023 Combined vacuum evaporation and solution process for high-efficiency large-area perovskite solar cells with exceptional reproducibility Adv. Mater. 35 2205027 doi: 10.1002/adma.202205027 [258] Tong G, et al 2023 Holistic strategies lead to enhanced efficiency and stability of hybrid chemical vapor deposition based perovskite solar cells and modules Adv. Energy Mater. 13 2300153 doi: 10.1002/aenm.202300153 [259] Fan Y, Chen H, Liu X, Ren M, Liang Y, Wang Y, Miao Y, Chen Y, Zhao Y 2023 Myth behind metastable and stable n-hexylammonium bromide-based low-dimensional perovskites J. Am. Chem. Soc. 145 8209-17 doi: 10.1021/jacs.3c01684 [260] Kim D, Choi H, Jung W, Kim C, Park E Y, Kim S, Jeon N J, Song S, Park T 2023 Phase transition engineering for effective defect passivation to achieve highly efficient and stable perovskite solar cells Energy Environ. Sci. 16 2045-55 doi: 10.1039/D3EE00636K [261] Martani S, et al 2023 Defect engineering to achieve photostable wide bandgap metal halide perovskites ACS Energy Lett. 8 2801-8 doi: 10.1021/acsenergylett.3c00610 [262] Afshari H, Sourabh S, Chacon S A, Whiteside V R, Penner R C, Rout B, Kirmani A R, Luther J M, Eperon G E, Sellers I R 2023 FACsPb triple halide perovskite solar cells with thermal operation over 200 °C ACS Energy Lett. 8 2408-13 doi: 10.1021/acsenergylett.3c00551 [263] Singh P, Soffer Y, Ceratti D R, Elbaum M, Oron D, Hodes G, Cahen D 2023 A-site cation dependence of self-healing in polycrystalline APbI3 perovskite films ACS Energy Lett. 8 2447-55 doi: 10.1021/acsenergylett.3c00017 [264] Yin J, Xu Z, Hu Q, Teobaldi G, Liu L M, Prezhdo O V 2023 Tuning octahedral tilting by doping to prevent detrimental phase transition and extend carrier lifetime in organometallic perovskites J. Am. Chem. Soc. 145 5393-9 doi: 10.1021/jacs.2c13593 [265] Cheng Y, Ma J, Luo H, Cai M, Xue T, Yu G, Ren Z, Song Y, Peng S, Zhang Y 2023 Unraveling segregation behavior of inactive secondary phase driven by ion-competition reaction for perovskite-2D PbI2 heterojunction solar cells Nano Energy 115 108690 doi: 10.1016/j.nanoen.2023.108690 [266] Wang M, Sun H, Wang M, Meng L, Li L 2023 Uracil induced simultaneously strengthening grain boundaries and interfaces enables high-performance perovskite solar cells with superior operational stability Adv. Mater. 36 2306415 doi: 10.1002/adma.202306415 [267] Wang M, Shi Z, Fei C, Deng Z J D, Yang G, Dunfield S P, Fenning D P, Huang J 2023 Ammonium cations with high pKa in perovskite solar cells for improved high-temperature photostability Nat. Energy 8 1229-39 doi: 10.1038/s41560-023-01362-0 [268] Yang Y, et al 2023 Inverted perovskite solar cells with over 2,000 h operational stability at 85 °C using fixed charge passivation Nat. Energy 9 37-46 doi: 10.1038/s41560-023-01377-7 [269] Kuan C-H, Ko Y-A, Wei-Guang Diau E 2023 Surface and interfacial passivations for FASnI3 solar cells with co-cations ACS Energy Lett. 8 2423-5 doi: 10.1021/acsenergylett.3c00742 [270] Greve C, Ramming P, Griesbach M, Leupold N, Moos R, Köhler A, Herzig E M, Panzer F, Grüninger H 2023 To stop or to shuttle halides? The role of an ionic liquid in thermal halide mixing of hybrid perovskites ACS Energy Lett. 8 5041-9 doi: 10.1021/acsenergylett.3c01878 [271] Zhang L, et al 2024 The issues on the commercialization of perovskite solar cells Mater. Futures 3 022101 doi: 10.1088/2752-5724/ad37cf [272] Hossain K, Kulkarni A, Bothra U, Klingebiel B, Kirchartz T, Saliba M, Kabra D 2023 Resolving the hydrophobicity of the Me-4PACz hole transport layer for inverted perovskite solar cells with efficiency >20% ACS Energy Lett. 8 3860-7 doi: 10.1021/acsenergylett.3c01385 [273] Luo Y, Chitumalla R K, Ham S-Y, Cakan D N, Kim T, Paek S, Meng Y S, Jang J, Fenning D P, Kim M-C 2023 A Si-substituted spirobifluorene hole-transporting material for perovskite solar cells ACS Energy Lett. 8 5003-11 doi: 10.1021/acsenergylett.3c01964 [274] Karimipour M, Paingott Parambil A, Tabah Tanko K, Zhang T, Gao F, LiraCantu M 2023 Functionalized MXene/halide perovskite heterojunctions for perovskite solar cells stable under real outdoor conditions Adv. Energy Mater. 13 2301959 doi: 10.1002/aenm.202301959 [275] Hong J, Xu Z, Lungwitz D, Scott J, Johnson H M, Kim Y-H, Kahn A, Rand B P 2023 Mitigating iodine diffusion by a MoO3-organic composite hole transport layer for stable perovskite solar cells ACS Energy Lett. 8 4984-92 doi: 10.1021/acsenergylett.3c01873 [276] Ren Y, Wei Y, Li T, Mu Y, Zhang M, Yuan Y, Zhang J, Wang P 2023 Spirobifluorene with an asymmetric fluorenylcarbazolamine electron-donor as the hole transport material increases thermostability and efficiency of perovskite solar cells Energy Environ. Sci. 16 3534-42 doi: 10.1039/D3EE01284K [277] Yu C, Hu Y, Yang J, Huang J, Li B, Wu L, Li F 2022 Efficient and stable inverted perovskite solar cells with TOASiW12modified Al as a cathode Adv. Funct. Mater. 33 2209290 doi: 10.1002/adfm.202209290 [278] Chu Q-Q, Sun Z, Wang D, Cheng B, Wang H, Wong C-P, Fang B 2023 Encapsulation: the path to commercialization of stable perovskite solar cells Matter 6 3838-63 doi: 10.1016/j.matt.2023.08.016 [279] Tian C, et al 2023 In situ polymerizing internal encapsulation strategy enables stable perovskite solar cells toward lead leakage suppression Adv. Funct. Mater. 33 2302270 doi: 10.1002/adfm.202302270 [280] Castro-Méndez A-F, et al 2023 Vapor phase infiltration improves thermal stability of organic layers in perovskite solar cells ACS Energy Lett. 8 844-52 doi: 10.1021/acsenergylett.2c02272 [281] Wang Z, Wang J, Li Z, Chen Z, Shangguan L, Fan S, Duan Y 2023 Crosslinking and densification by plasma-enhanced molecular layer deposition for hermetic seal of flexible perovskite solar cells Nano Energy 109 108232 doi: 10.1016/j.nanoen.2023.108232 [282] Lee J W, Park N G 2019 Chemical approaches for stabilizing perovskite solar cells Adv. Energy Mater. 10 1903249 doi: 10.1002/aenm.201903249 [283] Frost J M, Butler K T, Brivio F, Hendon C H, van Schilfgaarde M, Walsh A 2014 Atomistic origins of high-performance in hybrid halide perovskite solar cells Nano Lett. 14 2584-90 doi: 10.1021/nl500390f [284] Leguy A M A, et al 2015 Reversible hydration of CH3NH3PbI3 in films, single crystals, and solar cells Chem. Mater. 27 3397-407 doi: 10.1021/acs.chemmater.5b00660 [285] Song Z, Abate A, Watthage S C, Liyanage G K, Phillips A B, Steiner U, Graetzel M, Heben M J 2016 Perovskite solar cell stability in humid air: partially reversible phase transitions in the PbI2CH3NH3IH2O system Adv. Energy Mater. 6 1600846 doi: 10.1002/aenm.201600846 [286] Liu X, Luo D, Lu Z H, Yun J S, Saliba M, Seok S I, Zhang W 2023 Stabilization of photoactive phases for perovskite photovoltaics Nat. Rev. Chem. 7 462-79 doi: 10.1038/s41570-023-00492-z [287] Hidalgo J, et al 2023 Synergistic role of water and oxygen leads to degradation in formamidinium-based halide perovskites J. Am. Chem. Soc. 145 24549-57 doi: 10.1021/jacs.3c05657 [288] Meng Y, Sunkari P P, Meil M, Hillhouse H W 2023 Chemical reaction kinetics of the decomposition of low-bandgap tin-lead halide perovskite films and the effect on the ambipolar diffusion length ACS Energy Lett. 8 1688-96 doi: 10.1021/acsenergylett.2c02733 [289] Azmi R, Zhumagali S, Bristow H, Zhang S, Yazmaciyan A, Pininti A R, Utomo D S, Subbiah A S, De Wolf S 2023 Moisture-resilient perovskite solar cells for enhanced stability Adv. Mater. 36 e2211317 doi: 10.1002/adma.202211317 [290] Raval P, Kennard R M, Vasileiadou E S, Dahlman C J, Spanopoulos I, Chabinyc M L, Kanatzidis M, Manjunatha Reddy G N 2022 Understanding instability in formamidinium lead halide perovskites: kinetics of transformative reactions at grain and subgrain boundaries ACS Energy Lett. 7 1534-43 doi: 10.1021/acsenergylett.2c00140 [291] Shi L, et al 2020 Gas chromatography-mass spectrometry analyses of encapsulated stable perovskite solar cells Science 368 eaba2412 doi: 10.1126/science.aba2412 [292] Aitola K, Gava Sonai G, Markkanen M, Jaqueline Kaschuk J, Hou X, Miettunen K, Lund P D 2022 Encapsulation of commercial and emerging solar cells with focus on perovskite solar cells Sol. Energy 237 264-83 doi: 10.1016/j.solener.2022.03.060 [293] You S, et al 2023 Radical polymeric p-doping and grain modulation for stable, efficient perovskite solar modules Science 379 288-94 doi: 10.1126/science.add8786 [294] Li B, Li S, Gong J, Wu X, Li Z, Gao D, Zhao D, Zhang C, Wang Y, Zhu Z 2023 Fundamental understanding of stability for halide perovskite photovoltaics: the importance of interfaces Chem 10 35-47 doi: 10.1016/j.chempr.2023.09.002 [295] Sadhu A, Guo Y, Salim T, Sun Q, Mhaisalkar S G, Sum T C, Wong L H 2023 Elucidating the role of chalcogenidebased interface passivators in enhancing the stability of perovskite solar cells Adv. Funct. Mater. 33 2305215 doi: 10.1002/adfm.202305215 [296] Ramadan A J 2023 Perovskite solar cells take the heat Nat. Energy 8 1186-7 doi: 10.1038/s41560-023-01400-x [297] Yue T, et al 2023 A binary solution strategy enables high-efficiency quasi-2D perovskite solar cells with excellent thermal stability ACS Nano 17 14632-43 doi: 10.1021/acsnano.3c01908 [298] Duan G, et al 2023 Fabricate the compressive-strained perovskite solar cells through the lattice-matching chelation ACS Energy Lett. 8 2308-15 doi: 10.1021/acsenergylett.3c00345 [299] Wang T, Yang J, Cao Q, Pu X, Li Y, Chen H, Zhao J, Zhang Y, Chen X, Li X 2023 Room temperature nondestructive encapsulation via self-crosslinked fluorosilicone polymer enables damp heat-stable sustainable perovskite solar cells Nat. Commun. 14 1342 doi: 10.1038/s41467-023-36918-x [300] Le H K D, Lin C-K, Jin J, Zhang Y, Lin Z, Vailionis A, Tamura N, Yang P 2023 Quantification of strain and its impact on the phase stabilization of all-inorganic cesium lead iodide perovskites Matter 6 2368-82 doi: 10.1016/j.matt.2023.05.027 [301] Peng S, et al 2023 Kinetics and mechanism of light-induced phase separation in a mixed-halide perovskite Matter 6 2052-65 doi: 10.1016/j.matt.2023.04.025 [302] Wu W, Xiong H, Deng J, Wang M, Zheng H, Wu M, Yuan S, Ma Z, Fan J, Li W 2023 Rotatable skeleton for the alleviation of thermally accumulated defects in inorganic perovskite solar cells ACS Energy Lett. 8 2284-91 doi: 10.1021/acsenergylett.3c00535 [303] Xu Z, et al 2023 Origins of photoluminescence instabilities at halide perovskite/organic hole transport layer interfaces J. Am. Chem. Soc. 145 11846-58 doi: 10.1021/jacs.3c03539 [304] Chen Z, Xue H, Brocks G, Bobbert P A, Tao S 2023 Thermodynamic origin of the photostability of the two-dimensional perovskite PEA2Pb(I1-xBx)4 ACS Energy Lett. 8 943-9 doi: 10.1021/acsenergylett.2c02463 [305] Gao Y, et al 2023 Elimination of unstable residual lead iodide near the buried interface for the stability improvement of perovskite solar cells Energy Environ. Sci. 16 2295-303 doi: 10.1039/D3EE00293D [306] Krishna A, et al 2023 Mitigating the heterointerface driven instability in perovskite photovoltaics ACS Energy Lett. 8 3604-13 doi: 10.1021/acsenergylett.3c01029 [307] Du G, Yang L, Dong P, Qi L, Che Y, Wang X, Zhang X, Zhang J 2023 Sequential moleculedoped hole conductor to achieve >23% perovskite solar cells with 3000hour operational stability Adv. Mater. 35 2303692 doi: 10.1002/adma.202303692 [308] Li X, Yang H, Liu A, Lu C, Yuan H, Zhang W, Fang J 2023 Iodine-trapping strategy for light-heat stable inverted perovskite solar cells under ISOS protocols Energy Environ. Sci. 16 6071-7 doi: 10.1039/D3EE03405D [309] Parkhomenko H P, et al 2023 Impact of a shortpulse highintense proton irradiation on highperformance perovskite solar cells Adv. Funct. Mater. 34 2310404 doi: 10.1002/adfm.202310404 [310] Yuan G, et al 2023 Inhibited crack development by compressive strain in perovskite solar cells with improved mechanical stability Adv. Mater. 35 2211257 doi: 10.1002/adma.202211257 [311] Jin B, Ren L, Gou Y, Ma R, Liang Z, Li Z, Dong B, Zhao L, Wang S, Wu C 2023 Fiber-bridging-induced toughening of perovskite for resistance to crack propagation Matter 6 1622-38 doi: 10.1016/j.matt.2023.03.014 [312] Zhou J, et al 2023 Modulation of perovskite degradation with multiple-barrier for light-heat stable perovskite solar cells Nat. Commun. 14 6120 doi: 10.1038/s41467-023-41856-9 [313] Kirmani A R, et al 2023 Metal oxide barrier layers for terrestrial and space perovskite photovoltaics Nat. Energy 8 191-202 doi: 10.1038/s41560-022-01189-1 [314] Fu G, Lee D-K, Ma C, Park N-G 2023 Disulfidation interfacial engineering toward stable, lead-immobilizable perovskite solar cells ACS Energy Lett. 8 4563-71 doi: 10.1021/acsenergylett.3c01823 [315] Kim S-G, de Monfreid T, Kim J-H, Goubard F, Berry J J, Zhu K, Bui T-T, Park N-G 2023 Nanographene coupled with interfacial pyrene derivatives for thermally stable perovskite solar cells ACS Energy Lett. 8 2267-75 doi: 10.1021/acsenergylett.3c00262 [316] Pasha A, et al 2023 Cationic and anionic vacancy healing for suppressed halide exchange and phase segregation in perovskite solar cells ACS Energy Lett. 8 3081-7 doi: 10.1021/acsenergylett.3c01024 [317] Kang D-H, Lee S-U, Park N-G 2023 Effect of residual chloride in FAPbI3 film on photovoltaic performance and stability of perovskite solar cell ACS Energy Lett. 8 2122-9 doi: 10.1021/acsenergylett.3c00568 [318] Li D, Xing Z, Meng X, Hu X, Hu T, Chen Y 2023 Spontaneous internal encapsulation via dual interfacial perovskite heterojunction enables highly efficient and stable perovskite solar cells Nano Lett. 23 3484-92 doi: 10.1021/acs.nanolett.3c00486 [319] Wang J, Uddin M A, Chen B, Ying X, Ni Z, Zhou Y, Li M, Wang M, Yu Z, Huang J 2023 Enhancing photostability of SnPb perovskite solar cells by an alkylammonium pseudohalogen additive Adv. Energy Mater. 13 2204115 doi: 10.1002/aenm.202204115 [320] GilEscrig L, et al 2023 Efficient and thermally stable wide bandgap perovskite solar cells by dualsource vacuum deposition Adv. Funct. Mater. 33 2214357 doi: 10.1002/adfm.202214357 [321] Wu X, et al 2023 Eco-friendly perovskite solar cells: from materials design to device processing and recycling EcoMat 5 e12352 doi: 10.1002/eom2.12352 [322] Yu B, Tan S, Li D, Meng Q 2023 The stability of inorganic perovskite solar cells: from materials to devices Mater. Futures 2 032101 doi: 10.1088/2752-5724/acd56c [323] Wang S, Li M-H, Jiang Y, Hu J-S 2023 Instability of solution-processed perovskite films: origin and mitigation strategies Mater. Futures 2 012102 doi: 10.1088/2752-5724/acb838 [324] Khenkin M, et al 2024 Light cycling as a key to understanding the outdoor behaviour of perovskite solar cells Energy Environ. Sci. 17 602-10 doi: 10.1039/D3EE03508E [325] Liu W, Raza H, Hu X, Liu S, Liu Z, Chen W 2023 Key bottlenecks and distinct contradictions in fast commercialization of perovskite solar cells Mater. Futures 2 012103 doi: 10.1088/2752-5724/acba35 [326] Jiang Y, Qiu L, Juarez-Perez E J, Ono L K, Hu Z, Liu Z, Wu Z, Meng L, Wang Q, Qi Y 2019 Reduction of lead leakage from damaged lead halide perovskite solar modules using self-healing polymer-based encapsulation Nat. Energy 4 585-93 doi: 10.1038/s41560-019-0406-2 [327] Jin X, Yang Y, Zhao T, Wu X, Liu B, Han M, Chen W, Chen T, Hu J-S, Jiang Y 2022 Mitigating potential lead leakage risk of perovskite solar cells by device architecture engineering from exterior to interior ACS Energy Lett. 7 3618-36 doi: 10.1021/acsenergylett.2c01602 [328] Yang D, Yang R, Priya S, Liu S 2019 Recent advances in flexible perovskite solar cells: fabrication and applications Angew. Chem., Int. Ed. 58 4466-83 doi: 10.1002/anie.201809781 [329] Zhu Y, Hu M, Xu M, Zhang B, Huang F, Cheng Y-B, Lu J 2022 Bilayer metal halide perovskite for efficient and stable solar cells and modules Mater. Futures 1 042102 doi: 10.1088/2752-5724/ac9248 [330] Podapangi S K, Jafarzadeh F, Mattiello S, Korukonda T B, Singh A, Beverina L, Brown T M 2023 Green solvents, materials, and lead-free semiconductors for sustainable fabrication of perovskite solar cells RSC Adv. 13 18165-206 doi: 10.1039/D3RA01692G [331] Miao Y, Ren M, Chen Y, Wang H, Chen H, Liu X, Wang T, Zhao Y 2023 Green solvent enabled scalable processing of perovskite solar cells with high efficiency Nat. Sustain. 6 1465-73 doi: 10.1038/s41893-023-01196-4 [332] Zhai P, Ren L, Zhang Y, Xu Z, Wu Y, Zhao K, Zhang L, Liu S 2023 Performance-limiting formation kinetics in green water-processed perovskite solar cells Energy Environ. Sci. 16 3014-24 doi: 10.1039/D2EE03742D [333] Zhang Y, Ren L, Zhai P, Xin J, Wu J, Zhang Q, Chen X, Zhao K, Zhang L, (Frank) Liu S 2024 The synergistic effect of dry air and surfactants enables water to be a promising green solvent for stable and efficient perovskite solar cells Energy Environ. Sci. 17 296-306 doi: 10.1039/D3EE02459H [334] Zhang Z, et al 2023 Green-antisolvent-regulated distribution of p-type self-doping enables tin perovskite solar cells with an efficiency of over 14% Energy Environ. Sci. 16 3430-40 doi: 10.1039/D3EE00601H [335] Xiu J, et al 2023 A sustainable approach using nanocrystals functionalized green alkanes as efficient antisolvents to fabricate high-quality perovskite films Adv. Energy Mater. 13 2300566 doi: 10.1002/aenm.202300566 [336] Yu X, Gao D, Li Z, Sun X, Li B, Zhu Z, Li Z 2023 Green-solvent processable dopant-free hole transporting materials for inverted perovskite solar cells Angew. Chem., Int. Ed. 62 e202218752 doi: 10.1002/anie.202218752 [337] Zhang H, Lee J-W, Nasti G, Handy R, Abate A, Grätzel M, Park N-G 2023 Lead immobilization for environmentally sustainable perovskite solar cells Nature 617 687-95 doi: 10.1038/s41586-023-05938-4 [338] Wu P, Wang S, Li X, Zhang F 2022 Beyond efficiency fever: preventing lead leakage for perovskite solar cells Matter 5 1137-61 doi: 10.1016/j.matt.2022.02.012 [339] Li X, Zhang F, He H, Berry J J, Zhu K, Xu T 2020 On-device lead sequestration for perovskite solar cells Nature 578 555-8 doi: 10.1038/s41586-020-2001-x [340] Li X, Zhang F, Wang J, Tong J, Xu T, Zhu K 2021 On-device lead-absorbing tapes for sustainable perovskite solar cells Nat. Sustain. 4 1038-41 doi: 10.1038/s41893-021-00789-1 [341] Chen S, Deng Y, Gu H, Xu S, Wang S, Yu Z, Blum V, Huang J 2020 Trapping lead in perovskite solar modules with abundant and low-cost cation-exchange resins Nat. Energy 5 1003-11 doi: 10.1038/s41560-020-00716-2 [342] Xu D, Mai R, Jiang Y, Chen C, Wang R, Xu Z, Kempa K, Zhou G, Liu J-M, Gao J 2022 An internal encapsulating layer for efficient, stable, repairable and low-lead-leakage perovskite solar cells Energy Environ. Sci. 15 3891-900 doi: 10.1039/D2EE01016J [343] Chen S S, Deng Y H, Xiao X, Xu S, Rudd P N, Huang J S 2021 Preventing lead leakage with built-in resin layers for sustainable perovskite solar cells Nat. Sustain. 4 636-43 doi: 10.1038/s41893-021-00701-x [344] Xiao X, et al 2021 Lead-adsorbing ionogel-based encapsulation for impact-resistant, stable, and lead-safe perovskite modules Sci. Adv. 7 eabi8249 doi: 10.1126/sciadv.abi8249 [345] Valastro S, et al 2023 Preventing lead leakage in perovskite solar cells with a sustainable titanium dioxide sponge Nat. Sustain. 6 974-83 doi: 10.1038/s41893-023-01120-w [346] Luo H, Li P, Ma J, Li X, Zhu H, Cheng Y, Li Q, Xu Q, Zhang Y, Song Y 2023 Bioinspired “cage traps” for closed-loop lead management of perovskite solar cells under real-world contamination assessment Nat. Commun. 14 4730 doi: 10.1038/s41467-023-40421-8 [347] Yang M, Tian T, Fang Y, Li W-G, Liu G, Feng W, Xu M, Wu W-Q 2023 Reducing lead toxicity of perovskite solar cells with a built-in supramolecular complex Nat. Sustain. 6 1455-64 doi: 10.1038/s41893-023-01181-x [348] Zhang J, et al 2023 Thermally crosslinked f-rich polymer to inhibit lead leakage for sustainable perovskite solar cells and modules Angew. Chem., Int. Ed. 62 e202305221 doi: 10.1002/anie.202305221 [349] Xu Y, Guo X, Lin Z, Wang Q, Su J, Zhang J, Hao Y, Yang K, Chang J 2023 Perovskite films regulation via hydrogen-bonded polymer network for efficient and stable perovskite solar cells Angew. Chem., Int. Ed. 62 e202306229 doi: 10.1002/anie.202306229