Evidence for reversible oxygen ion movement during electrical pulsing: enabler of emerging ferroelectricity in binary oxides
doi: 10.1088/2752-5724/ad3bd5
-
Abstract: AbstractFerroelectric HfO2-based materials and devices show promising potential for applications in information technology but face challenges with inadequate electrostatic control, degraded reliability, and serious variation in effective oxide thickness scaling. We demonstrate a novel interface-type switching strategy to realize ferroelectric characteristics in atomic-scale amorphous binary oxide films, which are formed in oxygen-deficient conditions by atomic layer deposition at low temperatures. This approach can avoid the shortcomings of reliability degradation and gate leakage increment in scaling polycrystalline doped HfO2-based films. Using theoretical modeling and experimental characterization, we show the following. (1) Emerging ferroelectricity exists in ultrathin oxide systems as a result of microscopic ion migration during the switching process. (2) These ferroelectric binary oxide films are governed by an interface-limited switching mechanism, which can be attributed to oxygen vacancy migration and surface defects related to electron (de)trapping. (3) Transistors featuring ultrathin amorphous dielectrics, used for non-volatile memory applications with an operating voltage reduced to ±1 V, have also been experimentally demonstrated. These findings suggest that this strategy is a promising approach to realizing next-generation complementary metal-oxide semiconductors with scalable ferroelectric materials.
-
Key words:
- ferroelectric /
- binary oxide /
- mobile ion /
- amorphous dielectric /
- nonvolatile memory
-
Figure 1. (a)-(d) HRTEM image of the emerging ferroelectric materials-based MIM and MOS capacitor with amorphous ultrathin binary oxide films (ZrOx, AlOx, HfOx, SiOx). (e) Measured P-V characteristics of the ferroelectric materials based on MIM and MOS capacitors with different binary oxide films at 1 kHz. Ferroelectric P-V curves can be observed.
Figure 2. (a) PUND measurement of a MIM capacitor at 1 kHz. The displacement current is confirmed. (b) Detection of local SHG in a ZrOx thin film. (c) Amplitude and phase images of PFM measurement for the ZrOx/TaN sample. Phase change indicates the opposite polarity. (d) TOF-SIMS composition profiles of O18 and O16 normalized for TaN/ZrOx/TaN samples. Relative concentration changes of the O18/O16 ratio at the TaN/ZrOx interface suggest that polarization is accompanied by the migration of oxygen ions.
Figure 4. (a)-(f) P-V and I-V curves under different trapping-detrapping processes of oxygen vacancies modulated by reset and set pulse. Paraelectric-type and ferroelectric-type characteristics can be reversibly switched. (g) Multiple capacitive states are achieved and are measured at 1 kHz for (a)-(f) due to the modulation of oxygen vacancies. (h) Multiple resistance states are obtained. The high resistance state corresponds to the low capacitive state and the low resistance state corresponds to the high capacitive state, respectively. (i) Cycle-to-cycle variability of multiple capacitive states.
Figure 5. (a) The schematic of the simulated MIFET. (b) Comparison of ID-VGS curves between the simulated results of MIFET and the normal FET without mobile ions at VDS= -0.05 V. (c) Schematic cross-section of SiOx-based MIFET. (d) HRTEM images of the fabricated SiOx MIFET gate stack, showing the amorphous SiOx film with a thickness of 4.5 nm. (e) Measured P-V characteristics of the TaN/SiOx/Ge gate stack. (f) Measured ID-VGS curves of the SiOx MIFET at VDS = -0.05 V. (g) Memory window of SiOx MIFET under various PGM/ERS conditions; the operating voltage can reach below ±1 V.
-
[1] Radamson H H, et al 2020 State of the art and future perspectives in advanced CMOS technology Nanomaterials 10 1555 doi: 10.3390/nano10081555 [2] Kim Y-B 2010 Challenges for nanoscale MOSFETs and emerging nanoelectronics Trans. Electr. Electron. Mater. 11 93-105 doi: 10.4313/TEEM.2010.11.3.093 [3] Shalf J 2020 The future of computing beyond Moore’s Law Phil. Trans. R. Soc. A 378 20190061 doi: 10.1098/rsta.2019.0061 [4] Avci U E, Morris D H, Young I A 2015 Tunnel field-effect transistors: prospects and challenges IEEE J. Electron Devices Soc. 3 88-95 doi: 10.1109/JEDS.2015.2390591 [5] Cao W, Banerjee K 2020 Is negative capacitance FET a steep-slope logic switch? Nat. Commun. 11 196 doi: 10.1038/s41467-019-13797-9 [6] Zhou J, Han G, Li Q, Peng Y, Lu X, Zhang C, Zhang J, Sun Q, Zhang D W, Hao Y 2016 Ferroelectric HfZrOx Ge and GeSn PMOSFETs with Sub-60 mV/decade subthreshold swing, negligible hysteresis, and improved Ids IEEE Int. Electron Devices Meeting (IEDM) 12.2.1-4 [7] Verma N, Jia H, Valavi H, Tang Y, Ozatay M, Chen L-Y, Zhang B, Deaville P 2019 In-memory computing: advances and prospects IEEE J. Solid-State Circuits 11 43-55 doi: 10.1109/MSSC.2019.2922889 [8] Ielmini D, Wong H-S P 2018 In-memory computing with resistive switching devices Nat. Electron. 1 333-43 doi: 10.1038/s41928-018-0092-2 [9] Sebastian A, Le Gallo M, Khaddam-Aljameh R, Eleftheriou E 2020 Memory devices and applications for in-memory computing Nat. Nanotechnol. 15 529-44 doi: 10.1038/s41565-020-0655-z [10] Ajayan J, Mohankumar P, Nirmal D, Leo Joseph L M I, Bhattacharya S, Sreejith S, Kollem S, Rebelli S, Tayal S, Mounika B 2023 Ferroelectric field effect transistors (FeFETs): advancements, challenges and exciting prospects for next generation non-volatile memory (NVM) applications Mater. Today Commun. 35 105591 doi: 10.1016/j.mtcomm.2023.105591 [11] Khan A I, Keshavarzi A, Datta S 2020 The future of ferroelectric field-effect transistor technology Nat. Electron. 3 588-97 doi: 10.1038/s41928-020-00492-7 [12] Ghoneim M T, Zidan M A, Alnassar M Y, Hanna A N, Kosel J, Salama K N, Hussain M M 2015 Thin PZT-based ferroelectric capacitors on flexible silicon for nonvolatile memory applications Adv. Electron. Mater. 1 1500045 doi: 10.1002/aelm.201500045 [13] Dünkel S, et al 2017 A FeFET based super-low-power ultra-fast embedded NVM technology for 22nm FDSOI and beyond IEEE Int. Electron Devices Meeting (IEDM) 19.7.1-4 [14] Sharma A, Roy K 2018 1T non-volatile memory design using sub-10nm ferroelectric FETs IEEE Electron Device Lett. 39 359-62 doi: 10.1109/LED.2018.2797887 [15] Okuno J, et al 2020 SoC compatible 1T1C FeRAM memory array based on ferroelectric Hf0.5Zr0.5O2 IEEE Symp. on VLSI Technology (VLSIT) 1-2 [16] Birudu V, Yellampalli S S, Vaddi R 2023 A negative capacitance FET based energy efficient 6T SRAM computing-in-memory (CiM) cell design for deep neural networks Microelectron. J. 139 105867 doi: 10.1016/j.mejo.2023.105867 [17] Müller J, et al 2013 Ferroelectric hafnium oxide: a CMOS-compatible and highly scalable approach to future ferroelectric memories IEEE Int. Electron Devices Meeting 10.8.1-4 [18] Schroeder U, Park M H, Mikolajick T, Hwang C S 2022 The fundamentals and applications of ferroelectric HfO2 Nat. Rev. Mater. 7 653-69 doi: 10.1038/s41578-022-00431-2 [19] Böscke T, Müller J, Bräuhaus D, Schröder U, Bottger U 2011 Ferroelectricity in hafnium oxide thin films Appl. Phys. Lett. 99 102903 doi: 10.1063/1.3634052 [20] Trentzsch M, et al 2016 A 28nm HKMG super low power embedded NVM technology based on ferroelectric FETs IEEE Int. Electron Devices Meeting (IEDM) 11.5.1-4 [21] Müller J, et al 2012 Ferroelectricity in HfO2 enables nonvolatile data storage in 28 nm HKMG IEEE Symp. on VLSI Technology (VLSIT) 25-26 [22] Mueller S, Summerfelt S R, Muller J, Schroeder U, Mikolajick T 2012 Ten-nanometer ferroelectric Si:hfO2 films for next-generation FRAM capacitors IEEE Electron Device Lett. 33 1300-2 doi: 10.1109/LED.2012.2204856 [23] Alcala R, et al 2022 BEOL integrated ferroelectric HfO2-based capacitors for FeRAM: extrapolation of reliability performance to use conditions IEEE J. Electron Devices Soc. 10 907-12 doi: 10.1109/JEDS.2022.3198138 [24] Cheema S S, Shanker N, Hsu C-H, Datar A, Bae J, Kwon D, Salahuddin S 2022 One nanometer HfO2-based ferroelectric tunnel junctions on silicon Adv. Electron. Mater. 8 2100499 doi: 10.1002/aelm.202100499 [25] Max B, Hoffmann M, Mulaosmanovic H, Slesazeck S, Mikolajick T 2020 Hafnia-based double-layer ferroelectric tunnel junctions as artificial synapses for neuromorphic computing ACS Appl. Electron. Mater. 2 4023-33 doi: 10.1021/acsaelm.0c00832 [26] Luo Q, et al 2018 Hybrid 1T e-DRAM and e-NVM realized in one 10 nm node ferro FinFET device with charge trapping and domain switching effects IEEE Int. Electron Devices Meeting (IEDM) 2.6.1-4 [27] Kim B H, Kuk S-H, Kim S K, Kim J P, Suh Y-J, Jeong J, Geum D-M, Baek S-H, Kim S H 2023 Oxygen scavenging in HfZrOx-based n/p-FeFETs for switching voltage scaling and endurance/retention improvement Adv. Electron. Mater. 9 2201257 doi: 10.1002/aelm.202201257 [28] Jerry M, Chen P-Y, Zhang J, Sharma P, Ni K, Yu S, Datta S 2017 Ferroelectric FET analog synapse for acceleration of deep neural network training IEEE Int. Electron Devices Meeting (IEDM) 6.2.1-410.1002/cpcb.18 [29] Liao C-Y, et al 2021 Multibit ferroelectric FET based on nonidentical double HfZrO2 for high-density nonvolatile memory IEEE Electron Device Lett. 42 617-20 doi: 10.1109/LED.2021.3060589 [30] Bae J-H, Kwon D, Jeon N, Cheema S, Tan A J, Hu C, Salahuddin S 2020 Highly scaled, high endurance, Ω-gate, nanowire ferroelectric FET memory transistors IEEE Electron Device Lett. 41 1637-40 doi: 10.1109/LED.2020.3028339 [31] Tu L, Wang X, Wang J, Meng X, Chu J 2018 Ferroelectric negative capacitance field effect transistor Adv. Electron. Mater. 4 1800231 doi: 10.1002/aelm.201800231 [32] Hoffmann M, Max B, Mittmann T, Schroeder U, Slesazeck S, Mikolajick T 2018 Demonstration of high-speed hysteresis-free negative capacitance in ferroelectric Hf0.5Zr0.5O2 IEEE Int. Electron Devices Meeting (IEDM) 31.6.1-4 [33] Zhou J, Han G, Li J, Liu Y, Peng Y, Zhang J, Sun Q-Q, Zhang D W, Hao Y 2018 Negative differential resistance in negative capacitance FETs IEEE Electron Device Lett. 39 622-5 doi: 10.1109/LED.2018.2810071 [34] Cheema S S, et al 2022 Emergent ferroelectricity in subnanometer binary oxide films on silicon Science 376 648-52 doi: 10.1126/science.abm8642 [35] Endo K, Kato K, Takenaka M, Takagi S 2019 Electrical characteristic of atomic layer deposition La2O3 /Si MOSFETs with ferroelectric-type hysteresis Jpn. J. Appl. Phys. 58 SBBA05 doi: 10.7567/1347-4065/aafecf [36] Chang C-Y, Endo K, Kato K, Yokoyama C, Takenaka M, Takagi S 2016 Impact of La2O3/InGaAs MOS interface on InGaAs MOSFET performance and its application to InGaAs negative capacitance FET IEEE Int. Electron Devices Meeting (IEDM) 12.5.1-4 [37] Liu H, et al 2019 ZrO2 ferroelectric FET for non-volatile memory application IEEE Electron Device Lett. 40 1419-22 doi: 10.1109/LED.2019.2930458 [38] Peng Y, et al 2020 Memory behavior of an Al2O3 gate dielectric non-volatile field-effect transistor IEEE Electron Device Lett. 41 1340-3 doi: 10.1109/LED.2020.3010363 [39] Feng Z, et al 2021 Ferroelectriclike behavior in TaN/Highk/Si system based on amorphous oxide Adv. Funct. Mater. 7 2200414 doi: 10.1002/aelm.202100414 [40] Liu H, Peng Y, Han G, Liu Y, Zhong N, Duan C, Hao Y 2020 ZrO2 ferroelectric field-effect transistors enabled by the switchable oxygen vacancy dipoles Nanoscale Res. Lett. 15 120 doi: 10.1186/s11671-020-03353-6 [41] Wang Q, et al 2019 Interface-engineered reliable HfO2-based RRAM for synaptic simulation J. Mater. Chem. C 7 12682-7 doi: 10.1039/C9TC04880D [42] Jeong H Y, Lee J Y, Choi S-Y 2010 Interface-engineered amorphous TiO2-based resistive memory devices Adv. Funct. Mater. 20 3912-7 doi: 10.1002/adfm.201001254 [43] Pintilie L, Alexe M 2005 Ferroelectric-like hysteresis loop in nonferroelectric systems Appl. Phys. Lett. 87 112903 doi: 10.1063/1.2045543 [44] Wu C, Ye H, Shaju N, Smith J, Grisafe B, Datta S, Fay P 2020 Hf0.5Zr0.5O2 based ferroelectric gate HEMTs (FeHEMTs) with large threshold voltage tuning range IEEE Electron Device Lett. 41 337 doi: 10.1109/LED.2020.2965330 [45] Kim J Y, Choi M-J, Jang H W 2021 Ferroelectric field effect transistors: progress and perspective APL Mater. 9 021102 doi: 10.1063/5.0035515 [46] Nukala P, et al 2021 Reversible oxygen migration and phase transitions in hafnia-based ferroelectric devices Science 372 630-5 doi: 10.1126/science.abf3789 [47] Baikalov A, Wang Y Q, Shen B, Lorenz B, Tsui S, Sun Y Y, Xue Y Y, Chu C W 2003 Field-driven hysteretic and reversible resistive switch at the Ag-Pr0.7Ca0.3MnO3 interface Appl. Phys. Lett. 83 957-9 doi: 10.1063/1.1590741 [48] Chouprik A, Negrov D, Tsymbal E Y, Zenkevich A 2021 Defects in ferroelectric HfO2 Nanoscale 13 11635-78 doi: 10.1039/D1NR01260F [49] Li Y, Li J, Liang R, Zhao R, Xiong B, Liu H, Tian H, Yang Y, Ren T 2019 Switching dynamics of ferroelectric HfO2-ZrO2 with various ZrO2 contents Appl. Phys. Lett. 114 142902 doi: 10.1063/1.5093793 [50] Lyu X, Si M, Shrestha P R, Cheung K P, Ye P D 2019 First direct measurement of sub-nanosecond polarization switching in ferroelectric hafnium zirconium oxide IEEE Int. Electron Devices Meeting (IEDM) 15.2.1-4 [51] Li Y, Fuller E, Asapu S, Agarwal S, Kurita T, Yang J, Talin A 2019 Low-voltage, CMOS-free synaptic memory based on LixTiO2 redox transistors ACS Appl. Mater. Interfaces 11 38982-92 doi: 10.1021/acsami.9b14338 [52] Chen J, et al 2023 Controlling the ferroelectricity of doped-HfO2 via reversible migration of oxygen vacancy IEEE Trans. Electron Devices 70 1789-94 doi: 10.1109/TED.2023.3246028 [53] Huang J-Y, Yang Y-W, Hsu W-H, Chang E-W, Chen M-H, Wu Y-R 2022 Influences of dielectric constant and scan rate on hysteresis effect in perovskite solar cell with simulation and experimental analyses Sci. Rep. 12 7927 doi: 10.1038/s41598-022-11899-x [54] Yan Z B, Liu J M 2013 Coexistence of high performance resistance and capacitance memory based on multilayered metal-oxide structures Sci. Rep. 3 2482 doi: 10.1038/srep02482 [55] Gao Y, Huang J, Liu Y, Chen S 2022 Unexpected role of electronic coupling between host redox centers in transport kinetics of lithium ions in olivine phosphate materials Chem. Sci. 13 257-62 doi: 10.1039/D1SC05402C [56] Demasius K-U, Kirschen A, Parkin S 2021 Energy-efficient memcapacitor devices for neuromorphic computing Nat. Electron. 4 748-56 doi: 10.1038/s41928-021-00649-y