留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Lixiu Zhang, Yousheng Wang, Xiangchuan Meng, Jia Zhang, Pengfei Wu, Min Wang, Fengren Cao, Chunhao Chen, Zhaokui Wang, Fu Yang, Xiaodong Li, Yu Zou, Xi Jin, Yan Jiang, Hengyue Li, Yucheng Liu, Tongle Bu, Buyi Yan, Yaowen Li, Junfeng Fang, Lixin Xiao, Junliang Yang, Fuzhi Huang, Shengzhong Liu, Jizhong Yao, Liangsheng Liao, Liang Li, Fei Zhang, Yiqiang Zhan, Yiwang Chen, Yaohua Mai, Liming Ding. The issues on the commercialization of perovskite solar cells[J]. Materials Futures, 2024, 3(2): 022101. doi: 10.1088/2752-5724/ad37cf
Citation: Lixiu Zhang, Yousheng Wang, Xiangchuan Meng, Jia Zhang, Pengfei Wu, Min Wang, Fengren Cao, Chunhao Chen, Zhaokui Wang, Fu Yang, Xiaodong Li, Yu Zou, Xi Jin, Yan Jiang, Hengyue Li, Yucheng Liu, Tongle Bu, Buyi Yan, Yaowen Li, Junfeng Fang, Lixin Xiao, Junliang Yang, Fuzhi Huang, Shengzhong Liu, Jizhong Yao, Liangsheng Liao, Liang Li, Fei Zhang, Yiqiang Zhan, Yiwang Chen, Yaohua Mai, Liming Ding. The issues on the commercialization of perovskite solar cells[J]. Materials Futures, 2024, 3(2): 022101. doi: 10.1088/2752-5724/ad37cf
Topical Review •
OPEN ACCESS

The issues on the commercialization of perovskite solar cells

doi: 10.1088/2752-5724/ad37cf
More Information
  • Figure  1.  The path towards commercialization, in terms of (a) current status and (b) promising applications of commercialization.

    Figure  2.  Picture of 100 kW perovskite grid-connected solar farm from Micoquanta.

    Figure  3.  Fabrication method, structure design and advances of large-area perovskite solar modules. (a) Efficiency record of PSMs obtained by various deposition methods. (b) Advanced strategies for optimizing the quality of perovskite film. (c) The configuration and cross-section view of PSMs. (d) Illustration of the total power loss as function of the active-area width for modules with various dead-area widths. (e) Three cell designs. Design A: cell without metal grids; Design B: cell with parallel metal bus bars; Design C: cell with parallel metal bus bars and fingers, where gold arrows represent the direction of current flow through the front electrodes.

    Figure  4.  (a) Picture of the fabricated films and the schematic diagram of modules with 9 subcells in series. Reproduced from [27], with permission from Springer Nature. (b) Air-knife-assisted bar-coating and the sketch of precursor front. Reprinted from [29],© 2021 Elsevier Inc. (c) Slot-die printing with low-pressure dry air blowing. The inset is a picture of a 20 × 20 cm2 perovskite film. (d) Illustration of crystal growth process with and without NMP. From [36]. Reprinted with permission from AAAS. (e) Illustration of the formation mechanism of voids at buried interface. From [49]. Reprinted with permission from AAAS.

    Figure  5.  Flowchart of official PV module stability test for IEC 61 215 standard. Important stability tests for PSCs are marked in green. STC, standard test condition; NMOT, nominal module operating temperature. [53].

    Figure  6.  Schematic diagram to show the factors that influence the stability of PSCs: (a) light, (b) heat, (c) ambient environment and (d) radiation. Lattice expansion. From [56]. Reprinted with permission from AAAS. Lattice expansion and phase transition. Reprinted with permission from [57]. Copyright (2016) American Chemical Society. Glass discoloration. Reprinted with permission from [58]. Copyright (2020) American Chemical Society.

    Figure  7.  (a) The screening procedure for stable perovskite composition using the high-throughput screening system. The percentage point means the ratio passing the last round of screening. (b) The T80 lifetimes for the perovskites aged at 65 °C under 100 mW cm−2 metal-halide light illumination in N2-filled atmosphere. (c) T80 lifetime statistics for mixed-cation perovskites with different Br concentrations. Reproduced from [101], with permission from Springer Nature.

    Figure  8.  (a) The mechanism for 5-AVA enhancing the stability of MA-based PSCs. (b) Long-term MPP tracking for (5-AVA)xMA1−xPbI3 PSC. Reprinted from [7],© 2020 Elsevier Inc. (c) Schematics of tailoring the 2D/3D heterostructure by tuning the annealing conditions. TA represents for thermal annealing at 100 °C, and RT represents for room-temperature process. From [54]. Reprinted with permission from AAAS. (d) Device structure of the inverted PSC with FcTc2 as interface layer and the molecular dynamics simulations of the interaction between perovskite and FcTc2. (e) Stability tests including long-term operational stability under AM 1.5 G illumination, damp-heat test and thermal cycling test. From [55]. Reprinted with permission from AAAS.

    Figure  9.  (a) Schematic of four encapsulation methods (b) Attacked perovskite solar modules with different encapsulation methods after the first water dripping test (top row), and after being heated at 45 °C for 4 h and the second water dripping test (bottom row). Reproduced from [161], with permission from Springer Nature. (c) Device structure for perovskite solar cell with CER encapsulation layer. (d) Schematic of Pb leakage prevention via CER. Reproduced from [163], with permission from Springer Nature. (e) Device structure of perovskite solar cells with 2D conjugated MOF as electron extraction layer and the proposed mechanism for Pb leakage prevention. Reproduced from [164], with permission from Springer Nature. (f) Device structure of perovskite solar cells with Pb absorbing materials DMDP and EDTMP-PEO on the front and back sides respectively. (g) Water soaking test for damaged PSCs with and without Pb-absorbing materials at RT and 50 °C respectively. Reproduced from [165], with permission from Springer Nature. (h) Roadmap for recycling perovskite solar modules. Reproduced from [166]. CC BY 4.0.

    Figure  10.  (a) Design strategy of flexible perovskite solar cells; (b) pprospects for wearable perovskite photovoltaics [201]. John Wiley & Sons. © 2018 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.

    Figure  11.  (a) Structure of F-PSC inspired by vertebrae, and (b) the application as wearable power sources. Reproduced from [235]. CC BY 4.0. (c) The schematics for potassium interfacial passivation. Reproduced from [238]. CC BY 4.0. (d) Photograph of fully R2R gravure-printed PSCs. (e) Schematics of R2R processing procedure for F-PSMs. Reproduced from [239]. CC BY 4.0.

    Table  1.   Confirmed record efficiency results of perovskite-related photovoltaics, [5, 6, 18] measured under the global AM1.5 spectrum (1000 W m−2) at 25 °C (IEC 60 904-3: 2008 or ASTM G-173-03 global).

    ClassificationEfficiency (%)Area (cm2)Organization
    Perovskite (cell)26.1 ± 0.60.05127 (da)U. of Science and Technology of China
    Perovskite (cell)24.671.0053 (ap)Shenzhen Infinite Solar Tech.
    Perovskite (minimodule)22.4 ± 0.526.02 (da)EPFLSion/NCEPU, 8 cells
    Perovskite (module)18.6 ± 0.7809.9 (da)UtmoLight (39 cells)
    Perovskite/Si33.7 ± 1.11.0035 (da)KAUST, 2-term.
    Perovskite/Si (large)28.6 ± 1.4258.14 (t)Oxford PV, 2-term.
    Perovskite/CIGS24.2 ± 0.71.045 (da)HZB, 2-terminal
    Perovskite/perovskite29.1 ± 0.50.0489 (da)Nanjing U, 2-term.
    Perovskite/perovskite (minimodule)24.5 ± 0.620.25 (da)NanjingU/Renshine, 2-term.
    Perovskite/organic23.4 ± 0.80.0552 (da)NUS/SERIS, 2-term.
    Abbreviations: (da), designated illumination area; (ap), aperture area; (t), total area.
    下载: 导出CSV

    Table  2.   The reported perovskite module stability test results for companies.

    OrganizationTest classificationTypeResult
    MicroquantaIEC 61215/61730Test sequencePass
    GCL- PerovskiteBall drop testIndividualPass
    下载: 导出CSV

    Table  3.   The perovskite production line statues from perovskite companies.

    OrganizationCapacityTypeStatus
    Microquanta120 MWSingle-junctionFull capacity production [19]
    GCL- Perovskite100 MWSingle-junctionRamp-up [20]
    Oxford PV100 MWPerovskite/silicon tandemRamp-up [21]
    Wondersolar200 MWCarbon-based single-junctionRamp-up [22]
    Utmolight150 MWSingle-junctionEquipment move-in [23]
    下载: 导出CSV

    Table  4.   Summary of flexible transparent electrodes.

    ElectrodeSheet resistance (Ω sq−1)Optical transmittance (%)Bending propertiesReferences
    ITO10-1585-90MediumKumar and Zhou [205]
    AZO<10>85GoodMutiari et al [206]
    IZO<10>90MediumLee et al [207]
    IWO∼35>95GoodKim et al [208]
    CNT150-50070-90GoodZhang et al [209]
    Graphene110-78070-95GoodWang et al [210]
    PEDOT:PSS15-250>80GoodLee et al [211]
    Worfolk et al [212]
    Metal nanowire1-25>90GoodChen et al [213]
    Metal mesh<2>84GoodZhang et al [214]
    UTMFs<10>82GoodLi et al [215]
    下载: 导出CSV

    Table  5.   Properties of flexible polymer substrates.

    SubstrateTg (°C)Tm (°C)Density (g cm−3)Water absorptionDielectric coefficientSolvent resistanceDimensional stability
    PET70-110115-2581.390.4-0.63.0-3.8GoodGood
    PEN120-1552691.360.2GoodGood
    PI155-270250-4521.36-1.431.3-3.03.4GoodFair
    PDMS−125−431.03>0.12.7GoodGood
    PES225315-3351.370.433.5GoodGood
    PC1502671.20.43.0-3.2PoorFair
    Tg: glass-transition temperature; Tm: melting temperature.
    下载: 导出CSV

    Table  6.   Advances of F-PSMs via scalable fabrication methods (none spin-coating).

    Materials choice and fabrication methods
    YearStructureBottom electrodeETLPerovskiteHTLTop electrodeArea (cm2)PCE (%)References
    2015PET/ITO/ZnO/Perovskite /P3HT/AgPET/ITO (commercial)ZnO (slot-die coating)Sequential roll-to-rollP3HT (slot-die coating)Ag (evaporation)40∼1Hwang et al [245]
    2019MgF2/Willow Glass/ITO/PTAA/Perovskite /C60/BCP/CuWillow Glass/ITO (RF-sputtering)C60/BCP (thermal evaporation)Blading-coatingPTAA (blade-coating)Cu (evaporation)42.9 (ap)15.86Dai et al [52]
    2019PET/PEDOT:PSS:CFE/PEDOT:PSS/Perovskite/PCBM/AgPEDOT:PSS:CFE/PET (slot-die coating via R2R)PCBM (R2R slot-die coating)R2R slot-die coatingPEDOT:PSS (R2R slot-die coating)Ag (evaporation)25 (ap)10.9Hu et al [219]
    2020Flexible-Substrate/ITO/F4-TCNQ:2T-NATA/Perovskite/C60/BCP/AgFlexible-Substrate/ITO (commercial)C60/BCP (thermal evaporation)Thermal evaporationF4-TCNQ:2T-NATA (thermal evaporation)Ag (evaporation)16 (ac)13.15Lei et al [243]
    2020PET/ITO/PEDOT:EVA/perovskite/PCBM/BCP/AgPET/ITO (commercial)PCBM/BCP (meniscus-coating)Meniscus-coatingPEDOT:EVAAg (evaporation)31.217.55Meng et al [235]
    2021PET/ITO/PTAA/ Perovskite/ C60/BCP/AgPET/ITO (commercial)C60/BCP (thermal evaporation)N2 assisted blade-coatingPTAA (blading-coating)Ag (evaporation)15.7 (ac)10.5Castriotta et al [244]
    2021PDMS/PEN/hc-PEDOT:PSS/PEDOT:PSS Al4083:EVA/ Perovskite/Di-g/PC61BM/ BCP/Ag/PDMSPDMS/PEN/hc-PEDOT:PSS (meniscus-coating)PC61BM/BCP (meniscus-coating)Meniscus-coating + vacuum oven annealingPEDOT:PSS:EVA (meniscus-coating)Ag (evaporation)21.82 (ac)15.01Meng et al [169]
    2021PEN/hc-PEDOT:PSS/NiOx/ Perovskite/ PC61BM/BCP/AgPEN/hc-PEDOT:PSS (slot-die coating via R2R)PC61BM/BCP (meniscus-coating)Meniscus-coatingNiOx (meniscus coating)Ag (evaporation)15 (ac)16.15Wang et al [241]
    2021PEN/hc-PEDOT:PSS/NiOx/Perovskite/PCBM/AgPEN/hc-PEDOT:PSS (meniscus-coating)PCBM/BCP (meniscus-coating)Meniscus-coatingNiOx (meniscus-coating)Ag (evaporation)25 (ac)14.74Yang et al [246]
    2022PEN/ITO/Bio-IL/Perovskite/ PC61BM/BCP/AgPEN/ITO (commercial)PC61BM/BCP (meniscus-coating)Meniscus-coatingBio-IL (meniscus-coating)Ag (evaporation)14.63 (ac)16.87Fan et al [247]
    Abbreviations: (ap), aperture area; (ac), active area.
    下载: 导出CSV
  • [1] National Renewable Energy Laboratory Best research-cell effiencies (available at: www.nrel.gov/pv/cell-efficiency.html)(Accessed 8 2023)
    [2] Jeong M, et al 2020 Stable perovskite solar cells with efficiency exceeding 24.8% and 0.3-V voltage loss Science 369 1615 doi: 10.1126/science.abb7167
    [3] Jeong J, et al 2021 Pseudo-halide anion engineering for α-FAPbI3 perovskite solar cells Nature 592 381-5 doi: 10.1038/s41586-021-03406-5
    [4] Min H, et al 2021 Perovskite solar cells with atomically coherent interlayers on SnO2 electrodes Nature 598 444-50 doi: 10.1038/s41586-021-03964-8
    [5] Solarbe Photovoltaics New record achieved by Shenzhen Infinite Solar Technology Co., Ltd (available at: https://news.solarbe.com/202302/14/364938.html)(Accessed 4 2023)
    [6] National Renewable Energy Laboratory Champion module efficiencies (available at: www.nrel.gov/pv/module-efficiency.html)(Accessed 8 2022)
    [7] Mei A, et al 2020 Stabilizing perovskite solar cells to IEC61215:2016 standards with over 9,000-h operational tracking Joule 4 2646-60 doi: 10.1016/j.joule.2020.09.010
    [8] Shi L, et al 2020 Gas chromatography-mass spectrometry analyses of encapsulated stable perovskite solar cells Science 368 eaba2412 doi: 10.1126/science.aba2412
    [9] Grancini G, et al 2017 One-Year stable perovskite solar cells by 2D/3D interface engineering Nat. Commun. 8 15684 doi: 10.1038/ncomms15684
    [10] Li H, Zhang W 2020 Perovskite tandem solar cells: from fundamentals to commercial deployment Chem. Rev. 120 9835-950 doi: 10.1021/acs.chemrev.9b00780
    [11] Ho-Baillie A W Y, Zheng J, Mahmud M A, Ma F-J, McKenzie D R, Green M A 2021 Recent progress and future prospects of perovskite tandem solar cells Appl. Phys. Rev. 8 041307 doi: 10.1063/5.0061483
    [12] Aydin E, Allen T G, De Bastiani M, Razzaq A, Xu L, Ugur E, Liu J, De Wolf S 2024 Pathways toward commercial perovskite/silicon tandem photovoltaics Science 383 eadh3849 doi: 10.1126/science.adh3849
    [13] Chen Z, et al 2023 Perovskite grain-boundary manipulation using room-temperature dynamic self-healing “ligaments” for developing highly stable flexible perovskite solar cells with 23.8% efficiency Adv. Mater. 35 2300513 doi: 10.1002/adma.202300513
    [14] Xia J, et al 2022 Tailoring electric dipole of hole-transporting material p-dopants for perovskite solar cells Joule 6 1689-709 doi: 10.1016/j.joule.2022.05.012
    [15] Zhu X, Yang D, Yang R, Yang B, Yang Z, Ren X, Zhang J, Niu J, Feng J, Liu S F 2017 Superior stability for perovskite solar cells with 20% efficiency using vacuum co-evaporation Nanoscale 9 12316-23 doi: 10.1039/C7NR04501H
    [16] Li P, Liang C, Bao B, Li Y, Hu X, Wang Y, Zhang Y, Li F, Shao G, Song Y 2018 Inkjet manipulated homogeneous large size perovskite grains for efficient and large-area perovskite solar cells Nano Energy 46 203-11 doi: 10.1016/j.nanoen.2018.01.049
    [17] Abdollahi Nejand B, et al 2022 Scalable two-terminal all-perovskite tandem solar modules with a 19.1% efficiency Nat. Energy 7 620-30 doi: 10.1038/s41560-022-01059-w
    [18] Green M A, Dunlop E D, Siefer G, Yoshita M, Kopidakis N, Bothe K, Hao X 2023 Solar cell efficiency tables (version 61) Prog. Photovolt. Res. Appl. 31 3-16 doi: 10.1002/pip.3646
    [19] Microquanta Company News center (available at: www.microquanta.com/)(Accessed 2 2024)
    [20] GCL Company News center (available at: www.gcl-perovskite.com/wm/)(Accessed 2 2024)
    [21] Oxford PV Company News center (available at: www.oxfordpv.com/)(Accessed 2 2024)
    [22] Wondersolar Company News center (available at: http://wondersolar.cn/en/nd.jsp?id=11)(Accessed 2 2024)
    [23] Utmolight Company News center (available at: www.utmolight.com/)(Accessed 2 2024)
    [24] IEA Renewable energy market update (available at: https://iea.blob.core.windows.net/assets/67ff3040-dc78-4255-a3d4-b1e5b2be41c8/RenewableEnergyMarketUpdate_June2023.pdf)(Accessed 2 2024)
    [25] Gong J, Darling S B, You F 2015 Perovskite photovoltaics: life-cycle assessment of energy and environmental impacts Energy Environ. Sci. 8 1953-68 doi: 10.1039/C5EE00615E
    [26] Chang N L, Yi Ho-Baillie A W, Basore P A, Young T L, Evans R, Egan R J 2017 A manufacturing cost estimation method with uncertainty analysis and its application to perovskite on glass photovoltaic modules Prog. Photovolt. Res. Appl. 25 390-405 doi: 10.1002/pip.2871
    [27] Ding Y, et al 2022 Single-crystalline TiO2 nanoparticles for stable and efficient perovskite modules Nat. Nanotechnol. 17 598-605 doi: 10.1038/s41565-022-01108-1
    [28] Turkevych I, et al 2019 Strategic advantages of reactive polyiodide melts for scalable perovskite photovoltaics Nat. Nanotechnol. 14 57-63 doi: 10.1038/s41565-018-0304-y
    [29] Yoo J W, Jang J, Kim U, Lee Y, Ji S-G, Noh E, Hong S, Choi M, Seok S I 2021 Efficient perovskite solar mini-modules fabricated via bar-coating using 2-methoxyethanol-based formamidinium lead tri-iodide precursor solution Joule 5 2420-36 doi: 10.1016/j.joule.2021.08.005
    [30] Bu T, et al 2022 Modulating crystal growth of formamidinium-caesium perovskites for over 200 cm2 photovoltaic sub-modules Nat. Energy 7 528-36 doi: 10.1038/s41560-022-01039-0
    [31] Vesce L, Stefanelli M, Rossi F, Castriotta L A, Basosi R, Parisi M L, Sinicropi A, Di Carlo A 2024 Perovskite solar cell technology scaling-up: eco-efficient and industrially compatible sub-module manufacturing by fully ambient air slot-die/blade meniscus coating Prog. Photovolt. Res. Appl. 32 115-29 doi: 10.1002/pip.3741
    [32] Abzieher T, et al 2019 Electron-beam-evaporated nickel oxide hole transport layers for perovskite-based photovoltaics Adv. Energy Mater. 9 1802995 doi: 10.1002/aenm.201802995
    [33] Zhao X, Wang Z, Li W, Sun S, Xu H, Zhou P, Xu J, Lin Y, Liu Y 2020 Photoassisted electroforming method for reliable lowpower organic-inorganic perovskite memristors Adv. Funct. Mater. 30 1910151 doi: 10.1002/adfm.201910151
    [34] Rolston N, Scheideler W J, Flick A C, Chen J P, Elmaraghi H, Sleugh A, Zhao O, Woodhouse M, Dauskardt R H 2020 Rapid open-air fabrication of perovskite solar modules Joule 4 2675-92 doi: 10.1016/j.joule.2020.11.001
    [35] Yang F, Jang D, Dong L, Qiu S, Distler A, Li N, Brabec C J, Egelhaaf H J 2021 Upscaling solutionprocessed perovskite photovoltaics Adv. Energy Mater. 11 2101973 doi: 10.1002/aenm.202101973
    [36] Bu T, et al 2021 Lead halide-templated crystallization of methylamine-free perovskite for efficient photovoltaic modules Science 372 1327-32 doi: 10.1126/science.abh1035
    [37] Park N-G, Zhu K 2020 Scalable fabrication and coating methods for perovskite solar cells and solar modules Nat. Rev. Mater. 5 333-50 doi: 10.1038/s41578-019-0176-2
    [38] Wang Y, et al 2021 Cation-size mismatch and interface stabilization for efficient NiOx-based inverted perovskite solar cells with 21.9% efficiency Nano Energy 88 106285 doi: 10.1016/j.nanoen.2021.106285
    [39] Yang Z, et al 2021 Slot-die coating large-area formamidinium-cesium perovskite film for efficient and stable parallel solar module Sci. Adv. 7 eabg3749 doi: 10.1126/sciadv.abg3749
    [40] Dai X, Chen S, Deng Y, Wood A, Yang G, Fei C, Huang J 2022 Pathways to high efficiency perovskite monolithic solar modules PRX Energy 1 013004 doi: 10.1103/PRXEnergy.1.013004
    [41] Wang Y, Arumugam G M, Mahmoudi T, Mai Y, Hahn Y-B 2021 A critical review of materials innovation and interface stabilization for efficient and stable perovskite photovoltaics Nano Energy 87 106141 doi: 10.1016/j.nanoen.2021.106141
    [42] Moon S-J, Yum J-H, Lofgren L, Walter A, Sansonnens L, Benkhaira M, Nicolay S, Bailat J, Ballif C 2015 Laser-scribing patterning for the production of organometallic halide perovskite solar modules IEEE J. Photovolt. 5 1087-92 doi: 10.1109/JPHOTOV.2015.2416913
    [43] Palma A L, Matteocci F, Agresti A, Pescetelli S, Calabro E, Vesce L, Christiansen S, Schmidt M, Di Carlo A 2017 Laser-patterning engineering for perovskite solar modules with 95% aperture ratio IEEE J. Photovolt. 7 1674-80 doi: 10.1109/JPHOTOV.2017.2732223
    [44] Wilkinson B, Chang N L, Green M A, Ho-Baillie A W Y 2018 Scaling limits to large area perovskite solar cell efficiency Prog. Photovolt. Res. Appl. 26 659-74 doi: 10.1002/pip.3035
    [45] Extance A 2019 The reality behind solar power’s next star material Nature 570 429-32 doi: 10.1038/d41586-019-01985-y
    [46] Ren A, et al 2020 Efficient perovskite solar modules with minimized nonradiative recombination and local carrier transport losses Joule 4 1263-77 doi: 10.1016/j.joule.2020.04.013
    [47] Li Z, Klein T R, Kim D H, Yang M, Berry J J, van Hest M F A M, Zhu K 2018 Scalable fabrication of perovskite solar cells Nat. Rev. Mater. 3 18017 doi: 10.1038/natrevmats.2018.17
    [48] Eldada L A, Heben M J, Song Z, Watthage S C, Phillips A B, Liyanage G K, Khanal R R, Tompkins B L, Ellingson R J, Heben M J 2015 Investigation of degradation mechanisms of perovskite-based photovoltaic devices using laser beam induced current mapping Proc. SPIE 9561 956107 doi: 10.1117/12.2195789
    [49] Chen S, Dai X, Xu S, Jiao H, Zhao L, Huang J 2021 Stabilizing perovskite-substrate interfaces for high-performance perovskite modules Science 373 902-7 doi: 10.1126/science.abi6323
    [50] Wu W Q, et al 2019 Bilateral alkylamine for suppressing charge recombination and improving stability in blade-coated perovskite solar cells Sci. Adv. 5 eaav8925 doi: 10.1126/sciadv.aav8925
    [51] Deng Y, Xu S, Chen S, Xiao X, Zhao J, Huang J 2021 Defect compensation in formamidinium-caesium perovskites for highly efficient solar mini-modules with improved photostability Nat. Energy 6 633-41 doi: 10.1038/s41560-021-00831-8
    [52] Dai X, Deng Y, Van Brackle C H, Chen S, Rudd P N, Xiao X, Lin Y, Chen B, Huang J 2019 Scalable fabrication of efficient perovskite solar modules on flexible glass substrates Adv. Energy Mater. 10 1903108 doi: 10.1002/aenm.201903108
    [53] Holzhey P, Saliba M 2018 A full overview of international standards assessing the long-term stability of perovskite solar cells J. Mater. Chem. A 6 21794-808 doi: 10.1039/C8TA06950F
    [54] Azmi R, et al 2022 Damp heat-stable perovskite solar cells with tailored-dimensionality 2D/3D heterojunctions Science 376 73-77 doi: 10.1126/science.abm5784
    [55] Li Z, Li B, Wu X, Sheppard S A, Zhang S, Gao D, Long N J, Zhu Z 2022 Organometallic-functionalized interfaces for highly efficient inverted perovskite solar cells Science 376 416-20 doi: 10.1126/science.abm8566
    [56] Tsai H, et al 2018 Light-induced lattice expansion leads to high-efficiency perovskite solar cells Science 360 67-70 doi: 10.1126/science.aap8671
    [57] Li Z, Yang M J, Park J S, Wei S H, Berry J J, Zhu K 2016 Stabilizing perovskite structures by tuning tolerance factor: formation of formamidinium and cesium lead iodide solid-state alloys Chem. Mater. 28 284-92 doi: 10.1021/acs.chemmater.5b04107
    [58] Song Z N, Li C W, Chen C, McNatt J, Yoon W, Scheiman D, Jenkins P P, Ellingson R J, Heben M J, Yan Y F 2020 High remaining factors in the photovoltaic performance of perovskite solar cells after high-fluence electron beam irradiations J. Phys. Chem. C 124 1330-6 doi: 10.1021/acs.jpcc.9b11483
    [59] Bella F, Griffini G, Correa-Baena J P, Saracco G, Gratzel M, Hagfeldt A, Turri S, Gerbaldi C 2016 Improving efficiency and stability of perovskite solar cells with photocurable fluoropolymers Science 354 203-6 doi: 10.1126/science.aah4046
    [60] Zhao C, Chen B, Qiao X, Luan L, Lu K, Hu B 2015 Revealing underlying processes involved in light soaking effects and hysteresis phenomena in perovskite solar cells Adv. Energy Mater. 5 1500279 doi: 10.1002/aenm.201500279
    [61] Shao S, et al 2016 Elimination of the light soaking effect and performance enhancement in perovskite solar cells using a fullerene derivative Energy Environ. Sci. 9 2444-52 doi: 10.1039/C6EE01337F
    [62] Meggiolaro D, Mosconi E, De Angelis F 2019 Formation of surface defects dominates ion migration in lead-halide perovskites ACS Energy Lett. 4 779-85 doi: 10.1021/acsenergylett.9b00247
    [63] Zhao Y, et al 2020 Strain-activated light-induced halide segregation in mixed-halide perovskite solids Nat. Commun. 11 6328 doi: 10.1038/s41467-020-20066-7
    [64] Mao W, Hall C R, Bernardi S, Cheng Y B, Widmer-Cooper A, Smith T A, Bach U 2021 Light-induced reversal of ion segregation in mixed-halide perovskites Nat. Mater. 20 55-61 doi: 10.1038/s41563-020-00826-y
    [65] Kim H S, Seo J Y, Park N G 2016 Material and device stability in perovskite solar cells ChemSusChem 9 2528-40 doi: 10.1002/cssc.201600915
    [66] Supasai T, Rujisamphan N, Ullrich K, Chemseddine A, Dittrich T 2013 Formation of a passivating CH3NH3PbI3/PbI2 interface during moderate heating of CH3NH3PbI3 layers Appl. Phys. Lett. 103 183906 doi: 10.1063/1.4826116
    [67] Conings B, et al 2015 Intrinsic thermal instability of methylammonium lead trihalide perovskite Adv. Energy Mater. 5 1500477 doi: 10.1002/aenm.201500477
    [68] Stoumpos C C, Malliakas C D, Kanatzidis M G 2013 Semiconducting tin and lead iodide perovskites with organic cations: phase transitions, high mobilities, and near-infrared photoluminescent properties Inorg. Chem. 52 9019 doi: 10.1021/ic401215x
    [69] Protesescu L, Yakunin S, Bodnarchuk M I, Krieg F, Caputo R, Hendon C H, Yang R X, Walsh A, Kovalenko M V 2015 Nanocrystals of cesium lead halide perovskites (CsPbX3, X = Cl, Br, and I): novel optoelectronic materials showing bright emission with wide color gamut Nano Lett. 15 3692-6 doi: 10.1021/nl5048779
    [70] Bi E, Chen H, Xie F, Wu Y, Chen W, Su Y, Islam A, Gratzel M, Yang X, Han L 2017 Diffusion engineering of ions and charge carriers for stable efficient perovskite solar cells Nat. Commun. 8 15330 doi: 10.1038/ncomms15330
    [71] Liu L, et al 2018 Grain-boundary “patches” by in situ conversion to enhance perovskite solar cells stability Adv. Mater. 30 e1800544 doi: 10.1002/adma.201800544
    [72] Li Z, et al 2017 Extrinsic ion migration in perovskite solar cells Energy Environ. Sci. 10 1234-42 doi: 10.1039/C7EE00358G
    [73] Yue Y, et al 2016 Enhanced stability of perovskite solar cells through corrosion-free pyridine derivatives in hole-transporting materials Adv. Mater. 28 10738-43 doi: 10.1002/adma.201602822
    [74] Aristidou N, Sanchez-Molina I, Chotchuangchutchaval T, Brown M, Martinez L, Rath T, Haque S A 2015 The role of oxygen in the degradation of methylammonium lead trihalide perovskite photoactive layers Angew. Chem., Int. Ed. Engl. 54 8208-12 doi: 10.1002/anie.201503153
    [75] Kaltenbrunner M, et al 2015 Flexible high power-per-weight perovskite solar cells with chromium oxide-metal contacts for improved stability in air Nat. Mater. 14 1032-9 doi: 10.1038/nmat4388
    [76] Jiang Y, Qi Y 2021 Metal halide perovskite-based flexible tandem solar cells: next-generation flexible photovoltaic technology Mater. Chem. Front. 5 4833-50 doi: 10.1039/D1QM00279A
    [77] Yang J, Bao Q, Shen L, Ding L 2020 Potential applications for perovskite solar cells in space Nano Energy 76 105019 doi: 10.1016/j.nanoen.2020.105019
    [78] Tu Y, Wu J, Xu G, Yang X, Cai R, Gong Q, Zhu R, Huang W 2021 Perovskite solar cells for space applications: progress and challenges Adv. Mater. 33 e2006545 doi: 10.1002/adma.202006545
    [79] Jiang Y, Yang S-C, Jeangros Q, Pisoni S, Moser T, Buecheler S, Tiwari A N, Fu F 2020 Mitigation of vacuum and illumination-induced degradation in perovskite solar cells by structure engineering Joule 4 1087-103 doi: 10.1016/j.joule.2020.03.017
    [80] Cheacharoen R, Rolston N, Harwood D, Bush K A, Dauskardt R H, McGehee M D 2018 Design and understanding of encapsulated perovskite solar cells to withstand temperature cycling Energy Environ. Sci. 11 144-50 doi: 10.1039/C7EE02564E
    [81] Liu B, Zhang L, Jiang Y, Ding L 2022 Failure pathways of perovskite solar cells in space J. Semicond. 43 100201-1 doi: 10.1088/1674-4926/43/10/100201
    [82] Kirmani A R, et al 2022 Countdown to perovskite space launch: guidelines to performing relevant radiation-hardness experiments Joule 6 1015-31 doi: 10.1016/j.joule.2022.03.004
    [83] Miyazawa Y, Ikegami M, Chen H W, Ohshima T, Imaizumi M, Hirose K, Miyasaka T 2018 Tolerance of perovskite solar cell to high-energy particle irradiations in space environment iScience 2 148-55 doi: 10.1016/j.isci.2018.03.020
    [84] Chen S, et al 2018 Atomic scale insights into structure instability and decomposition pathway of methylammonium lead iodide perovskite Nat. Commun. 9 4807 doi: 10.1038/s41467-018-07177-y
    [85] Xiao C, et al 2015 Mechanisms of electron-beam-induced damage in perovskite thin films revealed by cathodoluminescence spectroscopy J. Phys. Chem. C 119 26904-11 doi: 10.1021/acs.jpcc.5b09698
    [86] Lang F, Jošt M, Bundesmann J, Denker A, Albrecht S, Landi G, Neitzert H-C, Rappich J, Nickel N H 2019 Efficient minority carrier detrapping mediating the radiation hardness of triple-cation perovskite solar cells under proton irradiation Energy Environ. Sci. 12 1634-47 doi: 10.1039/C9EE00077A
    [87] Lang F, et al 2020 Proton radiation hardness of perovskite tandem photovoltaics Joule 4 1054-69 doi: 10.1016/j.joule.2020.03.006
    [88] Lang F, et al 2021 Protonradiation tolerant allperovskite multijunction solar cells Adv. Energy Mater. 11 2102246 doi: 10.1002/aenm.202102246
    [89] De Rossi F, et al 2022 Neutron irradiated perovskite films and solar cells on PET substrates Nano Energy 93 106879 doi: 10.1016/j.nanoen.2021.106879
    [90] Svanstrom S, Garcia Fernandez A, Sloboda T, Jacobsson T J, Rensmo H, Cappel U B 2021 X-ray stability and degradation mechanism of lead halide perovskites and lead halides Phys. Chem. Chem. Phys. 23 12479-89 doi: 10.1039/D1CP01443A
    [91] Boldyreva A G, Frolova L A, Zhidkov I S, Gutsev L G, Kurmaev E Z, Ramachandran B R, Petrov V G, Stevenson K J, Aldoshin S M, Troshin P A 2020 Unravelling the material composition effects on the gamma ray stability of lead halide perovskite solar cells: mAPbI3 breaks the records J. Phys. Chem. Lett. 11 2630-6 doi: 10.1021/acs.jpclett.0c00581
    [92] Boldyreva A G, Akbulatov A F, Tsarev S A, Luchkin S Y, Zhidkov I S, Kurmaev E Z, Stevenson K J, Petrov V G, Troshin P A 2019 gamma-ray-induced degradation in the triple-cation perovskite solar cells J. Phys. Chem. Lett. 10 813-8 doi: 10.1021/acs.jpclett.8b03222
    [93] Yang S, Xu Z, Xue S, Kandlakunta P, Cao L, Huang J 2019 Organohalide lead perovskites: more stable than glass under gamma-ray radiation Adv. Mater. 31 e1805547 doi: 10.1002/adma.201805547
    [94] Berhe T A, Su W-N, Chen C-H, Pan C-J, Cheng J-H, Chen H-M, Tsai M-C, Chen L-Y, Dubale A A, Hwang B-J 2016 Organometal halide perovskite solar cells: degradation and stability Energy Environ. Sci. 9 323-56 doi: 10.1039/C5EE02733K
    [95] Bush K A, et al 2017 23.6%-efficient monolithic perovskite/silicon tandem solar cells with improved stability Nat. Energy 2 17009 doi: 10.1038/nenergy.2017.9
    [96] Doherty T A S, et al 2021 Stabilized tilted-octahedra halide perovskites inhibit local formation of performance-limiting phases Science 374 1598-605 doi: 10.1126/science.abl4890
    [97] Yi C, Luo J, Meloni S, Boziki A, Ashari-Astani N, Grätzel C, Zakeeruddin S M, Röthlisberger U, Grätzel M 2016 Entropic stabilization of mixed A-cation ABX3 metal halide perovskites for high performance perovskite solar cells Energy Environ. Sci. 9 656-62 doi: 10.1039/C5EE03255E
    [98] Saliba M, et al 2016 Incorporation of rubidium cations into perovskite solar cells improves photovoltaic performance Science 354 206-9 doi: 10.1126/science.aah5557
    [99] Xie F, Chen C-C, Wu Y, Li X, Cai M, Liu X, Yang X, Han L 2017 Vertical recrystallization for highly efficient and stable formamidinium-based inverted-structure perovskite solar cells Energy Environ. Sci. 10 1942-9 doi: 10.1039/C7EE01675A
    [100] Mu C, Pan J, Feng S, Li Q, Xu D 2017 Quantitative doping of chlorine in formamidinium lead trihalide (FAPbI3-xClx) for planar heterojunction perovskite solar cells Adv. Energy Mater. 7 1601297 doi: 10.1002/aenm.201601297
    [101] Zhao Y, et al 2022 A bilayer conducting polymer structure for planar perovskite solar cells with over 1,400 hours operational stability at elevated temperatures Nat. Energy 7 144-52 doi: 10.1038/s41560-021-00953-z
    [102] Chen Y, et al 2019 Impacts of alkaline on the defects property and crystallization kinetics in perovskite solar cells Nat. Commun. 10 1112 doi: 10.1038/s41467-019-09093-1
    [103] Wu Y, Yang X, Chen W, Yue Y, Cai M, Xie F, Bi E, Islam A, Han L 2016 Perovskite solar cells with 18.21% efficiency and area over 1 cm2 fabricated by heterojunction engineering Nat. Energy 1 16148 doi: 10.1038/nenergy.2016.148
    [104] Kim M, et al 2019 Methylammonium chloride induces intermediate phase stabilization for efficient perovskite solar cells Joule 3 2179-92 doi: 10.1016/j.joule.2019.06.014
    [105] Chen Q, et al 2015 The optoelectronic role of chlorine in CH3NH3PbI3(Cl)-based perovskite solar cells Nat. Commun. 6 7269 doi: 10.1038/ncomms8269
    [106] Lai H, Kan B, Liu T, Zheng N, Xie Z, Zhou T, Wan X, Zhang X, Liu Y, Chen Y 2018 Two-dimensional Ruddlesden-Popper perovskite with nanorod-like morphology for solar cells with efficiency exceeding 15 J. Am. Chem. Soc. 140 11639-46 doi: 10.1021/jacs.8b04604
    [107] Dastidar S, Hawley C J, Dillon A D, Gutierrez-Perez A D, Spanier J E, Fafarman A T 2017 Quantitative phase-change thermodynamics and metastability of perovskite-phase cesium lead iodide J. Phys. Chem. Lett. 8 1278-82 doi: 10.1021/acs.jpclett.7b00134
    [108] Han Q, et al 2016 Single crystal formamidinium lead iodide (FAPbI3): insight into the structural, optical, and electrical properties Adv. Mater. 28 2253-8 doi: 10.1002/adma.201505002
    [109] Min H, Kim M, Lee S U, Kim H, Kim G, Choi K, Lee J H, Seok S I 2019 Efficient, stable solar cells by using inherent bandgap of alpha-phase formamidinium lead iodide Science 366 749-53 doi: 10.1126/science.aay7044
    [110] Wang Q, Chen B, Liu Y, Deng Y, Bai Y, Dong Q, Huang J 2017 Scaling behavior of moisture-induced grain degradation in polycrystalline hybrid perovskite thin films Energy Environ. Sci. 10 516-22 doi: 10.1039/C6EE02941H
    [111] Yin W J, Shi T, Yan Y 2014 Unique properties of halide perovskites as possible origins of the superior solar cell performance Adv. Mater. 26 4653-8 doi: 10.1002/adma.201306281
    [112] Long R, Liu J, Prezhdo O V 2016 Unravelling the effects of grain boundary and chemical doping on electron-hole recombination in CH3NH3PbI3 perovskite by time-domain atomistic simulation J. Am. Chem. Soc. 138 3884-90 doi: 10.1021/jacs.6b00645
    [113] Li X, Zhang W, Wang Y-C, Zhang W, Wang H-Q, Fang J 2018 In-situ cross-linking strategy for efficient and operationally stable methylammoniun lead iodide solar cells Nat. Commun. 9 3806 doi: 10.1038/s41467-018-06204-2
    [114] Fan Z, et al 2017 Layer-by-layer degradation of methylammonium lead tri-iodide perovskite microplates Joule 1 548-62 doi: 10.1016/j.joule.2017.08.005
    [115] Aristidou N, Eames C, Sanchez-Molina I, Bu X, Kosco J, Islam M S, Haque S A 2017 Fast oxygen diffusion and iodide defects mediate oxygen-induced degradation of perovskite solar cells Nat. Commun. 8 15218 doi: 10.1038/ncomms15218
    [116] Wang R, et al 2019 Constructive molecular configurations for surface-defect passivation of perovskite photovoltaics Science 366 1509-13 doi: 10.1126/science.aay9698
    [117] Zheng X, Chen B, Dai J, Fang Y, Bai Y, Lin Y, Wei H, Zeng X C, Huang J 2017 Defect passivation in hybrid perovskite solar cells using quaternary ammonium halide anions and cations Nat. Energy 2 17102 doi: 10.1038/nenergy.2017.102
    [118] Suo J, et al 2024 Multifunctional sulfonium-based treatment for perovskite solar cells with less than 1% efficiency loss over 4,500-h operational stability tests Nat. Energy 9 172-83 doi: 10.1038/s41560-023-01421-6
    [119] Yang S, et al 2019 Stabilizing halide perovskite surfaces for solar cell operation with wide-bandgap lead oxysalts Science 365 473-8 doi: 10.1126/science.aax3294
    [120] Wang Y, Wu T, Barbaud J, Kong W, Cui D, Chen H, Yang X, Han L 2019 Stabilizing heterostructures of soft perovskite semiconductors Science 365 687-91 doi: 10.1126/science.aax8018
    [121] Li X, Zhang W, Guo X, Lu C, Wei J, Fang J 2022 Constructing heterojunctions by surface sulfidation for efficient inverted perovskite solar cells Science 375 434-7 doi: 10.1126/science.abl5676
    [122] Zhang H, et al 2018 Improving the stability and performance of perovskite solar cells via off-the-shelf post-device ligand treatment Energy Environ. Sci. 11 2253-62 doi: 10.1039/C8EE00580J
    [123] Liu Y, et al 2019 Ultrahydrophobic 3D/2D fluoroarene bilayer-based water-resistant perovskite solar cells with efficiencies exceeding 22 Sci. Adv. 5 eaaw2543 doi: 10.1126/sciadv.aaw2543
    [124] You J, et al 2016 Improved air stability of perovskite solar cells via solution-processed metal oxide transport layers Nat. Nanotechnol. 11 75-81 doi: 10.1038/nnano.2015.230
    [125] Chen W, et al 2015 Efficient and stable large-area perovskite solar cells with inorganic charge extraction layers Science 350 944-8 doi: 10.1126/science.aad1015
    [126] Wu S, et al 2019 A chemically inert bismuth interlayer enhances long-term stability of inverted perovskite solar cells Nat. Commun. 10 1161 doi: 10.1038/s41467-019-09167-0
    [127] Li X, Fu S, Liu S, Wu Y, Zhang W, Song W, Fang J 2019 Suppressing the ions-induced degradation for operationally stable perovskite solar cells Nano Energy 64 103962 doi: 10.1016/j.nanoen.2019.103962
    [128] Abate A, et al 2015 Silolothiophene-linked triphenylamines as stable hole transporting materials for high efficiency perovskite solar cells Energy Environ. Sci. 8 2946-53 doi: 10.1039/C5EE02014J
    [129] Wang Y, et al 2019 Dopant-free small-molecule hole-transporting material for inverted perovskite solar cells with efficiency exceeding 21% Adv. Mater. 31 e1902781 doi: 10.1002/adma.201902781
    [130] Ren M, Wang J, Xie X, Zhang J, Wang P 2019 Double-helicene-based hole-transporter for perovskite solar cells with 22% efficiency and operation durability ACS Energy Lett. 4 2683-8 doi: 10.1021/acsenergylett.9b01949
    [131] Wang J, Wang Y, Xie X, Ren Y, Zhang B, He L, Zhang J, Wang L-D, Wang P 2021 A helicene-based molecular semiconductor enables 85 °C stable perovskite solar cells ACS Energy Lett. 6 1764-72 doi: 10.1021/acsenergylett.1c00497
    [132] Christians J A, Fung R C, Kamat P V 2014 An inorganic hole conductor for organo-lead halide perovskite solar cells. Improved hole conductivity with copper iodide J. Am. Chem. Soc. 136 758-64 doi: 10.1021/ja411014k
    [133] Qin P, Tanaka S, Ito S, Tetreault N, Manabe K, Nishino H, Nazeeruddin M K, Gratzel M 2014 Inorganic hole conductor-based lead halide perovskite solar cells with 12.4% conversion efficiency Nat. Commun. 5 3834 doi: 10.1038/ncomms4834
    [134] Tan B, et al 2019 LiTFSIfree spiroOMeTADbased perovskite solar cells with power conversion efficiencies exceeding 19% Adv. Energy Mater. 9 1901519 doi: 10.1002/aenm.201901519
    [135] Li X, Fu S, Zhang W, Ke S, Song W, Fang J 2020 Chemical anti-corrosion strategy for stable inverted perovskite solar cells Sci. Adv. 6 eabd1580 doi: 10.1126/sciadv.abd1580
    [136] Guarnera S, Abate A, Zhang W, Foster J M, Richardson G, Petrozza A, Snaith H J 2015 Improving the long-term stability of perovskite solar cells with a porous Al2O3 buffer layer J. Phys. Chem. Lett. 6 432-7 doi: 10.1021/jz502703p
    [137] Domanski K, Correa-Baena J P, Mine N, Nazeeruddin M K, Abate A, Saliba M, Tress W, Hagfeldt A, Gratzel M 2016 Not all that glitters is gold: metal-migration-induced degradation in perovskite solar cells ACS Nano 10 6306-14 doi: 10.1021/acsnano.6b02613
    [138] Wu W Q, et al 2018 Molecular doping enabled scalable blading of efficient hole-transport-layer-free perovskite solar cells Nat. Commun. 9 1625 doi: 10.1038/s41467-018-04028-8
    [139] Mei A, et al 2014 A hole-conductor-free, fully printable mesoscopic perovskite solar cell with high stability Science 345 295-8 doi: 10.1126/science.1254763
    [140] Que M, Zhang B, Chen J, Yin X, Yun S 2021 Carbon-based electrodes for perovskite solar cells Mater. Adv. 2 5560-79 doi: 10.1039/D1MA00352F
    [141] Ku Z, Rong Y, Xu M, Liu T, Han H 2013 Full printable processed mesoscopic CH3NH3PbI3/TiO2 heterojunction solar cells with carbon counter electrode Sci. Rep. 3 3132 doi: 10.1038/srep03132
    [142] Aung S K K, Vijayan A, Karimipour M, Seetawan T, Boschloo G 2023 Reduced hysteresis and enhanced air stability of low-temperature processed carbon-based perovskite solar cells by surface modification Electrochim. Acta 443 141935 doi: 10.1016/j.electacta.2023.141935
    [143] Deng F, Sun X, Lv X, Li Y, Li S, Zheng Y-Z, Tao X 2021 All room-temperature processing efficient planar carbon-based perovskite solar cells J. Power Sources 489 229345 doi: 10.1016/j.jpowsour.2020.229345
    [144] Bogachuk D, et al 2020 Low-temperature carbon-based electrodes in perovskite solar cells Energy Environ. Sci. 13 3880-916 doi: 10.1039/D0EE02175J
    [145] Liu J, et al 2024 Electron injection and defect passivation for high-efficiency mesoporous perovskite solar cells Science 383 1198-204 doi: 10.1126/science.adk9089
    [146] Stefanelli M, Vesce L, Di Carlo A 2023 Upscaling of carbon-based perovskite solar module Nanomaterials 13 313 doi: 10.3390/nano13020313
    [147] Xu M, et al 2020 Efficient triple-mesoscopic perovskite solar mini-modules fabricated with slot-die coating Nano Energy 74 104842 doi: 10.1016/j.nanoen.2020.104842
    [148] World Health Organization Lead poisoning (available at: www.who.int/news-room/fact-sheets/detail/lead-poisoning-and-health)(Accessed 8 2022)
    [149] Babayigit A, Ethirajan A, Muller M, Conings B 2016 Toxicity of organometal halide perovskite solar cells Nat. Mater. 15 247-51 doi: 10.1038/nmat4572
    [150] Florence T M, Lilley S G, Stauber J L 1988 Skin absorption of lead Lancet 332 157-8 doi: 10.1016/S0140-6736(88)90702-7
    [151] United Nations Environment Programme 1977 Lead—environmental health criteria 3 (available at: http://hdl.handle.net/20.500.11822/29263)(Accessed 8 2022)
    [152] Benmessaoud I R, Mahul-Mellier A-L, Horváth E, Maco B, Spina M, Lashuel H A, Forró L 2016 Health hazards of methylammonium lead iodide based perovskites: cytotoxicity studies Toxicol. Res. 5 407-19 doi: 10.1039/C5TX00303B
    [153] Kwak J I, Kim L, An Y J 2021 Sublethal toxicity of PbI2 in perovskite solar cells to fish embryos (Danio rerio and Oryzias latipes): deformity and growth inhibition Sci. Total Environ. 771 145388 doi: 10.1016/j.scitotenv.2021.145388
    [154] Li J, Cao H-L, Jiao W-B, Wang Q, Wei M, Cantone I, Lü J, Abate A 2020 Biological impact of lead from halide perovskites reveals the risk of introducing a safe threshold Nat. Commun. 11 1-5 doi: 10.1038/s41467-019-13993-7
    [155] Ravi V K, Mondal B, Nawale V V, Nag A 2020 Don’t let the lead out: new material chemistry approaches for sustainable lead halide perovskite solar cells ACS Omega 5 29631-41 doi: 10.1021/acsomega.0c04599
    [156] Ministry of Ecology and Environment of the People’s Republic of China Integrated wastewater discharge standard (available at: www.mee.gov.cn/ywgz/fgbz/bz/bzwb/shjbh/swrwpfbz/199801/t19980101_66568.shtml)(Accessed 8 2022)
    [157] The standardization administration of China Standards for drinking water quality (available at: http://openstd.samr.gov.cn/bzgk/gb/newGbInfo?hcno=73D81F4F3615DDB2C5B1DD6BFC9DEC86)(Accessed 8 2022)
    [158] U.S. Environmental Protection Agency 2022 Drinking water requirements for states and public water systems (available at: www.epa.gov/dwreginfo/lead-and-copper-rule)
    [159] Wu P, Wang S, Li X, Zhang F 2022 Beyond efficiency fever: preventing lead leakage for perovskite solar cells Matter 5 1137-61 doi: 10.1016/j.matt.2022.02.012
    [160] Luo H, Li P, Ma J, Han L, Zhang Y, Song Y 2022 Sustainable Pb management in perovskite solar cells toward eco-friendly development Adv. Energy Mater. 12 2201242 doi: 10.1002/aenm.202201242
    [161] Jiang Y, Qiu L, Juarez-Perez E J, Ono L K, Hu Z, Liu Z, Wu Z, Meng L, Wang Q, Qi Y 2019 Reduction of lead leakage from damaged lead halide perovskite solar modules using self-healing polymer-based encapsulation Nat. Energy 4 585-93 doi: 10.1038/s41560-019-0406-2
    [162] Conings B, Babayigit A, Boyen H-G 2019 Fire safety of lead halide perovskite photovoltaics ACS Energy Lett. 4 873-8 doi: 10.1021/acsenergylett.9b00546
    [163] Chen S, Deng Y, Gu H, Xu S, Wang S, Yu Z, Blum V, Huang J 2020 Trapping lead in perovskite solar modules with abundant and low-cost cation-exchange resins Nat. Energy 5 1003-11 doi: 10.1038/s41560-020-00716-2
    [164] Wu S, Li Z, Li M-Q, Diao Y, Lin F, Liu T, Zhang J, Tieu P, Gao W, Qi F 2020 2D metal-organic framework for stable perovskite solar cells with minimized lead leakage Nat. Nanotechnol. 15 934-40 doi: 10.1038/s41565-020-0765-7
    [165] Li X, Zhang F, He H, Berry J J, Zhu K, Xu T 2020 On-device lead sequestration for perovskite solar cells Nature 578 555-8 doi: 10.1038/s41586-020-2001-x
    [166] Chen B, Fei C, Chen S, Gu H, Xiao X, Huang J 2021 Recycling lead and transparent conductors from perovskite solar modules Nat. Commun. 12 1-10 doi: 10.1038/s41467-020-20314-w
    [167] Wang Q R, Lin Z H, Su J, Xu Y M, Guo X, Li Y C, Zhang M, Zhang J C, Chang J J, Hao Y 2022 Dithiol surface treatment towards improved charge transfer dynamic and reduced lead leakage in lead halide perovskite solar cells Ecomat 4 e12185 doi: 10.1002/eom2.12185
    [168] Liang Y M, et al 2021 Lead leakage preventable fullerene-porphyrin dyad for efficient and stable perovskite solar cells Adv. Funct. Mater. 32 2110139 doi: 10.1002/adfm.202110139
    [169] Meng X, et al 2021 A biomimetic self-shield interface for flexible perovskite solar cells with negligible lead leakage Adv. Funct. Mater. 31 2106460 doi: 10.1002/adfm.202106460
    [170] Zhang H, Li K, Sun M, Wang F L, Wang H, Jen A K Y 2021 Design of superhydrophobic surfaces for stable perovskite solar cells with reducing lead Leakage Adv. Energy Mater. 11 2102281 doi: 10.1002/aenm.202102281
    [171] Chen S, Deng Y, Xiao X, Xu S, Rudd P N, Huang J 2021 Preventing lead leakage with built-in resin layers for sustainable perovskite solar cells Nat. Sustain. 4 636-43 doi: 10.1038/s41893-021-00701-x
    [172] Xu D, Mai R, Jiang Y, Chen C, Wang R, Xu Z, Kempa K, Zhou G, Liu J, Gao J 2022 An internal encapsulating layer for efficient, stable, repairable and low-lead-leakage perovskite solar cells Energy Environ. Sci. 15 3891-900 doi: 10.1039/D2EE01016J
    [173] Wu P, Zhang F 2022 Recent advances in lead chemisorption for perovskite solar cells Trans. Tianjin Univ. 28 341-57 doi: 10.1007/s12209-022-00316-z
    [174] Ren M, Qian X, Chen Y, Wang T, Zhao Y 2022 Potential lead toxicity and leakage issues on lead halide perovskite photovoltaics J. Hazard. Mater. 426 127848 doi: 10.1016/j.jhazmat.2021.127848
    [175] Li X, Zhang F, Wang J X, Tong J H, Xu T, Zhu K 2021 On-device lead-absorbing tapes for sustainable perovskite solar cells Nat. Sustain. 4 1038-41 doi: 10.1038/s41893-021-00789-1
    [176] Tian X, Stranks S D, You F 2021 Life cycle assessment of recycling strategies for perovskite photovoltaic modules Nat. Sustain. 4 821-9 doi: 10.1038/s41893-021-00737-z
    [177] Kim B J, Kim D H, Kwon S L, Park S Y, Li Z, Zhu K, Jung H S 2016 Selective dissolution of halide perovskites as a step towards recycling solar cells Nat. Commun. 7 1-9 doi: 10.1038/ncomms11735
    [178] Park S Y, Park J-S, Kim B J, Lee H, Walsh A, Zhu K, Kim D H, Jung H S 2020 Sustainable lead management in halide perovskite solar cells Nat. Sustain. 3 1044-51 doi: 10.1038/s41893-020-0586-6
    [179] Ma S, Yuan G, Zhang Y, Yang N, Li Y, Chen Q 2022 Development of encapsulation strategies towards the commercialization of perovskite solar cells Energy Environ. Sci. 15 13-55 doi: 10.1039/D1EE02882K
    [180] Liu Z, Sun B, Shi T, Tang Z, Liao G 2016 Enhanced photovoltaic performance and stability of carbon counter electrode based perovskite solar cells encapsulated by PDMS J. Mater. Chem. A 4 10700-9 doi: 10.1039/C6TA02851A
    [181] Yoon J, Kim U, Choi J S, Choi M, Kang S M 2021 Bioinspired liquid-repelling sealing films for flexible perovskite solar cells Mater. Today Energy 20 100622 doi: 10.1016/j.mtener.2020.100622
    [182] Lv Y, Zhang H, Liu R, Sun Y, Huang W 2020 Composite encapsulation enabled superior comprehensive stability of perovskite solar cells ACS Appl. Mater. Interfaces 12 27277-85 doi: 10.1021/acsami.0c06823
    [183] Idigoras J, Aparicio F J, Contreras-Bernal L, Ramos-Terron S, Alcaire M, Sanchez-Valencia J R, Borras A, Barranco A, Anta J A 2018 Enhancing moisture and water resistance in perovskite solar cells by encapsulation with ultrathin plasma polymers ACS Appl. Mater. Interfaces 10 11587-94 doi: 10.1021/acsami.7b17824
    [184] Fu Z, et al 2019 Encapsulation of printable mesoscopic perovskite solar cells enables high temperature and longterm outdoor stability Adv. Funct. Mater. 29 1809129 doi: 10.1002/adfm.201809129
    [185] Dong Q, Liu F, Wong M K, Tam H W, Djurisic A B, Ng A, Surya C, Chan W K, Ng A M 2016 Encapsulation of perovskite solar cells for high humidity conditions ChemSusChem 9 2597-603 doi: 10.1002/cssc.201600868
    [186] Ma S, et al 2020 1000 h operational lifetime perovskite solar cells by ambient melting encapsulation Adv. Energy Mater. 10 1902472 doi: 10.1002/aenm.201902472
    [187] WongStringer M, et al 2018 Highperformance multilayer encapsulation for perovskite photovoltaics Adv. Energy Mater. 8 1801234 doi: 10.1002/aenm.201801234
    [188] Azar M H, Mohammadi M, Rezaei N T, Aynehband S, Simchi A 2022 Effect of silica encapsulation on the stability and photoluminescence emission of FAPbI3 nanocrystals for white-light-emitting perovskite diodes J. Alloys Compd. 907 164465 doi: 10.1016/j.jallcom.2022.164465
    [189] Wang J, Jia G, Kong H, Li H, Zuo R, Yang Y, Zhang C 2022 Highly efficient luminescence and enhanced stability of nanocomposites by encapsulating perovskite quantum dots in defect-related luminescent silica nanospheres Appl. Surf. Sci. 591 153258 doi: 10.1016/j.apsusc.2022.153258
    [190] Gonzalez-Rodriguez R, Hathaway E, Lin Y, Coffer J L, Cui J 2022 Encapsulated MAPbBr3 in nickel oxide nanotubes and their electroluminescence Nanoscale 14 6417-24 doi: 10.1039/D2NR00019A
    [191] Shi L, et al 2017 Accelerated lifetime testing of organic-inorganic perovskite solar cells encapsulated by polyisobutylene ACS Appl. Mater. Interfaces 9 25073-81 doi: 10.1021/acsami.7b07625
    [192] Emery Q, Remec M, Paramasivam G, Janke S, Dagar J, Ulbrich C, Schlatmann R, Stannowski B, Unger E, Khenkin M 2022 Encapsulation and outdoor testing of perovskite solar cells: comparing industrially relevant process with a simplified lab procedure ACS Appl. Mater. Interfaces 14 5159-67 doi: 10.1021/acsami.1c14720
    [193] Zhao X, Liu T, Burlingame Q C, Liu T, Holley R, Cheng G, Yao N, Gao F, Loo Y-L 2022 Accelerated aging of all-inorganic, interface-stabilized perovskite solar cells Science 377 307-10 doi: 10.1126/science.abn5679
    [194] Liu Z, et al 2020 A holistic approach to interface stabilization for efficient perovskite solar modules with over 2,000-hour operational stability Nat. Energy 5 596-604 doi: 10.1038/s41560-020-0653-2
    [195] Gong J, Adnani M, Jones B T, Xin Y, Wang S, Patel S V, Lochner E, Mattoussi H, Hu Y Y, Gao H 2022 Nanoscale encapsulation of hybrid perovskites using hybrid atomic layer deposition J. Phys. Chem. Lett. 13 4082-9 doi: 10.1021/acs.jpclett.2c00862
    [196] Martins J, Emami S, Madureira R, Mendes J, Ivanou D, Mendes A 2020 Novel laser-assisted glass frit encapsulation for long-lifetime perovskite solar cells J. Mater. Chem. A 8 20037-46 doi: 10.1039/D0TA05583B
    [197] Li Z, Wu X, Wu S, Gao D, Dong H, Huang F, Hu X, Jen A K Y, Zhu Z 2022 An effective and economical encapsulation method for trapping lead leakage in rigid and flexible perovskite photovoltaics Nano Energy 93 106853 doi: 10.1016/j.nanoen.2021.106853
    [198] Xiao X, et al 2021 Lead-adsorbing ionogel-based encapsulation for impact-resistant, stable, and lead-safe perovskite modules Sci. Adv. 7 eabi8249 doi: 10.1126/sciadv.abi8249
    [199] Kim J, et al 2021 Lead-sealed stretchable underwater perovskite-based optoelectronics via self-recovering polymeric nanomaterials ACS Nano 15 20127-35 doi: 10.1021/acsnano.1c08018
    [200] Hu X, Li F, Song Y 2019 Wearable power source: a newfangled feasibility for perovskite photovoltaics ACS Energy Lett. 4 1065-72 doi: 10.1021/acsenergylett.9b00503
    [201] Yang D, Yang R, Priya S, Liu S F 2019 Recent advances in flexible perovskite solar cells: fabrication and applications Angew. Chem., Int. Ed. Engl. 58 4466-83 doi: 10.1002/anie.201809781
    [202] Gao Y, Huang K, Long C, Ding Y, Chang J, Zhang D, Etgar L, Liu M, Zhang J, Yang J 2022 Flexible perovskite solar cells: from materials and device architectures to applications ACS Energy Lett. 7 1412-45 doi: 10.1021/acsenergylett.1c02768
    [203] Huang K, Peng Y, Gao Y, Shi J, Li H, Mo X, Huang H, Gao Y, Ding L, Yang J 2019 High-performance flexible perovskite solar cells via precise control of electron transport layer Adv. Energy Mater. 9 1901419 doi: 10.1002/aenm.201901419
    [204] Zhang Y, He P, Luo M, Xu X, Dai G, Yang J 2020 Highly stretchable polymer/silver nanowires composite sensor for human health monitoring Nano Res. 13 919-26 doi: 10.1007/s12274-020-2730-z
    [205] Kumar A, Zhou C 2010 The race to replace tin-doped indium oxide: which material will win? ACS Nano 4 11-14 doi: 10.1021/nn901903b
    [206] Mutiari A, Dimopoulos T, Bauch M, Mittal A, Weil M, Wibowo R A 2021 Design and implementation of an ultrathin dielectric/metal/dielectric transparent electrode for Cu2ZnSnS4 thin-film photovoltaics Sol. Energy Mater. Sol. Cells 230 111247 doi: 10.1016/j.solmat.2021.111247
    [207] Lee H J, Kim B-H, Takaloo A V, Son K R, Dongale T D, Lim K M, Kim T G 2021 Haze-suppressed transparent electrodes using IZO/Ag/IZO nanomesh for highly flexible and efficient blue organic light-emitting diodes Adv. Opt. Mater. 9 2002010 doi: 10.1002/adom.202002010
    [208] Kim J-G, Na S-I, Kim H-K 2018 Flexible and transparent IWO films prepared by plasma arc ion plating for flexible perovskite solar cells AIP Adv. 8 105122 doi: 10.1063/1.5054347
    [209] Zhang J, et al 2018 Stretchable transparent electrode arrays for simultaneous electrical and optical interrogation of neural circuits in vivo Nano Lett. 18 2903-11 doi: 10.1021/acs.nanolett.8b00087
    [210] Wang Y, Lv Z, Chen J, Wang Z, Zhou Y, Zhou L, Chen X, Han S T 2018 Photonic synapses based on inorganic perovskite quantum dots for neuromorphic computing Adv. Mater. 30 1802883 doi: 10.1002/adma.201802883
    [211] Lee G, et al 2019 Ultra-flexible perovskite solar cells with crumpling durability: toward a wearable power source Energy Environ. Sci. 12 3182-91 doi: 10.1039/C9EE01944H
    [212] Worfolk B J, Andrews Sean C, Park S, Reinspach J, Liu N, Toney Michael F, Mannsfeld Stefan C B, Bao Z 2015 Ultrahigh electrical conductivity in solution-sheared polymeric transparent films Proc. Natl Acad. Sci. 112 14138-43 doi: 10.1073/pnas.1509958112
    [213] Chen Z, et al 2021 Flexible and transparent metal nanowire microelectrode arrays and interconnects for electrophysiology, optogenetics, and optical mapping Adv. Mater. Technol. 6 2100225 doi: 10.1002/admt.202100225
    [214] Zhang C, Cai J, Liang C, Khan A, Li W-D 2019 Scalable fabrication of metallic nanofiber network via templated electrode position for flexible electronics Adv. Funct. Mater. 29 1903123 doi: 10.1002/adfm.201903123
    [215] Li H, Li X, Wang W, Huang J, Li J, Huang S, Fan B, Fang J, Song W 2019 Ultraflexible and biodegradable perovskite solar cells utilizing ultrathin cellophane paper substrates and TiO2/Ag/TiO2 transparent electrodes Sol. Energy 188 158-63 doi: 10.1016/j.solener.2019.05.061
    [216] Pisoni S, Fu F, Widmer R, Carron R, Moser T, Groening O, Tiwari A N, Buecheler S 2018 Impact of interlayer application on band bending for improved electron extraction for efficient flexible perovskite mini-modules Nano Energy 49 300-7 doi: 10.1016/j.nanoen.2018.04.056
    [217] Zhang Q, et al 2022 Large-diameter carbon nanotube transparent conductor overcoming performance-yield tradeoff Adv. Funct. Mater. 32 2103397 doi: 10.1002/adfm.202103397
    [218] Ullah S, Yang X, Ta H Q, Hasan M, Bachmatiuk A, Tokarska K, Trzebicka B, Fu L, Rummeli M H 2021 Graphene transfer methods: a review Nano Res. 14 3756-72 doi: 10.1007/s12274-021-3345-8
    [219] Hu X, et al 2019 A mechanically robust conducting polymer network electrode for efficient flexible perovskite solar cells Joule 3 2205-18 doi: 10.1016/j.joule.2019.06.011
    [220] Liu Q, Qiu J, Yang C, Zang L, Zhang G, Sakai E 2021 High-performance PVA/PEDOT:PSS hydrogel electrode for all-gel-state flexible supercapacitors Adv. Mater. Technol. 6 2000919 doi: 10.1002/admt.202000919
    [221] Fan X, Nie W, Tsai H, Wang N, Huang H, Cheng Y, Wen R, Ma L, Yan F, Xia Y 2019 PEDOT:PSS for flexible and stretchable electronics: modifications, strategies, and applications Adv. Sci. 6 1900813 doi: 10.1002/advs.201900813
    [222] Han J, Yang J, Gao W, Bai H 2021 Ice-templated, large-area silver nanowire pattern for flexible transparent electrode Adv. Funct. Mater. 31 2010155 doi: 10.1002/adfm.202010155
    [223] Huang Z, Hu X, Liu C, Tan L, Chen Y 2017 Nucleation and crystallization control via polyurethane to enhance the bendability of perovskite solar cells with excellent device performance Adv. Funct. Mater. 27 1703061 doi: 10.1002/adfm.201703061
    [224] Meng X, Xing Z, Hu X, Huang Z, Hu T, Tan L, Li F, Chen Y 2020 Stretchable perovskite solar cells with recoverable performance Angew. Chem., Int. Ed. Engl. 59 16602-8 doi: 10.1002/anie.202003813
    [225] Lan Y, Wang Y, Lai Y, Cai Z, Tao M, Wang Y, Li M, Dong X, Song Y 2022 Thermally driven self-healing efficient flexible perovskite solar cells Nano Energy 100 107523 doi: 10.1016/j.nanoen.2022.107523
    [226] Duan X, Li X, Tan L, Huang Z, Yang J, Liu G, Lin Z, Chen Y 2020 Controlling crystal growth via an autonomously longitudinal scaffold for planar perovskite solar cells Adv. Mater. 32 e2000617 doi: 10.1002/adma.202000617
    [227] Gutwald M, Rolston N, Printz A D, Zhao O, Elmaraghi H, Ding Y, Zhang J, Dauskardt R H 2020 Perspectives on intrinsic toughening strategies and passivation of perovskite films with organic additives Sol. Energy Mater. Sol. Cells 209 110433 doi: 10.1016/j.solmat.2020.110433
    [228] Jiang N, Xing B, Wang Y, Zhang H, Yin D, Liu Y, Bi Y, Zhang L, Feng J, Sun H 2022 Mechanically and operationally stable flexible inverted perovskite solar cells with 20.32% efficiency by a simple oligomer cross-linking method Sci. Bull. 67 794-802 doi: 10.1016/j.scib.2022.02.010
    [229] Ge C, Yang Z, Liu X, Song Y, Wang A, Dong Q 2021 Stable and highly flexible perovskite solar cells with power conversion efficiency approaching 20% by elastic grain boundary encapsulation CCS Chem. 3 2035-44 doi: 10.31635/ccschem.020.202000335
    [230] Liu Y, Chen T, Jin Z, Li M, Zhang D, Duan L, Zhao Z, Wang C 2022 Tough, stable and self-healing luminescent perovskite-polymer matrix applicable to all harsh aquatic environments Nat. Commun. 13 1338 doi: 10.1038/s41467-022-29084-z
    [231] Xu Y, Lin Z, Wei W, Hao Y, Liu S, Ouyang J, Chang J 2022 Recent progress of electrode materials for flexible perovskite solar cells Nanomicro Lett. 14 117 doi: 10.1007/s40820-022-00859-9
    [232] Hu Y, et al 2021 Flexible perovskite solar cells with high power-per-weight: progress, application, and perspectives ACS Energy Lett. 6 2917-43 doi: 10.1021/acsenergylett.1c01193
    [233] Jia C, et al 2019 Highly flexible, robust, stable and high efficiency perovskite solar cells enabled by van der Waals epitaxy on mica substrate Nano Energy 60 476-84 doi: 10.1016/j.nanoen.2019.03.053
    [234] Gong C, et al 2021 A non-wetting and conductive polyethylene dioxothiophene hole transport layer for scalable and flexible perovskite solar cells Sci. China Chem. 64 834-43 doi: 10.1007/s11426-020-9951-1
    [235] Meng X, et al 2020 Bio-inspired vertebral design for scalable and flexible perovskite solar cells Nat. Commun. 11 3016 doi: 10.1038/s41467-020-16831-3
    [236] Dai Z, Yadavalli S K, Chen M, Abbaspourtamijani A, Qi Y, Padture N P 2021 Interfacial toughening with self-assembled monolayers enhances perovskite solar cell reliability Science 372 618-22 doi: 10.1126/science.abf5602
    [237] Ochoa-Martinez E, Mili J V 2021 Get tougher Nat. Energy 6 858-9 doi: 10.1038/s41560-021-00901-x
    [238] Bu T, Li J, Zheng F, Chen W, Wen X, Ku Z, Peng Y, Zhong J, Cheng Y-B, Huang F 2018 Universal passivation strategy to slot-die printed SnO2 for hysteresis-free efficient flexible perovskite solar module Nat. Commun. 9 4609 doi: 10.1038/s41467-018-07099-9
    [239] Kim Y Y, Yang T Y, Suhonen R, Kemppainen A, Hwang K, Jeon N J, Seo J 2020 Roll-to-roll gravure-printed flexible perovskite solar cells using eco-friendly antisolvent bathing with wide processing window Nat. Commun. 11 5146 doi: 10.1038/s41467-020-18940-5
    [240] Paik M J, Yoo J W, Park J, Noh E, Kim H, Ji S-G, Kim Y Y, Seok S I 2022 SnO2-TiO2 hybrid electron transport layer for efficient and flexible perovskite solar cells ACS Energy Lett. 7 1864-70 doi: 10.1021/acsenergylett.2c00637
    [241] Wang H, et al 2021 An in situ bifacial passivation strategy for flexible perovskite solar module with mechanical robustness by roll-to-roll fabrication J. Mater. Chem. A. 9 5759-68 doi: 10.1039/D0TA12067G
    [242] Taheri B, De Rossi F, Lucarelli G, Castriotta L A, Di Carlo A, Brown T M, Brunetti F 2021 Laser-scribing optimization for sprayed SnO2-based perovskite solar modules on flexible plastic substrates ACS Appl. Energy Mater. 4 4507-18 doi: 10.1021/acsaem.1c00140
    [243] Lei T, et al 2020 Flexible perovskite solar modules with functional layers fully vacuum deposited Sol. RRL 4 2000292 doi: 10.1002/solr.202000292
    [244] Castriotta L A, Fuentes Pineda R, Babu V, Spinelli P, Taheri B, Matteocci F, Brunetti F, Wojciechowski K, Di Carlo A 2021 Light-stable methylammonium-free inverted flexible perovskite solar modules on pet exceeding 10.5% on a 15.7 cm2 active area ACS Appl. Mater. Interfaces 13 29576-84 doi: 10.1021/acsami.1c05506
    [245] Hwang K, Jung Y S, Heo Y J, Scholes F H, Watkins S E, Subbiah J, Jones D J, Kim D Y, Vak D 2015 Toward large scale roll-to-roll production of fully printed perovskite solar cells Adv. Mater. 27 1241-7 doi: 10.1002/adma.201404598
    [246] Yang X, et al 2022 Scalable flexible perovskite solar cells based on a crystalline and printable template with intelligent temperature sensitivity Sol. RRL 6 2100991 doi: 10.1002/solr.202100991
    [247] Fan B, Xiong J, Zhang Y, Gong C, Li F, Meng X, Hu X, Yuan Z, Wang F, Chen Y 2022 A bionic interface to suppress the coffee-ring effect for reliable and flexible perovskite modules with a near-90% yield rate Adv. Mater. 34 e2201840 doi: 10.1002/adma.202201840
    [248] Di Giacomo F, et al 2015 Flexible perovskite photovoltaic modules and solar cells based on atomic layer deposited compact layers and uv-irradiated TiO2 scaffolds on plastic substrates Adv. Energy Mater. 5 1401808 doi: 10.1002/aenm.201401808
    [249] Yeo J-S, Lee C-H, Jang D, Lee S, Jo S M, Joh H-I, Kim D-Y 2016 Reduced graphene oxide-assisted crystallization of perovskite via solution-process for efficient and stable planar solar cells with module-scales Nano Energy 30 667-76 doi: 10.1016/j.nanoen.2016.10.065
    [250] Dagar J, Castro-Hermosa S, Gasbarri M, Palma A L, Cina L, Matteocci F, Calabrò E, Di Carlo A, Brown T M 2018 Efficient fully laser-patterned flexible perovskite modules and solar cells based on low-temperature solution-processed SnO2/mesoporous-TiO2 electron transport layers Nano Res. 11 2669-81 doi: 10.1007/s12274-017-1896-5
    [251] Hu X, et al 2019 Nacre-inspired crystallization and elastic “brick-and-mortar” structure for a wearable perovskite solar module Energy Environ. Sci. 12 979-87 doi: 10.1039/C8EE01799A
    [252] Ru P, et al 2020 High electron affinity enables fast hole extraction for efficient flexible inverted perovskite solar cells Adv. Energy Mater. 10 1903487 doi: 10.1002/aenm.201903487
    [253] Chung J, et al 2020 Record-efficiency flexible perovskite solar cell and module enabled by a porous-planar structure as an electron transport layer Energy Environ. Sci. 13 4854-61 doi: 10.1039/D0EE02164D
    [254] Li L, et al 2022 Flexible all-perovskite tandem solar cells approaching 25% efficiency with molecule-bridged hole-selective contact Nat. Energy 7 708-17 doi: 10.1038/s41560-022-01045-2
    [255] Kothandaraman R K, et al 2022 Laser patterned flexible 4T perovskiteCu(In,Ga)Se2 tandem minimodule with over 18% efficiency Sol. RRL 6 2200392 doi: 10.1002/solr.202200392
    [256] Li S, Xu L D, Zhao S 2015 The internet of things: a survey Inform. Syst. Front. 17 243-59 doi: 10.1007/s10796-014-9492-7
    [257] Gasparini N, Salleo A, McCulloch I, Baran D 2019 The role of the third component in ternary organic solar cells Nat. Rev. Mater. 4 229-42 doi: 10.1038/s41578-019-0093-4
    [258] Song D, Li M, Li Y, Zhao X, Jiang B, Jiang Y 2014 Highly transparent and efficient counter electrode using SiO2/PEDOT-PSS composite for bifacial dye-sensitized solar cells ACS Appl. Mater. Interfaces 6 7126-32 doi: 10.1021/am500082x
    [259] Yang C, Qu J, Wu Z 2021 Mechanical reliability of flexible encapsulation of III-V compound thin film solar cells Sol. Energy 214 542-50 doi: 10.1016/j.solener.2020.12.014
    [260] Kao M H, Shen C H, Yu P C, Huang W H, Chueh Y L, Shieh J M 2017 Low-temperature growth of hydrogenated amorphous silicon carbide solar cell by inductively coupled plasma deposition toward high conversion efficiency in indoor lighting Sci. Rep. 7 12706 doi: 10.1038/s41598-017-10661-y
    [261] Ryu H S, Park S Y, Lee T H, Kim J Y, Woo H Y 2020 Recent progress in indoor organic photovoltaics Nanoscale 12 5792-804 doi: 10.1039/D0NR00816H
    [262] Xing Z, Lin S, Meng X, Hu T, Li D, Fan B, Cui Y, Li F, Hu X, Chen Y 2021 A highly tolerant printing for scalable and flexible perovskite solar cells Adv. Funct. Mater. 31 2107726 doi: 10.1002/adfm.202107726
    [263] Dong Q, et al 2021 Flexible perovskite solar cells with simultaneously improved efficiency, operational stability, and mechanical reliability Joule 5 1587-601 doi: 10.1016/j.joule.2021.04.014
    [264] Deng Y, Zheng X, Bai Y, Wang Q, Zhao J, Huang J 2018 Surfactant-controlled ink drying enables high-speed deposition of perovskite films for efficient photovoltaic modules Nat. Energy 3 560-6 doi: 10.1038/s41560-018-0153-9
    [265] Zuo C, Vak D, Angmo D, Ding L, Gao M 2018 One-step roll-to-roll air processed high efficiency perovskite solar cells Nano Energy 46 185-92 doi: 10.1016/j.nanoen.2018.01.037
    [266] Kim Y Y, Yang T Y, Suhonen R, Valimaki M, Maaninen T, Kemppainen A, Jeon N J, Seo J 2019 Gravure-printed flexible perovskite solar cells: toward roll-to-roll manufacturing Adv. Sci. 6 1802094 doi: 10.1002/advs.201802094
    [267] Song Z, Chen C, Li C, Awni R A, Zhao D, Yan Y 2019 Wide-bandgap, low-bandgap, and tandem perovskite solar cells Semicond. Sci. Technol. 34 093001 doi: 10.1088/1361-6641/ab27f7
    [268] Kojima A, Teshima K, Shirai Y, Miyasaka T 2009 Organometal halide perovskites as visible-light sensitizers for photovoltaic cells J. Am. Chem. Soc. 131 6050-1 doi: 10.1021/ja809598r
    [269] Green M A 2016 Commercial progress and challenges for photovoltaics Nat. Energy 1 15015 doi: 10.1038/nenergy.2015.15
    [270] Venkateswararao A, Ho J K W, So S K, Liu S-W, Wong K-T 2020 Device characteristics and material developments of indoor photovoltaic devices Mater. Sci. Eng. R 139 100517 doi: 10.1016/j.mser.2019.100517
    [271] Cui Y, Hong L, Zhang T, Meng H, Yan H, Gao F, Hou J 2021 Accurate photovoltaic measurement of organic cells for indoor applications Joule 5 1016-23 doi: 10.1016/j.joule.2021.03.029
    [272] Chen C-Y, Chang J-H, Chiang K-M, Lin H-L, Hsiao S-Y, Lin H-W 2015 Perovskite photovoltaics for dim-light applications Adv. Funct. Mater. 25 7064-70 doi: 10.1002/adfm.201503448
    [273] Li M, et al 2018 Interface modification by ionic liquid: a promising candidate for indoor light harvesting and stability improvement of planar perovskite solar cells Adv. Energy Mater. 8 1801509 doi: 10.1002/aenm.201801509
    [274] He X, Chen J, Ren X, Zhang L, Liu Y, Feng J, Fang J, Zhao K, Liu S F 2021 40.1% Record low-light solar-cell efficiency by holistic trap-passivation using micrometer-thick perovskite film Adv. Mater. 33 e2100770 doi: 10.1002/adma.202100770
    [275] Wang K-L, Li X-M, Lou Y-H, Li M, Wang Z-K 2021 CsPbBrI2 perovskites with low energy loss for high-performance indoor and outdoor photovoltaics Sci. Bull. 66 347-53 doi: 10.1016/j.scib.2020.09.017
    [276] Wang K-L, et al 2021 Smelting recrystallization of CsPbBrI2 perovskites for indoor and outdoor photovoltaics eScience 1 53-59 doi: 10.1016/j.esci.2021.09.001
    [277] Chen C H, et al 2022 Full-dimensional grain boundary stress release for flexible perovskite indoor photovoltaics Adv. Mater. 34 e2200320 doi: 10.1002/adma.202200320
    [278] Yang W-F, Cao J-J, Dong C, Li M, Tian Q-S, Wang Z-K, Liao L-S 2021 Suppressed oxidation of tin perovskite by Catechin for eco-friendly indoor photovoltaics Appl. Phys. Lett. 118 023501 doi: 10.1063/5.0032951
    [279] Bi E, et al 2019 Efficient perovskite solar cell modules with high stability enabled by iodide diffusion barriers Joule 3 2748-60 doi: 10.1016/j.joule.2019.07.030
  • 加载中
图(12) / 表(6)
计量
  • 文章访问数:  843
  • HTML全文浏览量:  409
  • PDF下载量:  216
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-12-20
  • 录用日期:  2024-03-26
  • 修回日期:  2024-03-25
  • 刊出日期:  2024-04-18

目录

    /

    返回文章
    返回