• 中文核心期刊要目总览
  • 中国科技核心期刊
  • 中国科学引文数据库(CSCD)
  • 中国科技论文与引文数据库(CSTPCD)
  • 中国学术期刊文摘数据库(CSAD)
  • 中国学术期刊(网络版)(CNKI)
  • 中文科技期刊数据库
  • 万方数据知识服务平台
  • 中国超星期刊域出版平台
  • 国家科技学术期刊开放平台
  • 荷兰文摘与引文数据库(SCOPUS)
  • 日本科学技术振兴机构数据库(JST)

Towards an enhanced understanding of the particle size effect on conversion/alloying lithium-ion anodes

  • Abstract: Conversion/alloying materials (CAMs) represent a potential alternative to graphite as a Li-ion anode active material, especially for high-power applications. So far, however, essentially all studies on CAMs have been dealing with nano-sized particles, leaving the question of how the performance (and the de-/lithiation mechanism in general) is affected by the particle size. Herein, we comparatively investigate four different samples of Zn0.9Co0.1O with a particle size ranging from about 30 nm to a few micrometers. The results show that electrodes made of larger particles are more susceptible to fading due to particle displacement and particle cracking. The results also show that the conversion-type reaction in particular is affected by an increasing particle size, becoming less reversible due to the formation of relatively large transition metal (TM) and alloying metal nanograins upon lithiation, thus hindering an efficient electron transport within the initial particle, while the alloying contribution remains essentially unaffected. The generality of these findings is confirmed by also investigating Sn0.9Fe0.1O2 as a second CAM with a substantially greater contribution of the alloying reaction and employing Fe instead of Co as a TM dopant.

     

/

返回文章
返回