留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Research progress on the design of electrolyte additives and their functions for zinc-ion batteries

Yuxin Cui Ruixin Zhang Sinian Yang Lili Liu Shimou Chen

Yuxin Cui, Ruixin Zhang, Sinian Yang, Lili Liu, Shimou Chen. Research progress on the design of electrolyte additives and their functions for zinc-ion batteries[J]. Materials Futures, 2024, 3(1): 012102. doi: 10.1088/2752-5724/acef41
Citation: Yuxin Cui, Ruixin Zhang, Sinian Yang, Lili Liu, Shimou Chen. Research progress on the design of electrolyte additives and their functions for zinc-ion batteries[J]. Materials Futures, 2024, 3(1): 012102. doi: 10.1088/2752-5724/acef41
Topical Review •
OPEN ACCESS

Research progress on the design of electrolyte additives and their functions for zinc-ion batteries

doi: 10.1088/2752-5724/acef41
More Information
  • Figure  1.  Research advances in various kinds of electrolytes and additives in Zn-ion batteries. This includes liquid electrolytes (divided into aqueous systems, organic systems and water-organic hybrid systems), solid electrolytes (divided into hydrogel solid systems, polymeric gel systems and all-solid systems). Reprinted from [11], Copyright (2022), with permission from Elsevier. [13] John Wiley & Sons. [© 2022 WileyVCH GmbH]. [14] John Wiley & Sons. [© 2020 WILEYVCH Verlag GmbH & Co. KGaA, Weinheim]. [21] John Wiley & Sons. [© 2021 WileyVCH GmbH]. Reprinted from [22], Copyright (2022), with permission from Elsevier. Reprinted from [23], Copyright (2022), with permission from Elsevier. [24] John Wiley & Sons. [© 2021 WileyVCH GmbH].

    Figure  2.  Existing challenges for cathodes and anodes in aqueous Zn-ion batteries, and the positive impact additives can play.

    Figure  3.  (a) Growth process of Zn dendrites. (b) and (c) are the chemical mechanisms of the corrosion reaction and the hydrogen evolution reaction, respectively.

    Figure  4.  (a) Scheme of Zn2+ solvation structure and Zn surface passivization in H2O (left) and H2O-DMSO (right) solvents. (b) SEM images of the Zn electrode in Zn/Zn symmetrical cells after 50 plating/stripping cycles at 0.5 mA cm-2 and 0.5 mAh cm-2 in ZnCl2-H2O-DMSO electrolytes. White lines indicate the etching depth in the cross-section view. Reprinted with permission from [34]. Copyright (2020) American Chemical Society. (c) Due to to PG’s hydrophobic nature (-CH3 tail and hydrocarbon backbone), it can remove the hydrogen bubbles from the Zn surface that, in the PG-free electrolyte, induce porous and flaky Zn deposit formation. (d) In situ optical microscopy investigation of Zn deposition in a transparent Zn/Zn cell with PG-free and 10% PG electrolytes. (e) Cycling performance of AC/Zn cells in the three electrolytes; [35] John Wiley & Sons. [© 2022 WileyVCH GmbH]. (f), (g) Potential and current distribution of Zn deposition at a simulation time of 2 min in ZSO electrolyte (f) and ZSO/Ce electrolyte (g); gray lines with the arrows and the black lines at the bottom represent the current and the initial surface of the Zn anode. [36] John Wiley & Sons. [© 2022 WileyVCH GmbH]. (h) O 1s of Zn surface after charge-discharge process with 2 M LiCl as the additive. Reprinted with permission from [37]. Copyright (2021) American Chemical Society. (i) SEM images of Zn anodes plated in electrolyte with Hmim for 30 min at a current density of 1 mA cm-2. Reprinted from [38], Copyright (2023), with permission from Elsevier.

    Figure  5.  (a) Schematic illustration of Zn2+-solvation structure with or without DMA. Reprinted from [39], Copyright (2022), with permission from Elsevier. (b) Molecular structures of carbonate cosolvents (i.e. EC, PC, DMC and DEC). (c) Schematic illustration of Zn electrode interface chemistry in BE and BE + 7 m DEC. Reprinted with permission from [40]. Copyright (2022) American Chemical Society. (d) XRD patterns of Zn anodes immersed in Sel/ZnSO4 and ZnSO4 electrolytes. (e) In situ optical microscopy images of the cross-sectional Zn deposition morphology on the exposed area of ZnSe coated Cu foil in ZnSO4 and Sel/ZnSO4 electrolyte (current density: 5 mA cm-2); [42] John Wiley & Sons. [© 2022 WileyVCH GmbH].

    Figure  6.  (a) Schematic diagram of Zn deposition behavior in Zn(OTf)2 aqueous electrolyte containing TMU additives. (b) Schematic diagram of Zn deposition behavior in Zn(OTf)2 aqueous electrolyte without TMU additives; [53] John Wiley & Sons. [© 2022 WileyVCH GmbH]. (c) Molecular dynamics simulation models of electrolytes with PFOA additives. H2O molecular distribution of the Zn2+ first hydration layer in the electrolyte with PFOA additives. (d) Working window of different electrolytes. Reproduced from [54]. CC BY 4.0.

    Figure  7.  (a) Schematic illustration of the effects of the electrolytes on V2O5 electrode during the electrochemical reactions. [65] John Wiley & Sons. [© 2021 WileyVCH GmbH]. (b) Photos of V2O5·1.6H2O/MXene electrodes after 10 d of immersing time in Zn(OTf)2-TEP/H2O-80% and Zn(OTf)2-H2O electrolytes for 10 d, and photos of the glass fiber separators in the cells with Zn(OTf)2-TEP/H2O-80% electrolyte after 1000 cycles and Zn(OTf)2-H2O electrolyte after battery failure. Reprinted from [66], Copyright (2023), with permission from Elsevier. (c) Calculated HOMO and LUMO energy levels of H2O, NMP and Zn2+-NMP complex. Reprinted from [68], Copyright (2023), with permission from Elsevier.

    Figure  8.  (a) Schematic diagram of the battery storage mechanism of raw electrolyte and PEA-modified electrolyte. [69] John Wiley & Sons. [© 2023 WileyVCH GmbH]. FESEM images of the VNxOy/C electrode after 100 cycles at the current density of 0.5 A g-1 operated in the electrolyte of (b) pure H2O and (c) the H2O-50% PEG system. Reprinted from [70], Copyright (2023), with permission from Elsevier. Schematic illustration of the hybrid aqueous battery storage mechanism with (d) pristine electrolyte and (e) SDS-modified electrolyte. Reprinted from [71], Copyright (2022), with permission from Elsevier. (f) XRD patterns of the fully discharged KVO cathode after 100 cycles in three different electrolytes. Reproduced from [72], with permission from Springer Nature.

    Figure  9.  (a) Illustration of TU inhibiting the formation of the byproduct SO42- during charging. Reprinted from [73], Copyright (2023), with permission from Elsevier. (b) XRD patterns of Zn anodes after specific cycles at 2 mA cm-2 in 2.5 + 0.2 electrolytes. (c) At 10 A g-1, the cycling performances of the Zn | 2.5 + 0 | NVO and Zn | 2.5 + 0.2 | NVO coin cells; [74] John Wiley & Sons. [© 2022 WileyVCH GmbH]. (d) Schematic illustration of DETA serving as a multifunctional electrolyte additive. (e) XRD pattern of the cathode in different states. Reprinted with permission from [75]. Copyright (2023) American Chemical Society.

    Figure  10.  (a) SEM images of Zn deposits at the electrode surface cycled in TMPNMF electrolyte after 800 cycles of Zn deposition/stripping. Reprinted from [85], Copyright (2023), with permission from Elsevier. (b) Design strategy of an EMC-based electrolyte with a microheterogeneous anion solvation network for high-voltage Zn/graphite cells. [87] John Wiley & Sons. [© 2020 WileyVCH GmbH]. (c) Comparison of the cycling performance (capacity retention versus cycle number) of Zn-MnO2 batteries using the three electrolytes. Illustration is the optical image of two CR2032-type coin cells that are assembled using aqueous and hydrous organic electrolytes and stored for different storage times. Reprinted from [90], Copyright (2023), with permission from Elsevier. (d) Charge/discharge profiles of Zn/Zn symmetric cells in various electrolytes: DMF (black), AN (red), TMP (blue), H2O (pink), TEP (green). Reprinted from [89], Copyright (2022), with permission from Elsevier.

    Figure  11.  (a) Schematic illustration of the anode SEI formation in EIWE. [95] John Wiley & Sons. [© 2020 WileyVCH GmbH]. (b) Schemes illustrating different reaction processes of Zn2+ solvation structure and interfacial interaction between the Zn anode surface and electrolyte in AWCS electrolytes. Reprinted from [11], Copyright (2022), with permission from Elsevier. (c) Cycling stability at 20 C with a current density of 5 A g-1. (d) Cycling stability of EG 40 at -20 C with a current density of 0.2 A g-1. Reproduced from [97] with permission from the Royal Society of Chemistry. Snapshot of the MD simulation cell and corresponding RDF plots for (e) 1 M Zn(OTf)2 in water, (f) 50% PC-sat. Insets in panels are the corresponding representative solvation structure within a 0.3 nm scale. (g) Anode-free Cu-ZnMn2O4 batteries in different electrolytes with a current density of 0.5 mA cm-2 (350 mA g-1). Reprinted with permission from [98]. Copyright (2022) American Chemical Society.

    Figure  12.  Influence of various electrolyte additives on the solid electrolyte of the battery and related mechanisms. (a) Structure of the battery studied in nanomaterial-enhanced all-solid flexible Zn-carbon batteries. Reprinted with permission from [118]. Copyright (2010) American Chemical Society. (b) Schematic illustration of the preparation and structural characterization of the anti-freezing conductive organohydrogels. [117] John Wiley & Sons. [© 2017 WileyVCH Verlag GmbH & Co. KGaA, Weinheim]. (c) Schematic illustration of the strong hydrogen bonds between EG-waPUA, water and PAM in the AF-gel. Reproduced from [115] with permission from the Royal Society of Chemistry. (d) Schematic diagram of the synthesis of PAMPS/PAAM dual-network hydrogel. Reprinted from [116], Copyright (2022), with permission from Elsevier.

    Figure  13.  Challenges facing the current hydrogel polymer electrolyte of ZIBs: (a) elastic stability of polyacrylamide (PAM)-hydrogel electrolytes after a day’s storage at various temperatures. Reproduced from [125]. CC BY 4.0. (b) Performance deterioration due to freezing of aqueous electrolyte at low temperatures. Reprinted with permission from [126]. Copyright (2022) American Chemical Society. (c) Low ion conductivity of electrolyte in low-temperature hydrogel solid electrolytes. (d) Photograph of PAMPS/PAAM hydrogel in a completely unloaded state and 50-cycle distortion. Reprinted from [116], Copyright (2022), with permission from Elsevier.

    Figure  14.  (a) Formation energy from DFT calculations (PAM is viewed as one unit and the long chains are replaced by -CH3). (b) Photos of the hydrogels at different temperatures. Reprinted from [139], Copyright (2022), with permission from Elsevier. (c) Schematic illustration of the fabrication of GG/SA and GG/SA/EG hydrogel electrolytes. Reprinted from [12], Copyright (2021), with permission from Elsevier. (d) Schematic diagram of the synthesis process of the PDZ-H electrolyte. (e) Digital photos of PDZ-H electrolyte at different temperatures from 20 to -40 C; [142] John Wiley & Sons. [© 2022 WileyVCH GmbH]. (f) Schematic illustration of the synthesis process at different states. Reprinted from [143], Copyright (2022), with permission from Elsevier.

    Figure  15.  (a) Digital photos: the PAM hydrogel electrolytes were placed at 25 C and 50% humidity for 30 d. Reproduced from [125]. CC BY 4.0. (b) DFT optimized structures of PAM-H2O-Gly, PAM-H2O-EG, PVA-H2O-Gly, and PAA-H2O-Gly. (c) Configuration and bonding mechanism of the anti-freezing and anti-drying gel electrolyte. (d) Optical images of PAM-H2O-Gly with different Gly content after 30 d in ambient environment. Reproduced from [147], with permission from Springer Nature. (e) Design principle of elastomer-coated alginate/PAM (polyacrylamide) organohydrogel electrolyte. Reproduced from [125]. CC BY 4.0.

    Figure  16.  (a) Schematic view of GO phosphonation reaction and PAM-PGO structure showing hydrogen bonds. Reprinted from [156], Copyright (2022), with permission from Elsevier. (b) Schematic illustration of the synthesis route of the MMT-PAM hydrogel through a controllable accelerated polymerization mechanism. (c) Schematic illustration of the synthesis route of the MMT-PAM hydrogel through a traditional route; (b), (c) Reprinted from [157], Copyright (2023), with permission from Elsevier. (d) Illustration of the spatial structure of PVA-based hydrogel electrolyte in flexible solid-state Zn-polymer batteries with practical functions. Reprinted from [136], Copyright (2021), with permission from Elsevier.

    Figure  17.  (a) Schematic illustration of the swelling method for the preparation of OHE, and structure merits of OHE. Reprinted from [163], Copyright (2022), with permission from Elsevier. (b) Schematic illustration of the construction of an ion migration channel under the applied electric field. Reproduced from [158]. CC BY 4.0.

    Figure  18.  (a) Macroscopic morphologies of the SPE-Zn membrane, ILPE-Zn-4 membrane and ILPE-Zn-5 membrane. Reproduced from [175]. CC BY 4.0. (b) Representation of an effectual Zn-ionic conducting pathway through the space-charge layers of the neighboring SiO2 grains. [172] John Wiley & Sons. [© 2019 Wiley Periodicals, Inc.].

    Figure  19.  (a) Schematic illustration of the overall preparation process of the SPEs (PVHF/MXene-g-PMA). (b) Zn/MnHCF full cell discharge capacity at different temperatures; (a), (b) Reproduced from [100] with permission from the Royal Society of Chemistry. (c) Electrochemical performance at different temperatures. [14] John Wiley & Sons. [© 2020 WILEYVCH Verlag GmbH & Co. KGaA, Weinheim].

  • [1] Li M, Lu J, Chen Z, Amine K 2018 30 years of lithium-ion batteries Adv. Mater. 30 1800561 doi: 10.1002/adma.201800561
    [2] Mao F, Son S 2023 Layered and honeycomb N-doped porous carbon for advanced Zn-ion hybrid supercapacitors and Li-ion batteries Chem. Eng. Sci. 276 118702 doi: 10.1016/j.ces.2023.118702
    [3] Geng Y, et al 2022 Electrolyte additive engineering for aqueous Zn ion batteries Energy Storage Mater. 51 733-55 doi: 10.1016/j.ensm.2022.07.017
    [4] Ming J, Guo J, Xia C, Wang W, Alshareef H N 2019 Zinc-ion batteries: materials, mechanisms, and applications Mater. Sci. Eng. R 135 58-84 doi: 10.1016/j.mser.2018.10.002
    [5] Yi Z, Chen G, Hou F, Wang L, Liang J 2020 Strategies for the stabilization of Zn metal anodes for Znion batteries Adv. Energy Mater. 11 2003065 doi: 10.1002/aenm.202003065
    [6] Blanc L E, Kundu D, Nazar L F 2020 Scientific challenges for the implementation of Zn-ion batteries Joule 4 771-99 doi: 10.1016/j.joule.2020.03.002
    [7] Zheng X, Ahmad T, Chen W 2021 Challenges and strategies on Zn electrodeposition for stable Zn-ion batteries Energy Storage Mater. 39 365-94 doi: 10.1016/j.ensm.2021.04.027
    [8] Zhang T, Tang Y, Guo S, Cao X, Pan A, Fang G, Zhou J, Liang S 2020 Fundamentals and perspectives in developing zinc-ion battery electrolytes: a comprehensive review Energy Environ. Sci. 13 4625-65 doi: 10.1039/D0EE02620D
    [9] Yan H, Zhang X, Yang Z, Xia M, Xu C, Liu Y, Yu H, Zhang L, Shu J 2022 Insight into the electrolyte strategies for aqueous zinc ion batteries Coord. Chem. Rev. 452 214297 doi: 10.1016/j.ccr.2021.214297
    [10] Wang N, Dong X L, Wang B L, Guo Z W, Wang Z, Wang R H, Qiu X, Wang Y G 2020 Zinc-organic battery with a wide operation-temperature window from -70 to 150 C Angew. Chem., Int. Ed. 59 14577-83 doi: 10.1002/anie.202005603
    [11] Meng C, He W, Kong Z, Liang Z, Zhao H, Lei Y, Wu Y, Hao X 2022 Multifunctional water-organic hybrid electrolyte for rechargeable zinc ions batteries Chem. Eng. J. 450 138265 doi: 10.1016/j.cej.2022.138265
    [12] Wang J, Huang Y, Liu B, Li Z, Zhang J, Yang G, Hiralal P, Jin S, Zhou H 2021 Flexible and anti-freezing zinc-ion batteries using a guar-gum/sodium-alginate/ethylene-glycol hydrogel electrolyte Energy Storage Mater. 41 599-605 doi: 10.1016/j.ensm.2021.06.034
    [13] Zhou J, Zhang L, Peng M, Zhou X, Cao Y, Liu J, Shen X, Yan C, Qian T 2022 Diminishing interfacial turbulence by colloid-polymer electrolyte to stabilize zinc ion flux for deep-cycling Zn metal batteries Adv. Mater. 34 2200131 doi: 10.1002/adma.202200131
    [14] Ma L, Chen S, Li N, Liu Z, Tang Z, Zapien J A, Chen S, Fan J, Zhi C 2020 Hydrogen-free and dendrite-free all-solid-state Zn-ion batteries Adv. Mater. 32 1908121 doi: 10.1002/adma.201908121
    [15] Liu C, Xie X, Lu B, Zhou J, Liang S 2021 Electrolyte strategies toward better zinc-ion batteries ACS Energy Lett. 6 1015-33 doi: 10.1021/acsenergylett.0c02684
    [16] Guo S, Qin L, Zhang T, Zhou M, Zhou J, Fang G, Liang S 2021 Fundamentals and perspectives of electrolyte additives for aqueous zinc-ion batteries Energy Storage Mater. 34 545-62 doi: 10.1016/j.ensm.2020.10.019
    [17] Zhang N, Chen X, Yu M, Niu Z, Cheng F, Chen J 2020 Materials chemistry for rechargeable zinc-ion batteries Chem. Soc. Rev. 49 4203-19 doi: 10.1039/C9CS00349E
    [18] Lv Y, Xiao Y, Ma L, Zhi C, Chen S 2022 Recent advances in electrolytes for beyond aqueous zinc-ion batteries Adv. Mater. 34 2106409 doi: 10.1002/adma.202106409
    [19] Wu K, Huang J, Yi J, Liu X, Liu Y, Wang Y, Zhang J, Xia Y 2020 Recent advances in polymer electrolytes for zinc ion batteries: mechanisms, properties, and perspectives Adv. Energy Mater. 10 1903977 doi: 10.1002/aenm.201903977
    [20] Zheng S, Wang Q, Hou Y, Li L, Tao Z 2021 Recent progress and strategies toward high performance zinc-organic batteries J. Energy Chem. 63 87-112 doi: 10.1016/j.jechem.2021.07.027
    [21] Zhang S, Hao J, Luo D, Zhang P, Zhang B, Davey K, Lin Z, Qiao S 2021 Dualfunction electrolyte additive for highly reversible Zn anode Adv. Energy Mater. 11 2102010 doi: 10.1002/aenm.202102010
    [22] Miao L, Wang R, Xin W, Zhang L, Geng Y, Peng H, Yan Z, Jiang D, Qian Z, Zhu Z 2022 Three-functional ether-based co-solvents for suppressing water-induced parasitic reactions in aqueous Zn-ion batteries Energy Storage Mater. 49 445-53 doi: 10.1016/j.ensm.2022.04.032
    [23] Ma G, Di S, Wang Y, Yuan W, Ji X, Qiu K, Liu M, Nie X, Zhang N 2023 Zn metal anodes stabilized by an intrinsically safe, dilute, and hydrous organic electrolyte Energy Storage Mater. 54 276-83 doi: 10.1016/j.ensm.2022.10.043
    [24] Liu C, Xu W, Mei C, Li M, Chen W, Hong S, Kim W Y, Lee S Y, Wu Q 2021 A chemically selfcharging flexible solidstate zincion battery based on VO2 cathode and polyacrylamide-chitin nanofiber hydrogel electrolyte Adv. Energy Mater. 11 2003902 doi: 10.1002/aenm.202003902
    [25] Tang B, Shan L, Liang S, Zhou J 2019 Issues and opportunities facing aqueous zinc-ion batteries Energy Environ. Sci. 12 3288-304 doi: 10.1039/C9EE02526J
    [26] Dong H, Li J, Guo J, Lai F, Zhao F, Jiao Y, Brett D J L, Liu T, He G, Parkin I P 2021 Insights on flexible zinc-ion batteries from lab research to commercialization Adv. Mater. 33 2007548 doi: 10.1002/adma.202007548
    [27] Qiu X, Wang N, Dong X, Xu J, Zhou K, Li W, Wang Y 2021 A high-voltage Zn-organic battery using a nonflammable organic electrolyte Angew. Chem., Int. Ed. Engl. 60 21025-32 doi: 10.1002/anie.202108624
    [28] Liu Y, Wang J H, Sun J G, Xiong F Y, Liu Q, An Y K, Shen L, Wang J H, An Q Y, Mai L Q 2022 A glutamate anion boosted zinc anode for deep cycling aqueous zinc ion batteries J. Mater. Chem. A 10 25029-38 doi: 10.1039/D2TA06975J
    [29] Cao J, Zhang D, Chanajaree R, Yue Y, Zeng Z, Zhang X, Qin J 2022 Stabilizing zinc anode via a chelation and desolvation electrolyte additive Adv. Powder Mater. 1 100007 doi: 10.1016/j.apmate.2021.09.007
    [30] Zhang Y, Chen Z, Qiu H, Yang W, Zhao Z, Zhao J, Cui G 2020 Pursuit of reversible Zn electrochemistry: a time-honored challenge towards low-cost and green energy storage NPG Asia Mater. 12 4 doi: 10.1038/s41427-019-0167-1
    [31] Bayaguud A, Fu Y, Zhu C 2022 Interfacial parasitic reactions of zinc anodes in zinc ion batteries: underestimated corrosion and hydrogen evolution reactions and their suppression strategies J. Energy Chem. 64 246-62 doi: 10.1016/j.jechem.2021.04.016
    [32] Zuo Y, Wang K, Pei P, Wei M, Liu X, Xiao Y, Zhang P 2021 Zinc dendrite growth and inhibition strategies Mater. Today Energy 20 100692 doi: 10.1016/j.mtener.2021.100692
    [33] Lu W, Xie C, Zhang H, Li X 2018 Inhibition of zinc dendrite growth in zinc-based batteries ChemSusChem 11 3996-4006 doi: 10.1002/cssc.201801657
    [34] Cao L, Li D, Hu E, Xu J, Deng T, Ma L, Wang Y, Yang X Q, Wang C 2020 Solvation structure design for aqueous Zn metal batteries J. Am. Chem. Soc. 142 21404-9 doi: 10.1021/jacs.0c09794
    [35] Shang Y, Kumar P, Musso T, Mittal U, Du Q, Liang X, Kundu D 2022 Longlife Zn anode enabled by low volume concentration of a benign electrolyte additive Adv. Funct. Mater. 32 2200606 doi: 10.1002/adfm.202200606
    [36] Hu Z, Zhang F, Zhao Y, Wang H, Huang Y, Wu F, Chen R, Li L 2022 A self-regulated electrostatic shielding layer toward dendrite-free Zn batteries Adv. Mater. 34 2203104 doi: 10.1002/adma.202203104
    [37] Guo X, et al 2021 Alleviation of dendrite formation on zinc anodes via electrolyte additives ACS Energy Lett. 6 395-403 doi: 10.1021/acsenergylett.0c02371
    [38] Wu C, Sun C, Ren K, Yang F, Du Y, Gu X, Wang Q, Lai C 2023 2-methyl imidazole electrolyte additive enabling ultra-stable Zn anode Chem. Eng. J. 452 139465 doi: 10.1016/j.cej.2022.139465
    [39] Deng W, Xu Z, Wang X 2022 High-donor electrolyte additive enabling stable aqueous zinc-ion batteries Energy Storage Mater. 52 52-60 doi: 10.1016/j.ensm.2022.07.032
    [40] Miao L, et al 2022 Aqueous electrolytes with hydrophobic organic cosolvents for stabilizing zinc metal anodes ACS Nano 16 9667-78 doi: 10.1021/acsnano.2c02996
    [41] Yang Y, Liu C, Lv Z, Yang H, Zhang Y, Ye M, Chen L, Zhao J, Li C C 2021 Synergistic manipulation of Zn2+ ion flux and desolvation effect enabled by anodic growth of a 3D ZnF2 matrix for long-lifespan and dendrite-free Zn metal anodes Adv. Mater. 33 2007388 doi: 10.1002/adma.202007388
    [42] Huang C, Zhao X, Hao Y, Yang Y, Qian Y, Chang G, Zhang Y, Tang Q, Hu A, Chen X 2022 Selfhealing SeO2 additives enable zinc metal reversibility in aqueous ZnSO4 electrolytes Adv. Funct. Mater. 32 2112091 doi: 10.1002/adfm.202112091
    [43] Luo M, Wang C, Lu H, Lu Y, Xu B B, Sun W, Pan H, Yan M, Jiang Y 2021 Dendrite-free zinc anode enabled by zinc-chelating chemistry Energy Storage Mater. 41 515-21 doi: 10.1016/j.ensm.2021.06.026
    [44] Hou Z, Tan H, Gao Y, Li M, Lu Z, Zhang B 2020 Tailoring desolvation kinetics enables stable zinc metal anodes J. Mater. Chem. A 8 19367-74 doi: 10.1039/D0TA06622B
    [45] Xin T, Zhou R, Xu Q, Yuan X, Zheng Z, Li Y, Zhang Q, Liu J 2023 15-crown-5 ether as efficient electrolyte additive for performance enhancement of aqueous Zn-ion batteries Chem. Eng. J. 452 139572 doi: 10.1016/j.cej.2022.139572
    [46] Wu F, Chen Y, Chen Y, Yin R, Feng Y, Zheng D, Xu X, Shi W, Liu W, Cao X 2022 Achieving highly reversible zinc anodes via N, N-dimethylacetamide enabled Zn-ion solvation regulation Small 18 2202363 doi: 10.1002/smll.202202363
    [47] Bayaguud A, Luo X, Fu Y, Zhu C 2020 Cationic surfactant-type electrolyte additive enables three-dimensional dendrite-free zinc anode for stable zinc-ion batteries ACS Energy Lett. 5 3012-20 doi: 10.1021/acsenergylett.0c01792
    [48] Jin Y, Han K S, Shao Y, Sushko M, Xiao J, Pan H, Liu J 2020 Stabilizing zinc anode reactions by polyethylene oxide polymer in mild aqueous electrolytes Adv. Funct. Mater. 30 2003932 doi: 10.1002/adfm.202003932
    [49] Xu W, Zhao K, Huo W, Wang Y, Yao G, Gu X, Cheng H, Mai L, Hu C, Wang X 2019 Diethyl ether as self-healing electrolyte additive enabled long-life rechargeable aqueous zinc ion batteries Nano Energy 62 275-81 doi: 10.1016/j.nanoen.2019.05.042
    [50] Wu Y, Zhu Z, Shen D, Chen L, Song T, Kang T, Tong Z, Tang Y, Wang H, Lee C S 2022 Electrolyte engineering enables stable Zn-ion deposition for long-cycling life aqueous Zn-ion batteries Energy Storage Mater. 45 1084-91 doi: 10.1016/j.ensm.2021.11.003
    [51] Wan J, et al 2023 A double-functional additive containing nucleophilic groups for high-performance Zn-ion batteries ACS Nano 17 1610-21 doi: 10.1021/acsnano.2c11357
    [52] Xu X, Song M, Li M, Xu Y, Sun L, Shi L, Su Y, Lai C, Wang C 2023 A novel bifunctional zinc gluconate electrolyte for a stable Zn anode Chem. Eng. J. 454 140364 doi: 10.1016/j.cej.2022.140364
    [53] Yang J, et al 2022 Three birds with one stone: tetramethylurea as electrolyte additive for highly reversible Znmetal anode Adv. Funct. Mater. 32 202209642 doi: 10.1002/adfm.202209642
    [54] Zhao F, et al 2022 Trace amounts of fluorinated surfactant additives enable high performance zinc-ion batteries Energy Storage Mater. 53 638-45 doi: 10.1016/j.ensm.2022.10.001
    [55] Cao H, Huang X, Liu Y, Hu Q, Zheng Q, Huo Y, Xie F, Zhao J, Lin D 2022 An efficient electrolyte additive of tetramethylammonium sulfate hydrate for dendritic-free zinc anode for aqueous zinc-ion batteries J. Colloid Interface Sci. 627 367-74 doi: 10.1016/j.jcis.2022.07.081
    [56] Lv Y, Zhao M, Du Y, Kang Y, Xiao Y, Chen S 2022 Engineering a self-adaptive electric double layer on both electrodes for high-performance zinc metal batteries Energy Environ. Sci. 15 4748-60 doi: 10.1039/D2EE02687B
    [57] Bi H, et al 2020 A universal approach to aqueous energy storage via ultralow-cost electrolyte with super-concentrated sugar as hydrogen-bond-regulated solute Adv. Mater. 32 2000074 doi: 10.1002/adma.202000074
    [58] Yong B, Ma D, Wang Y, Mi H, He C, Zhang P 2020 Understanding the design principles of advanced aqueous zincion battery cathodes: from transport kinetics to structural engineering, and future perspectives Adv. Energy Mater. 10 2002354 doi: 10.1002/aenm.202002354
    [59] Liu H, Zhou Q, Xia Q, Lei Y, Long Huang X, Tebyetekerwa M, Song Zhao X 2023 Interface challenges and optimization strategies for aqueous zinc-ion batteries J. Energy Chem. 77 642-59 doi: 10.1016/j.jechem.2022.11.028
    [60] Wang X, Zhang Z, Xi B, Chen W, Jia Y, Feng J, Xiong S 2021 Advances and perspectives of cathode storage chemistry in aqueous zinc-ion batteries ACS Nano 15 9244-72 doi: 10.1021/acsnano.1c01389
    [61] Zhang N, Wang J C, Guo Y F, Wang P F, Zhu Y R, Yi T F 2023 Insights on rational design and energy storage mechanism of Mn-based cathode materials towards high performance aqueous zinc-ion batteries Coord. Chem. Rev. 479 215009 doi: 10.1016/j.ccr.2022.215009
    [62] Mathew V, et al 2020 Manganese and vanadium oxide cathodes for aqueous rechargeable zinc-ion batteries: a focused view on performance, mechanism, and developments ACS Energy Lett. 5 2376-400 doi: 10.1021/acsenergylett.0c00740
    [63] Soundharrajan V, Sambandam B, Kim S, Islam S, Jo J, Kim S, Mathew V, Sun Y K, Kim J 2020 The dominant role of Mn2+ additive on the electrochemical reaction in ZnMn2O4 cathode for aqueous zinc-ion batteries Energy Storage Mater. 28 407-17 doi: 10.1016/j.ensm.2019.12.021
    [64] Liu D S, et al 2022 Regulating the electrolyte solvation structure enables ultralong lifespan vanadiumbased cathodes with excellent lowtemperature performance Adv. Funct. Mater. 32 2111714 doi: 10.1002/adfm.202111714
    [65] Liu S, Mao J, Pang W K, Vongsvivut J, Zeng X, Thomsen L, Wang Y, Liu J, Li D, Guo Z 2021 Tuning the electrolyte solvation structure to suppress cathode dissolution, water reactivity, and Zn dendrite growth in zincion batteries Adv. Funct. Mater. 31 2104281 doi: 10.1002/adfm.202104281
    [66] Mei Y, Liu Y, Xu W, Zhang M, Dong Y, Qiu J 2023 Suppressing vanadium dissolution in 2D V2O5/MXene heterostructures via organic/aqueous hybrid electrolyte for stable zinc ion batteries Chem. Eng. J. 452 139574 doi: 10.1016/j.cej.2022.139574
    [67] Zhang L, Zhang B, Hu J, Liu J, Miao L, Jiang J 2021 An in situ artificial cathode electrolyte interphase strategy for suppressing cathode dissolution in aqueous zinc ion batteries Small Methods 5 2100094 doi: 10.1002/smtd.202100094
    [68] Wang K, Liu F, Li Q, Zhu J, Qiu T, Liu X X, Sun X 2023 An electrolyte additive for interface regulations of both anode and cathode for aqueous zinc-vanadium oxide batteries Chem. Eng. J. 452 139577 doi: 10.1016/j.cej.2022.139577
    [69] Wang M, Cheng Y, Zhao H, Gao J, Li J, Wang Y, Qiu J, Zhang H, Chen X, Wei Y 2023 A multifunctional organic electrolyte additive for aqueous zinc ion batteries based on polyaniline cathode Small 5 2302105 doi: 10.1002/smll.202302105
    [70] Chen Y, Ma D, Shen S, Deng P, Zhao Z, Yang M, Wang Y, Mi H, Zhang P 2023 New insights into high-rate and super-stable aqueous zinc-ion batteries via the design concept of voltage and solvation environment coordinated control Energy Storage Mater. 56 600-10 doi: 10.1016/j.ensm.2023.01.049
    [71] Guo H, Shao Z, Zhang Y, Cui X, Mao L, Cheng S, Ma M, Lan W, Su Q, Xie E 2022 Electrolyte additives inhibit the surface reaction of aqueous sodium/zinc battery J. Colloid Interface Sci. 608 1481-8 doi: 10.1016/j.jcis.2021.10.085
    [72] Zhou X, Ma K, Zhang Q, Yang G, Wang C 2022 Highly stable aqueous zinc-ion batteries enabled by suppressing the dendrite and by-product formation in multifunctional Al3+ electrolyte additive Nano Res. 15 8039-47 doi: 10.1007/s12274-022-4419-y
    [73] Chang G, Liu J, Hao Y, Huang C, Yang Y, Qian Y, Chen X, Tang Q, Hu A 2023 Bifunctional electrolyte additive with redox mediation and capacity contribution for sulfur cathode in aqueous Zn-S batteries Chem. Eng. J. 457 141083 doi: 10.1016/j.cej.2022.141083
    [74] Liu D S, et al 2023 Manipulating OH--mediated anode-cathode cross-communication toward long-life aqueous zinc-vanadium batteries Angew. Chem., Int. Ed. Engl. 62 e202215385 doi: 10.1002/ange.202215385
    [75] Gong X, Yang H, Wang J, Wang G, Tian J 2023 Multifunctional electrolyte additive enables highly reversible anodes and enhanced stable cathodes for aqueous zinc-ion batteries ACS Appl. Mater. Interfaces 15 4152-65 doi: 10.1021/acsami.2c21135
    [76] Zhang H, Qiao L, Khnle H, Figgemeier E, Armand M, Eshetu G G 2023 From lithium to emerging mono- and multivalent-cation-based rechargeable batteries: non-aqueous organic electrolyte and interphase perspectives Energy Environ. Sci. 16 11-52 doi: 10.1039/D2EE02998G
    [77] Han S D, Rajput N N, Qu X, Pan B, He M, Ferrandon M S, Liao C, Persson K A, Burrell A K 2016 Origin of electrochemical, structural, and transport properties in nonaqueous zinc electrolytes ACS Appl. Mater. Interfaces 8 3021-31 doi: 10.1021/acsami.5b10024
    [78] Xing Z, Huang C, Hu Z 2022 Advances and strategies in electrolyte regulation for aqueous zinc-based batteries Coord. Chem. Rev. 452 214299 doi: 10.1016/j.ccr.2021.214299
    [79] H-Y W, Gu X, Huang P, Sun C, Hu H, Zhong Y, Lai C 2021 Polyoxometalate driven dendrite-free zinc electrodes with synergistic effects of cation and anion cluster regulation J. Mater. Chem. A 9 7025-33 doi: 10.1039/D1TA00256B
    [80] Wei T, Ren Y, Wang Y, Mo L, Li Z, Zhang H, Hu L, Cao G 2023 Addition of dioxane in electrolyte promotes (002)-textured zinc growth and suppressed side reactions in zinc-ion batteries ACS Nano 17 3765-75 doi: 10.1021/acsnano.2c11516
    [81] Song T B, Huang Z H, Zhang X R, Ni J W, Xiong H M 2023 Nitrogen-doped and sulfonated carbon dots as a multifunctional additive to realize highly reversible aqueous zinc-ion batteries Small 1 2205558 doi: 10.1002/smll.202205558
    [82] Naveed A, Rasheed T, Raza B, Chen J, Yang J, Yanna N, Wang J 2022 Addressing thermodynamic instability of Zn anode: classical and recent advancements Energy Storage Mater. 44 206-30 doi: 10.1016/j.ensm.2021.10.005
    [83] Chen J, Naveed A, Nuli Y, Yang J, Wang J 2020 Designing an intrinsically safe organic electrolyte for rechargeable batteries Energy Storage Mater. 31 382-400 doi: 10.1016/j.ensm.2020.06.027
    [84] Naveed A, et al 2019 A highly reversible Zn anode with intrinsically safe organic electrolyte for long-cycle-life batteries Adv. Mater. 31 1900668 doi: 10.1002/adma.201900668
    [85] Naveed A, et al 2023 Realizing high reversibility and safety of Zn anode via binary mixture of organic solvents Nano Energy 107 108175 doi: 10.1016/j.nanoen.2023.108175
    [86] Ma G, Miao L, Yuan W, Qiu K, Liu M, Nie X, Dong Y, Zhang N, Cheng F 2022 Non-flammable, dilute, and hydrous organic electrolytes for reversible Zn batteries Chem. Sci. 13 11320-9 doi: 10.1039/D2SC04143J
    [87] Chen Z, et al 2020 Anion solvation reconfiguration enables high-voltage carbonate electrolytes for stable Zn/graphite cells Angew. Chem., Int. Ed. Engl. 59 21769-77 doi: 10.1002/anie.202010423
    [88] Yang W, et al 2020 Hydrated eutectic electrolytes with ligand-oriented solvation shells for long-cycling zinc-organic batteries Joule 4 1557-74 doi: 10.1016/j.joule.2020.05.018
    [89] Raza B, Naveed A, Chen J, Lu H, Rasheed T, Yang J, Nuli Y, Wang J 2022 Zn anode sustaining high rate and high loading in organic electrolyte for rechargeable batteries Energy Storage Mater. 46 523-34 doi: 10.1016/j.ensm.2022.01.043
    [90] Ma K, Yang G, Wang C 2023 Towards storable and durable Zn-MnO2 batteries with hydrous tetraglyme electrolyte J. Energy Chem. 80 432-41 doi: 10.1016/j.jechem.2023.01.012
    [91] Dong Y, Di S, Zhang F, Bian X, Wang Y, Xu J, Wang L, Cheng F, Zhang N 2020 Nonaqueous electrolyte with dual-cations for high-voltage and long-life zinc batteries J. Mater. Chem. A 8 3252-61 doi: 10.1039/C9TA13068C
    [92] Huang J Q, Guo X, Lin X, Zhu Y, Zhang B 2019 Hybrid aqueous/organic electrolytes enable the high-performance Zn-ion batteries Research 1 10 doi: 10.34133/2019/2635310
    [93] Feng R, Chi X, Qiu Q, Wu J, Huang J, Liu J, Liu Y 2021 Cyclic ether-water hybrid electrolyte-guided dendrite-free lamellar zinc deposition by tuning the solvation structure for high-performance aqueous zinc-ion batteries ACS Appl. Mater. Interfaces 13 40638-47 doi: 10.1021/acsami.1c11106
    [94] Qin R, et al 2021 Tuning Zn2+ coordination environment to suppress dendrite formation for high-performance Zn-ion batteries Nano Energy 80 105478 doi: 10.1016/j.nanoen.2020.105478
    [95] Shang Y, Chen N, Li Y, Chen S, Lai J, Huang Y, Qu W, Wu F, Chen R 2020 An ether-in-water’ electrolyte boosts stable interfacial chemistry for aqueous lithium-ion batteries Adv. Mater. 32 2004017 doi: 10.1002/adma.202004017
    [96] Samanta P, Ghosh S, Jang W, Yang C-M, Murmu N C, Kuila T 2021 A reversible anodizing strategy in a hybrid electrolyte Zn-ion battery through structural modification of a vanadium sulfide cathode ACS Appl. Energy Mater. 4 10656-67 doi: 10.1021/acsaem.1c01676
    [97] Chang N, Li T, Li R, Wang S, Yin Y, Zhang H, Li X 2020 An aqueous hybrid electrolyte for low-temperature zinc-based energy storage devices Energy Environ. Sci. 13 3527-35 doi: 10.1039/D0EE01538E
    [98] Ming F, Zhu Y, Huang G, Emwas A H, Liang H, Cui Y, Alshareef H N 2022 Co-solvent electrolyte engineering for stable anode-free zinc metal batteries J. Am Chem. Soc. 144 7160-70 doi: 10.1021/jacs.1c12764
    [99] Zhao H, Fu Q, Luo X, Wu X, Indris S, Bauer M, Wang Y, Ehrenberg H, Knapp M, Wei Y 2022 Unraveling a cathode/anode compatible electrolyte for high-performance aqueous rechargeable zinc batteries Energy Storage Mater. 50 464-72 doi: 10.1016/j.ensm.2022.05.048
    [100] Chen Z, et al 2021 Grafted MXene/polymer electrolyte for high performance solid zinc batteries with enhanced shelf life at low/high temperatures Energy Environ. Sci. 14 3492-501 doi: 10.1039/D1EE00409C
    [101] Sui D, Wu M, Shi K, Li C, Lang J, Yang Y, Zhang X, Yan X, Chen Y 2021 Recent progress of cathode materials for aqueous zinc-ion capacitors: carbon-based materials and beyond Carbon 185 126-51 doi: 10.1016/j.carbon.2021.08.084
    [102] Kao-ian W, Mohamad A, Liu W, Pornprasertsuk R, Siwamogsatham S, Kheawhom S 2022 Stability enhancement of zinc-ion batteries using non-aqueous electrolytes Batteries Supercaps 5 e202100361 doi: 10.1002/batt.202100361
    [103] Li W, Wang Y, Liu R, Chen W, Zhang H, Zhang Z 2023 Gel polymer-based composite solid-state electrolyte for long-cycle-life rechargeable zinc-air batteries ACS Sustain. Chem. Eng. 11 3732-9 doi: 10.1021/acssuschemeng.2c06661
    [104] Liu Q, Liu R, He C, Xia C, Guo W, Xu Z-L, Xia B Y 2022 Advanced polymer-based electrolytes in zinc-air batteries eScience 2 453-66 doi: 10.1016/j.esci.2022.08.004
    [105] Zhang P, Wang K, Pei P, Zuo Y, Wei M, Liu X, Xiao Y, Xiong J 2021 Selection of hydrogel electrolytes for flexible zinc-air batteries Mater. Today Chem. 21 100538 doi: 10.1016/j.mtchem.2021.100538
    [106] Liu H, et al 2020 Controlling dendrite growth in solid-state electrolytes ACS Energy Lett. 5 833-43 doi: 10.1021/acsenergylett.9b02660
    [107] Wang Z, Hu J, Han L, Wang Z, Wang H, Zhao Q, Liu J, Pan F 2019 A MOF-based single-ion Zn2+ solid electrolyte leading to dendrite-free rechargeable Zn batteries Nano Energy 56 92-99 doi: 10.1016/j.nanoen.2018.11.038
    [108] Zhu T, Lu Y, Huang K, Tang C 2021 Metallopolymer as a solid electrolyte for rechargeable Zn-metal alkaline batteries ACS Mater. Lett. 3 799-806 doi: 10.1021/acsmaterialslett.1c00219
    [109] Li H, et al 2018 An extremely safe and wearable solid-state zinc ion battery based on a hierarchical structured polymer electrolyte Energy Environ. Sci. 11 941-51 doi: 10.1039/C7EE03232C
    [110] Gao S, Zhang Z, Mao F, Liu P, Zhou Z 2023 Advances and strategies of electrolyte regulation in Zn-ion batteries Mater. Chem. Front. 7 3232-58 doi: 10.1039/D3QM00104K
    [111] Chen Q, Zhao J, Chen Z, Jin Y, Chen J 2022 High voltage and self-healing zwitterionic double-network hydrogels as electrolyte for zinc-ion hybrid supercapacitor/battery Int. J. Hydrog. Energy 47 23909-18 doi: 10.1016/j.ijhydene.2022.05.195
    [112] Li C, Li P, Yang S, Zhi C 2021 Recently advances in flexible zinc ion batteries J. Semicond. 42 101603 doi: 10.1088/1674-4926/42/10/101603
    [113] Fang G, Zhou J, Pan A, Liang S 2018 Recent advances in aqueous zinc-ion batteries ACS Energy Lett. 3 2480-501 doi: 10.1021/acsenergylett.8b01426
    [114] Liu S, Zhang R, Mao J, Zhao Y, Cai Q, Guo Z 2022 From room temperature to harsh temperature applications: fundamentals and perspectives on electrolytes in zinc metal batteries Sci. Adv. 8 eabn5097 doi: 10.1126/sciadv.abn5097
    [115] Mo F, Liang G, Meng Q, Liu Z, Li H, Fan J, Zhi C 2019 A flexible rechargeable aqueous zinc manganese-dioxide battery working at -20 C Energy Environ. Sci. 12 706-15 doi: 10.1039/C8EE02892C
    [116] Liu Y, He H, Gao A, Ling J, Yi F, Hao J, Li Q, Shu D 2022 Fundamental study on Zn corrosion and dendrite growth in gel electrolyte towards advanced wearable Zn-ion battery Chem. Eng. J. 446 137021 doi: 10.1016/j.cej.2022.137021
    [117] Rong Q, Lei W, Chen L, Yin Y, Zhou J, Liu M 2017 Anti-freezing, conductive self-healing organohydrogels with stable strain-sensitivity at subzero temperatures Angew. Chem., Int. Ed. 56 14159-63 doi: 10.1002/anie.201708614
    [118] Hiralal P, Imaizumi S, Unalan H E, Matsumoto H, Minagawa M, Rouvala M, Tanioka A, Amaratunga G A J 2010 Nanomaterial-enhanced all-solid flexible zinc-carbon batteries ACS Nano 4 2730-4 doi: 10.1021/nn901391q
    [119] Han L, Miao H, Ni M, Zhao G, Zhu G, Li Y, Gao G, Huang H, Xu M 2023 Functionally integrated self-healable and redox bromide-ion additive hydrogel electrolyte for Zn-ion hybrid supercapacitors Mater. Lett. 340 134135 doi: 10.1016/j.matlet.2023.134135
    [120] Jiao M, Dai L, Ren H, Zhang M, Xiao X, Wang B, Yang J, Liu B, Zhou G, Cheng H 2023 A polarized gel electrolyte for wide-temperature flexible zinc-air batteries Angew. Chem., Int. Ed. 62 e202301114 doi: 10.1002/anie.202301114
    [121] Liu D, Tang Z, Luo L, Yang W, Liu Y, Shen Z, Fan X-H 2021 Self-healing solid polymer electrolyte with high ion conductivity and super stretchability for all-solid zinc-ion batteries ACS Appl. Mater. Interfaces 13 36320-9 doi: 10.1021/acsami.1c09200
    [122] Yuan C, Zhong X, Tian P, Wang Z, Gao G, Duan L, Wang C, Shi F 2022 Antifreezing zwitterionic-based hydrogel electrolyte for aqueous Zn ion batteries ACS Appl. Energy Mater. 5 7530-7 doi: 10.1021/acsaem.2c01008
    [123] Huang S, Wan F, Bi S, Zhu J, Niu Z, Chen J 2019 A self-healing integrated all-in-one zinc-ion battery Angew. Chem., Int. Ed. 58 4357-61 doi: 10.1002/ange.201814653
    [124] Li X, Wang D, Ran F 2023 Key approaches and challenges in fabricating advanced flexible zinc-ion batteries with functional hydrogel electrolytes Energy Storage Mater. 56 351-93 doi: 10.1016/j.ensm.2023.01.034
    [125] Mo F, Liang G, Wang D, Tang Z, Li H, Zhi C 2019 Biomimetic organohydrogel electrolytes for high-environmental adaptive energy storage devices EcoMat 1 e12008 doi: 10.1002/eom2.12008
    [126] Yang P, Yang J, Liu K, Fan H 2022 Hydrogels enable future smart batteries ACS Nano 16 15528-36 doi: 10.1021/acsnano.2c07468
    [127] Ge W, Cao S, Yang Y, Rojas O J, Wang X 2021 Nanocellulose/LiCl systems enable conductive and stretchable electrolyte hydrogels with tolerance to dehydration and extreme cold conditions Chem. Eng. J. 408 127306 doi: 10.1016/j.cej.2020.127306
    [128] Jian Y, Handschuh-Wang S, Zhang J, Lu W, Zhou X, Chen T 2021 Biomimetic anti-freezing polymeric hydrogels: keeping soft-wet materials active in cold environments Mater. Horiz. 8 351-69 doi: 10.1039/D0MH01029D
    [129] Zhao Y, Chen Z, Mo F, Wang D, Guo Y, Liu Z, Li X, Li Q, Liang G, Zhi C 2021 Aqueous rechargeable metal-ion batteries working at subzero temperatures Adv. Sci. 8 2002590 doi: 10.1002/advs.202002590
    [130] Wang H, Wei W, Liu X, Xu S, Dong Y, He R 2023 Ultrahigh-capacity epitaxial deposition of planar Zn flakes enabled by amino-rich adhesive hydrogel electrolytes for durable low-temperature zinc batteries Energy Storage Mater. 55 597-605 doi: 10.1016/j.ensm.2022.12.023
    [131] Yang Y, Wang K-P, Zang Q, Shi Q, Wang Y, Xiao Z, Zhang Q, Wang L 2022 Anionic organo-hydrogel electrolyte with enhanced ionic conductivity and balanced mechanical properties for flexible supercapacitors J. Mater. Chem. A 10 11277-87 doi: 10.1039/D2TA01057G
    [132] Zhao S, et al 2021 Multi-functional hydrogels for flexible zinc-based batteries working under extreme conditions Adv. Energy Mater. 11 2101749 doi: 10.1002/aenm.202101749
    [133] Chen M, Chen J, Zhou W, Han X, Yao Y, Wong C 2021 Realizing an all-round hydrogel electrolyte toward environmentally adaptive dendrite-free aqueous Zn-MnO2 batteries Adv. Mater. 33 2007559 doi: 10.1002/adma.202007559
    [134] Jin X, et al 2022 A self-healing zinc ion battery under -20 C Energy Storage Mater. 44 517-26 doi: 10.1016/j.ensm.2021.11.004
    [135] Lyu J, Zhou Q, Wang H, Xiao Q, Qiang Z, Li X, Wen J, Ye C, Zhu M 2023 Mechanically strong, freeze-resistant, and ionically conductive organohydrogels for flexible strain sensors and batteries Adv. Sci. 10 2206591 doi: 10.1002/advs.202206591
    [136] Wang N, Zhou R, Zheng Z, Xin T, Hu M, Wang B, Liu J 2021 Flexible solid-state Zn-polymer batteries with practical functions Chem. Eng. J. 425 131454 doi: 10.1016/j.cej.2021.131454
    [137] Kumar R M, Baskar P, Balamurugan K, Das S, Subramanian V 2012 On the perturbation of the H-bonding interaction in ethylene glycol clusters upon hydration J. Phys. Chem. A 116 4239-47 doi: 10.1021/jp300693r
    [138] Zhang Y, Qin H, Alfred M, Ke H, Cai Y, Wang Q, Huang F, Liu B, Lv P, Wei Q 2021 Reaction modifier system enable double-network hydrogel electrolyte for flexible zinc-air batteries with tolerance to extreme cold conditions Energy Storage Mater. 42 88-96 doi: 10.1016/j.ensm.2021.07.026
    [139] Wei T, Ren Y, Li Z, Zhang X, Ji D, Hu L 2022 Bonding interaction regulation in hydrogel electrolyte enable dendrite-free aqueous zinc-ion batteries from -20 to 60 C Chem. Eng. J. 434 134646 doi: 10.1016/j.cej.2022.134646
    [140] Ye Y, Zhang Y, Chen Y, Han X, Jiang F 2020 Cellulose nanofibrils enhanced, strong, stretchable, freezing-tolerant ionic conductive organohydrogel for multi-functional sensors Adv. Funct. Mater. 30 2003430 doi: 10.1002/adfm.202003430
    [141] Xu W, Liu C, Ren S, Lee D, Gwon J, Flake J C, Lei T, Baisakh N, Wu Q 2021 A cellulose nanofiber-polyacrylamide hydrogel based on a co-electrolyte system for solid-state zinc ion batteries to operate at extremely cold temperatures J. Mater. Chem. A 9 25651-62 doi: 10.1039/D1TA08023G
    [142] Lu H, et al 2022 Multi-component crosslinked hydrogel electrolyte toward dendrite-free aqueous Zn ion batteries with high temperature adaptability Adv. Funct. Mater. 32 2112540 doi: 10.1002/adfm.202112540
    [143] Quan Y, Zhou W, Wu T, Chen M, Han X, Tian Q, Xu J, Chen J 2022 Sorbitol-modified cellulose hydrogel electrolyte derived from wheat straws towards high-performance environmentally adaptive flexible zinc-ion batteries Chem. Eng. J. 446 137056 doi: 10.1016/j.cej.2022.137056
    [144] Liu Z, Wang Y, Ren Y, Jin G, Zhang C, Chen W, Yan F 2020 Poly(ionic liquid) hydrogel-based anti-freezing ionic skin for a soft robotic gripper Mater. Horiz. 7 919-27 doi: 10.1039/C9MH01688K
    [145] Ou X, Liu Q, Pan J, Li L, Hu Y, Zhou Y, Yan F 2022 CO2-sourced anti-freezing hydrogel electrolyte for sustainable Zn-ion batteries Chem. Eng. J. 435 135051 doi: 10.1016/j.cej.2022.135051
    [146] Li G, Zhang J, Huang F, Wu S, Wang C, Peng S 2021 Transparent, stretchable and high-performance triboelectric nanogenerator based on dehydration-free ionically conductive solid polymer electrode Nano Energy 88 106289 doi: 10.1016/j.nanoen.2021.106289
    [147] Wang R, Yao M, Huang S, Tian J, Niu Z 2022 An anti-freezing and anti-drying multifunctional gel electrolyte for flexible aqueous zinc-ion batteries Sci. China Mater. 65 2189-96 doi: 10.1007/s40843-021-1924-2
    [148] Fan X, Liu J, Song Z, Han X, Deng Y, Zhong C, Hu W 2019 Porous nanocomposite gel polymer electrolyte with high ionic conductivity and superior electrolyte retention capability for long-cycle-life flexible zinc-air batteries Nano Energy 56 454-62 doi: 10.1016/j.nanoen.2018.11.057
    [149] Liu Z, Wang D, Tang Z, Liang G, Yang Q, Li H, Ma L, Mo F, Zhi C 2019 A mechanically durable and device-level tough Zn-MnO2 battery with high flexibility Energy Storage Mater. 23 636-45 doi: 10.1016/j.ensm.2019.03.007
    [150] Cha H, Kim J, Lee Y, Cho J, Park M 2018 Issues and challenges facing flexible lithium-ion batteries for practical application Small 14 1702989 doi: 10.1002/smll.201702989
    [151] Liu Y, Gao A, Hao J, Li X, Ling J, Yi F, Li Q, Shu D 2023 Soaking-free and self-healing hydrogel for wearable zinc-ion batteries Chem. Eng. J. 452 139605 doi: 10.1016/j.cej.2022.139605
    [152] Chen J, Yu Q, Shi D, Yang Z, Dong K, Kaneko D, Dong W, Chen M 2021 Tough and antifreezing organohydrogel electrolyte for flexible supercapacitors with wide temperature stability ACS Appl. Energy Mater. 4 9353-61 doi: 10.1021/acsaem.1c01556
    [153] Gupta R, Swarupa S, Mayya C, Bhatia D, Thareja P 2023 Graphene oxide-carbamoylated chitosan hydrogels with tunable mechanical properties for biological applications ACS Appl. Bio Mater. 6 578-90 doi: 10.1021/acsabm.2c00885
    [154] Hou H, Yang T, Zhao Y, Qi M, Song Z, Xiao Y, Xu L, Qu X, Liang F, Yang Z 2022 Janus nanoparticle coupled double-network hydrogel Macromol. Rapid Commun. 43 2200157 doi: 10.1002/marc.202200157
    [155] Mi H, Tian P, Yuan C, Shi F 2023 Inorganic-polymer hydrogel electrolyte enabling aqueous Zn-ions batteries Mater. Lett. 330 133354 doi: 10.1016/j.matlet.2022.133354
    [156] Abbasi A, et al 2022 Phosphonated graphene oxide-modified polyacrylamide hydrogel electrolytes for solid-state zinc-ion batteries Electrochim. Acta 435 141365 doi: 10.1016/j.electacta.2022.141365
    [157] Ji S, Qin J, Yang S, Shen P, Hu Y, Yang K, Luo H, Xu J 2023 A mechanically durable hybrid hydrogel electrolyte developed by controllable accelerated polymerization mechanism towards reliable aqueous zinc-ion battery Energy Storage Mater. 55 236-43 doi: 10.1016/j.ensm.2022.11.050
    [158] He Q, et al 2022 Building ultra-stable and low-polarization composite Zn anode interface via hydrated polyzwitterionic electrolyte construction Nano-Micro Lett. 14 93 doi: 10.1007/s40820-022-00835-3
    [159] Qiu H, Du X, Zhao J, Wang Y, Ju J, Chen Z, Hu Z, Yan D, Zhou X, Cui G 2019 Zinc anode-compatible in-situ solid electrolyte interphase via cation solvation modulation Nat. Commun. 10 5374 doi: 10.1038/s41467-019-13436-3
    [160] Chen S, Lan R, Humphreys J, Tao S 2020 Salt-concentrated acetate electrolytes for a high voltage aqueous Zn/MnO2 battery Energy Storage Mater. 28 205-15 doi: 10.1016/j.ensm.2020.03.011
    [161] Xie K, Ren K, Sun C, Yang S, Tong M, Yang S, Liu Z, Wang Q 2022 Toward stable zinc-ion batteries: use of a chelate electrolyte additive for uniform zinc deposition ACS Appl. Energy Mater. 5 4170-8 doi: 10.1021/acsaem.1c03558
    [162] Pan W, Wang Y, Zhao X, Zhao Y, Liu X, Xuan J, Wang H, Leung D Y C 2021 High-performance aqueous Na-Zn hybrid ion battery boosted by water-in-gel electrolyte Adv. Funct. Mater. 31 2008783 doi: 10.1002/adfm.202008783
    [163] Wang H, Li X, Jiang D, Wu S, Yi W, Sun X, Li J 2022 Organohydrogel electrolyte-based flexible zinc-ion hybrid supercapacitors with dendrite-free anode, broad temperature adaptability and ultralong cycling life J. Power Sources 528 231210 doi: 10.1016/j.jpowsour.2022.231210
    [164] Wang R, Yao M, Huang S, Tian J, Niu Z 2021 Sustainabledough-based gel electrolytes for aqueous energy storage devices Adv. Funct. Mater. 31 2009209 doi: 10.1002/adfm.202009209
    [165] Hu Z, Li G, Wang A, Luo J, Liu X 2020 Recent progress of electrolyte design for lithium metal batteries Batteries Supercaps 3 331-5 doi: 10.1002/batt.201900191
    [166] Liu X, Li X, Yang X, Lu J, Zhang X, Yuan D, Zhang Y 2023 Influence of water on gel electrolytes for zinc-ion batteries Chem. Asian J. 18 e202201280 doi: 10.1002/asia.202201280
    [167] Ren W, Ding C, Fu X, Huang Y 2021 Advanced gel polymer electrolytes for safe and durable lithium metal batteries: challenges, strategies, and perspectives Energy Storage Mater. 34 515-35 doi: 10.1016/j.ensm.2020.10.018
    [168] Almenara N, Gueret R, Huertas-Alonso A J, Veettil U T, Sipponen M H, Lizundia E 2023 Lignin-chitosan gel polymer electrolytes for stable Zn electrodeposition ACS Sustain. Chem. Eng. 11 2283-94 doi: 10.1021/acssuschemeng.2c05835
    [169] Long M, Wang T, Duan P, Gao Y, Wang X, Wu G, Wang Y 2022 Thermotolerant and fireproof gel polymer electrolyte toward high-performance and safe lithium-ion battery J. Energy Chem. 65 9-18 doi: 10.1016/j.jechem.2021.05.027
    [170] Prasadini K W, Perera K S, Vidanapathirana K P 2019 Performance of a rechargeable cell using an ionic liquid gel polymer electrolyte and natural graphite electrode Bull. Mater. Sci. 42 180 doi: 10.1007/s12034-019-1864-7
    [171] Dueramae I, Okhawilai M, Kasemsiri P, Uyama H 2021 High electrochemical and mechanical performance of zinc conducting-based gel polymer electrolytes Sci. Rep. 11 13268 doi: 10.1038/s41598-021-92671-5
    [172] Murali S C, Samuel A 2019 Zinc ion conducting blended polymer electrolytes based on room temperature ionic liquid and ceramic filler J. Appl. Polym. Sci. 136 47654 doi: 10.1002/app.47654
    [173] Yu L, Huang J, Wang S, Qi L, Wang S, Chen C 2023 Ionic liquid water pocket’ for stable and environment-adaptable aqueous zinc metal batteries Adv. Mater. 35 2210789 doi: 10.1002/adma.202210789
    [174] Motlagh S, Khezri R, Mohamad A, Pornprasertsuk R, Kidkhunthod P, Nguyen M, Yonezawa T, Kheawhom S 2023 Enhancing electrochemical performance and stabilizing zinc anode in mild acidic electrolyte using combined additive Mater. Sci. Energy Technol. 6 178-91 doi: 10.1016/j.mset.2022.12.011
    [175] Liu J, Ahmed S, Khanam Z, Wang T, Song S 2020 Ionic liquid-incorporated Zn-ion conducting polymer electrolyte membranes Polymers 12 1755 doi: 10.3390/polym12081755
    [176] Kumar D R, Muhammed Shafi P, Karthik R, Dhakal G, Kim S-H, Kim M, Shim J-J 2022 Safe and extended operating voltage zinc-ion battery engineered by a gel-polymer/ionic-liquid electrolyte and water molecules pre-intercalated V2O5 cathode J. Mol. Liq. 367 120399 doi: 10.1016/j.molliq.2022.120399
    [177] Prasanna C S, Austin Suthanthiraraj S 2019 Improved zinc ion transportation in gel polymer electrolyte upon the addition of nano-sized SnO2 Polym. Polym. Compos. 28 54-65 doi: 10.1177/096739111985855
    [178] Chen X, Zhang Y, Merrill L, Soulen C, Lehmann M, Schaefer J, Du Z, Saito T, Dudney N 2021 Gel composite electrolytean effective way to utilize ceramic fillers in lithium batteries J. Mater. Chem. A 9 6555-66 doi: 10.1039/D1TA00180A
    [179] Sai Prasanna C, Austin Suthanthiraraj S 2019 PVC/PEMA-based blended nanocomposite gel polymer electrolytes plasticized with room temperature ionic liquid and dispersed with nano-ZrO2 for zinc ion batteries Polym. Compos. 40 3402-11 doi: 10.1002/pc.25201
    [180] Sai Prasanna C, Austin Suthanthiraraj S 2019 Investigations of zinc ion dissociation in gel polymer electrolytes based on poly(vinyl chloride) and poly(ethyl methacrylate) blend on the addition of two different ceramic nanofillers J. Inorg. Organomet. Polym. Mater. 29 483-501 doi: 10.1007/s10904-018-1021-6
    [181] Safa M, Chamaani A, Chawla N, El-Zahab B 2016 Polymeric ionic liquid gel electrolyte for room temperature lithium battery applications Electrochim. Acta 213 587-93 doi: 10.1016/j.electacta.2016.07.118
    [182] Ilyas F, Ishaq M, Jabeen M, Saeed M, Ihsan A, Ahmed M 2021 Recent trends in the benign-by-design electrolytes for zinc batteries J. Mol. Liq. 343 117606 doi: 10.1016/j.molliq.2021.117606
    [183] Prasanna C, Suthanthiraraj S 2018 Dielectric and thermal features of zinc ion conducting gel polymer electrolytes (GPEs) containing PVC/PEMA blend and EMIMTFSI ionic liquid Ionics 24 2631-46 doi: 10.1007/s11581-017-2421-2
    [184] Tafur J, Fernndez Romero A 2014 Electrical and spectroscopic characterization of PVdF-HFP and TFSIionic liquids-based gel polymer electrolyte membranes influence of ZnTf2 Salt J. Membr. Sci. 469 499-506 doi: 10.1016/j.memsci.2014.07.007
    [185] Rathika R, Austin Suthanthiraraj S 2019 Effect of ionic liquid 1-ethyl-3-methylimidazolium hydrogen sulfate on zinc-ion dynamics in PEO/PVdF blend gel polymer electrolytes Ionics 25 1137-46 doi: 10.1007/s11581-018-2709-x
    [186] Yu P, Zeng Y, Zhang H, Yu M, Tong Y, Lu X 2019 Flexible Zn-ion batteries: recent progresses and challenges Small 15 1804760 doi: 10.1002/smll.201804760
    [187] Ma L, Chen S, Li X, Chen A, Dong B, Zhi C 2020 Liquid-free all-solid-state zinc batteries and encapsulation-free flexible batteries enabled by insitu constructed polymer electrolyte Angew. Chem., Int. Ed. 59 23836-44 doi: 10.1002/anie.202011788
    [188] Zou Z, et al 2020 Mobile ions in composite solids Chem. Rev. 120 4169-221 doi: 10.1021/acs.chemrev.9b00760
    [189] Hosseini S, Masoudi Soltani S, Li Y 2021 Current status and technical challenges of electrolytes in zinc-air batteries: an in-depth review Chem. Eng. J. 408 127241 doi: 10.1016/j.cej.2020.127241
    [190] Liu H, Xie W, Huang Z, Yao C, Han Y, Huang W 2022 Recent advances in flexible Zn-air batteries: materials for electrodes and electrolytes Small Methods 6 2101116 doi: 10.1002/smtd.202101116
    [191] Chen R, Qu W, Guo X, Li L, Wu F 2016 The pursuit of solid-state electrolytes for lithium batteries: from comprehensive insight to emerging horizons Mater. Horiz. 3 487-516 doi: 10.1039/C6MH00218H
    [192] Mindemark J, Lacey M, Bowden T, Brandell D 2018 Beyond PEOalternative host materials for Li+-conducting solid polymer electrolytes Prog. Polym. Sci. 81 114-43 doi: 10.1016/j.progpolymsci.2017.12.004
    [193] Yi J, Guo S, He P, Zhou H 2017 Status and prospects of polymer electrolytes for solid-state Li-O2 (air) batteries Energy Environ. Sci. 10 860-84 doi: 10.1039/C6EE03499C
    [194] Huang J, Chi X, Yang J, Liu Y 2020 An ultrastable Na-Zn solid-state hybrid battery enabled by a robust dual-cross-linked polymer electrolyte ACS Appl. Mater. Interfaces 12 17583-91 doi: 10.1021/acsami.0c01990
    [195] Johnsi M, Suthanthiraraj S 2015 Preparation, zinc ion transport properties, and battery application based on poly(vinilydene fluoride-co-hexa fluoro propylene) polymer electrolyte system containing titanium dioxide nanofiller High Perform. Polym. 27 877-85 doi: 10.1177/0954008314565397
    [196] Yang M, Driscoll D, Balasubramanian M, Liao C 2020 Solvation structure and electrochemical properties of a new weakly coordinating aluminate salt as a nonaqueous electrolyte for zinc batteries J. Electrochem. Soc. 167 160529 doi: 10.1149/1945-7111/abcd46
    [197] Karan S, Sahu T, Sahu M, Mahipal Y, Agrawal R 2017 Characterization of ion transport property in hot-press cast solid polymer electrolyte films: [PEO: Zn(CF3SO32] Ionics 23 2721-6 doi: 10.1007/s11581-017-2036-7
    [198] Chen L, Li Y, Li S, Fan L, Nan C, Goodenough J 2018 PEO/garnet composite electrolytes for solid-state lithium batteries: from ceramic-in-polymer’ to polymer-in-ceramic’ Nano Energy 46 176-84 doi: 10.1016/j.nanoen.2017.12.037
    [199] Lai J, Xing Y, Chen N, Li L, Wu F, Chen R 2020 Electrolytes for rechargeable lithium-air batteries Angew. Chem., Int. Ed. 59 2974-97 doi: 10.1002/anie.201903459
    [200] Lin D, Liu W, Liu Y, Lee H R, Hsu P, Liu K, Cui Y 2016 High ionic conductivity of composite solid polymer electrolyte via in situ synthesis of monodispersed SiO2 nanospheres in poly(ethylene oxide) Nano Lett. 16 459-65 doi: 10.1021/acs.nanolett.5b04117
    [201] Nancy A, Suthanthiraraj S 2016 Preparation and characterization of a new PEO-PPG blend polymer electrolyte system Ionics 22 2399-408 doi: 10.1007/s11581-016-1767-1
    [202] Rathika R, Suthanthiraraj S 2018 Influence of 1-ethyl-3-methylimidazolium bis (trifluoromethyl sulfonyl) imide plasticization on zinc-ion conducting PEO/PVdF blend gel polymer electrolyte Mater. Sci., Mater. Electron. 29 19632-43 doi: 10.1007/s10854-018-0024-y
  • 加载中
图(20)
计量
  • 文章访问数:  1262
  • HTML全文浏览量:  578
  • PDF下载量:  208
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-06-21
  • 录用日期:  2023-08-07
  • 修回日期:  2023-07-25
  • 刊出日期:  2024-01-03

目录

    /

    返回文章
    返回