留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

High-entropy electrolytes in boosting battery performance

Jijian Xu

Jijian Xu. High-entropy electrolytes in boosting battery performance[J]. Materials Futures, 2023, 2(4): 047501. doi: 10.1088/2752-5724/ace8ab
Citation: Jijian Xu. High-entropy electrolytes in boosting battery performance[J]. Materials Futures, 2023, 2(4): 047501. doi: 10.1088/2752-5724/ace8ab
Commentary •
OPEN ACCESS

High-entropy electrolytes in boosting battery performance

doi: 10.1088/2752-5724/ace8ab
More Information
  • Figure  1.  (a) Increasing the number of components is a promising strategy to increase the entropy and lower the Gibbs free energy. (b) Phase diagram of eutectic mixture with two components, showing the eutectic point is lower than the melting point of each component.

    Figure  2.  Schematic illustrations of the difference between commercial carbonate-based electrolytes and high-entropy electrolytes upon the decrease of temperature.

  • [1] Lun Z, Ouyang B, Kwon D H, Ha Y, Foley E E, Huang T Y, Cai Z, Kim H, Balasubramanian M, Sun Y 2021 Cation-disordered rocksalt-type high-entropy cathodes for Li-ion batteries Nat. Mater. 20 214-21 doi: 10.1038/s41563-020-00816-0
    [2] Zeng Y, Ouyang B, Liu J, Byeon Y W, Cai Z, Miara L J, Wang Y, Ceder G 2022 High-entropy mechanism to boost ionic conductivity Science 378 1320-4 doi: 10.1126/science.abq1346
    [3] Lin J, Cherkashinin G, Schfer M, Melinte G, Indris S, Kondrakov A, Janek J R, Brezesinski T, Strauss F 2022 A high-entropy multicationic substituted lithium argyrodite superionic solid electrolyte ACS Mater. Lett. 4 2187-94 doi: 10.1021/acsmaterialslett.2c00667
    [4] Strauss F, Lin J, Duffiet M, Wang K, Zinkevich T, Hansen A-L, Indris S, Brezesinski T 2022 High-entropy polyanionic lithium superionic conductors ACS Mater. Lett. 4 418-23 doi: 10.1021/acsmaterialslett.1c00817
    [5] Kim S C, Wang J, Xu R, Zhang P, Chen Y, Huang Z, Cui Y 2023 High entropy electrolytes for practical lithium metal batteries Nat. Energy doi: 10.1038/s41560-023-01280-1
    [6] Zhang W, Xia H, Zhu Z, Lv Z, Cao S, Wei J, Luo Y, Xiao Y, Liu L, Chen X 2021 Decimal solvent-based high-entropy electrolyte enabling the extended survival temperature of lithium-ion batteries to -130 C CCS Chem. 3 1245-55 doi: 10.31635/ccschem.020.202000341
    [7] Wang Q, et al 2023 Entropy-driven liquid electrolytes for lithium batteries Adv. Mater. 35 2210677 doi: 10.1002/adma.202210677
    [8] Yang C, Xia J, Cui C, Pollard T P, Vatamanu J, Faraone A, Dura J A, Tyagi M, Kattan A, Thimsen E 2023 All-temperature zinc batteries with high-entropy aqueous electrolyte Nat. Sustain. 6 325-35 doi: 10.1038/s41893-022-01028-x
    [9] Xu J, et al 2022 Aqueous electrolyte design for super-stable 2.5 V LiMn2O4|| li4Ti5O12 pouch cells Nat. Energy 7 186-93 doi: 10.1038/s41560-021-00977-5
    [10] Xu J, Zhang J, Yang C, Wang P, Liu S, Ludwig K, Chen F, Kofinas P, Wang C 2023 Electrolyte design for Li-ion batteries under extreme operating conditions Nature 614 694-700 doi: 10.1038/s41586-022-05627-8
  • 加载中
图(3)
计量
  • 文章访问数:  561
  • HTML全文浏览量:  270
  • PDF下载量:  222
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-01-15
  • 录用日期:  2023-07-17
  • 修回日期:  2023-07-08
  • 刊出日期:  2023-08-04

目录

    /

    返回文章
    返回