The stability of inorganic perovskite solar cells: from materials to devices
doi: 10.1088/2752-5724/acd56c
-
Abstract: Inorganic halide perovskite solar cells (IHPSCs) have become one of the most promising research hotspots due to to the excellent light and thermal stabilities of inorganic halide perovskites (IHPs). Despite rapid progress in cell performance in very recent years, the phase instability of IHPs easily occurs, which will remarkably influence the cell efficiency and stability. Much effort has been devoted to solving this issue. In this review, we focus on representative progress in the stability from IHPs to IHPSCs, including (i) a brief introduction of inorganic perovskite materials and devices, (ii) some new additives and fabrication methods, (iii) thermal and light stabilities, (iv) tailoring phase stability, (v) optimization of the stability of inorganic perovskite solar cells and (vi) interfacial engineering for stability enhancement. Finally, perspectives will be given regarding future work on highly efficient and stable IHPSCs. This review aims to provide a thorough understanding of the key influential factors on the stability of materials to highly efficient and stable IHPSCs.
-
Figure 1. Crystal structure of a typical black phase ABX3 perovskite. Reproduced from [14] with permission from Springer Nature.
Figure 3. (a) Comparison of the thermal phase relationship of CsPbI3 and the phase behavior of strained CsPbI2.7Br0.3 thin films. From [52], reprinted with permission from AAAS. (b) Crystal structure and relative phase transition process of different phases. From [52], reprinted with permission from AAAS.
Figure 4. (a) Theoretical calculation results of the electronic structure of cubic CsPbBr3, including the density of states and the corresponding contributions of elements to the energy band, as well as the electronic distribution of the maximum value of the valence band and the minimum value of the conduction band [53]. John Wiley & Sons. [© 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim]. (b) Binding energy (top), effective mass (middle), and dielectric constant (bottom) versus band gap. Brown, red, and yellow stars represent the results for CsPbI3, CsPbI2Br and CsPbBr3, respectively. Green spheres indicate another experimental finding. Reprinted with permission from [54]. Copyright (2017) American Chemical Society. CC BY 4.0.
Figure 5. (a) Absorbance spectra for IHP films of different components, CsPb(I1-xBrx)3. Reprinted from [34], Copyright (2018), with permission from Elsevier. (b) Visible light absorption coefficient and two-photon absorption coefficient of CsPbBr3 single crystal (SC) [57]. John Wiley & Sons. [© 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim]. (c) The average diffusion lengths measured in APbBr3 SC and previously published MAPbI3 (left), electron and hole diffusion lengths measured in different perovskite components (right). Reprinted with permission from [56]. Copyright (2017) American Chemical Society.
Figure 6. (a) Schematic diagram of the crystal structure relationship between Pb-perovskites and lead-free perovskite derivatives. (b) Elements of halide double perovskites formed by A2BB3+X6. Reprinted with permission from [63]. Copyright (2016) American Chemical Society.
Figure 7. (a) Varieties of device architectures for PSCs. (b) Efficiency evolution of IHPSCs with different architectures [32, 39, 41, 43, 45, 69, 70, 74-77, 79-81]. (c) Relationship between SQ limit of single junction solar cell and band gap of absorber material. (JSC: short circuit current, VOC: open-circuit voltage, FF: fill factor, Eff.: efficiency).
Figure 8. Illustration of preparing IHP absorption layers by different methods. (a) One-step deposition. Reproduced from [39], with permission from Springer Nature. CC BY 4.0. (b) Multi-step deposition. Reproduced with permission from [87]. Copyright 2018, the Royal Society of Chemistry. (c) Vacuum deposition [90]. John Wiley & Sons. [© 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim].
Figure 9. (a) TGA of MABr, PbBr2, CsBr, MAPbBr3 and CsPbBr3. Reprinted with permission from [93]. Copyright (2016) American Chemical Society. (b) MPP test of the unsealed CsPbI2Br (dark gray line) and MAPbI3 solar cells (magenta line) in a nitrogen glovebox (25 C). Reprinted with permission from [38]. Copyright (2017) American Chemical Society. (c) Ionic conductivity of CsPbI2Br and MAPbI3 film in Au/perovskite/Au lateral structures by cryogenic galvanostatic and current-voltage experiments. Reprinted with permission from [38]. Copyright (2017) American Chemical Society.
Figure 10. (a) Absorbance spectra and photoluminescence spectra for CsPb(IxBr1-x)3 films with varying iodide concentration x’. [36] John Wiley & Sons. [© 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim]. (b) Schematic diagram of Pb2+ partially replaced by various metal ions (doping or alloying) can improve the stability of
-CsPbI3 at room temperature by increasing the tolerance factor, and improve the thermal stability of orthogonal CsPbBr3 by increasing the formation energy. Reprinted with permission from [100]. Copyright (2018) American Chemical Society. (c) Histograms comparing the first-principles calculation results of the formation energy (Eform) changes of each divalent Pb2+ ion in CsPbBr3 nanocrystals when undoped and doped with 2.08 mol% of various metal ions. Reprinted with permission from [100]. Copyright (2018) American Chemical Society. Schematic diagram of reducing grain size (d) nanocrystal. Reprinted from [101], Copyright (2017), with permission from Elsevier. (e) Quantum dots (QDs). Reprinted from [102], Copyright (2018), with permission from Elsevier. (f) 2D perovskite. Reprinted from [34], Copyright (2018), with permission from Elsevier. Figure 11. (a) Schematic diagram of the crystallization process of CsPbI2Br perovskite treated with GTA or GTA-ATS; SEM images of corresponding films and stability characterization of the corresponding device. Reprinted from [86], Copyright (2019), with permission from Elsevier. (b) Schematic diagram of the stabilization of
-phase CsPbI3, the histogram of the PCE values corresponding to devices with different crystal phase absorption layers and their stability as a function of storage time. Reprinted with permission from [111]. Copyright (2018) American Chemical Society. (c) Scheme for the perovskite crystal growth and additive volatilization of the film [42]. John Wiley & Sons. [© 2021 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim]. (d) Schematic phase conversion and mechanism for the accelerated crystallization process based on the pristine and molten-salt-assisted crystallization films [112]. John Wiley & Sons. [© 2021 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim]. (e) Photographs of perovskite precursor solutions based on DMAAc and DMF solvents, schematic diagrams of cation/anion/solvent interactions in the solutions and the stability characterization of the corresponding device [46]. John Wiley & Sons. [© 2022 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim]. Figure 12. (a) ETL/IHP interface modified by LiF [116]. John Wiley & Sons. [© 2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim]. (b) Schematic diagram of 3D CsPbI3 treated with 1D PTAPbI3 and 2D PTA2PbI4 composition at the grain boundaries, and long-term stability testing of unencapsulated devices under ambient conditions [69]. John Wiley & Sons. [© 2022 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim]. (c) Simultaneous modification of ETL/PVSK and PVSK/HTL interfaces [96]. John Wiley & Sons. [© 2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim]. (d) CsMX3 perovskite solar cells based on carbon electrode instead of gold electrode. Reprinted with permission from [120]. Copyright (2017) American Chemical Society.
Figure 13. (a) SEM surface images of the CsPbI3 perovskite films, the photographs of a CsPbI3 perovskite minimodule and long-term stability test of an encapsulated CsPbI3 perovskite minimodule under different conditions. Reprinted from [121], Copyright (2022), with permission from Elsevier. (b) Schematic diagram of the device structure with a 2D Cs2PbI2Cl2 layer at the top of the 3D perovskite active layer (left). Accelerated aging of PSCs operating at elevated temperatures (right). Reprinted from [109], with permission from AAAS.
Table 1. Evolution of the device efficiency and stability depending on the components of the absorber material and the device architecture (MPP = maximum power point, RH = relative humidity).
Device architecture Absorber material PCE Stability References n-i-p CsPbI3 21.0% 98% of its initial PCE over 500 h (light intensity = LED illumination (100 mW cm-2), applied bias = 0.85 V, atmosphere = N2 atmosphere). [69] CsPbI3-xBrx 21.8% 89.3% of its original efficiency at 85 C for 120 h (atmosphere = N2 atmosphere). [70] p-i-n CsPbI3 19.84% 95% of its initial efficiency after the same operation for 1000 h (light intensity = LED illumination (100 mW cm-2), applied bias = MPP, atmosphere = N2 atmosphere, temperature 45 C). [74] CsPbI3-xBrx 17.02% 80% of its PCE after 1000 h (light intensity = dark, atmosphere = air atmosphere, RH = 30%). [79] HTM-free CsPbI3 16.7% 80% of their initial PCE at 85 C for 200 h (atmosphere = air atmosphere, temperature = 20 C-30 C, RH = 5%-20%, no encapsulation). [76] CsPbI3-xBrx 14.84% 94% of its initial PCE after storage for 30 d (atmosphere = air atmosphere, temperature = room temperature, RH = 20%-25%). [80] CsPbBr3 11.08% Nearly unchanged over 100 d and 85 C over 30 d (atmosphere = air atmosphere, temperature = 85 C, RH = 40%, no encapsulation). [81] Table 2. Comparison of different inorganic perovskite deposition methods with their stability and best efficiency documented.
Deposition Absorber material PCE Stability References Solution processing One-step spin-coating CsPbI3-xBrx 21.8% 89.3% of its original efficiency at 85 C for 120 h (N2 atmosphere). [70] Two-step spin-coating CsPbI3-xBrx 12.5% 98% of the initial PCE for 480 h (stored under ambient conditions without encapsulation). [87] Vacuum deposition processing CsPbI2Br 11.8% Stabilized PCE of 11.5% (stored in the dark with encapsulations). [88] -
[1] Sun S, Salim T, Mathews N, Duchamp M, Boothroyd C, Xing G, Sum T C, Lam Y M 2014 The origin of high efficiency in low-temperature solution-processable bilayer organometal halide hybrid solar cells Energy Environ. Sci. 7 399-407 doi: 10.1039/C3EE43161D [2] Stranks S D, Eperon G E, Grancini G, Menelaou C, Alcocer M J, Leijtens T, Herz L M, Petrozza A, Snaith H J 2013 Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber Science 342 341-4 doi: 10.1126/science.1243982 [3] Ponseca C S, et al 2014 Organometal halide perovskite solar cell materials rationalized: ultrafast charge generation, high and microsecond-long balanced mobilities, and slow recombination J. Am. Chem. Soc. 136 5189-92 doi: 10.1021/ja412583t [4] D’Innocenzo V, Grancini G, Alcocer M J, Kandada A R, Stranks S D, Lee M M, Lanzani G, Snaith H J, Petrozza A 2014 Excitons versus free charges in organo-lead tri-halide perovskites Nat. Commun. 5 3586 doi: 10.1038/ncomms4586 [5] NREL 2023 Best research-cell efficiency chart: NREL (available at: www.nrel.gov/pv/cell-efficiency.html)(Accessed 1 December 2023) [6] Kojima A, Teshima K, Shirai Y, Miyasaka T 2009 Organometal halide perovskites as visible-light sensitizers for photovoltaic cells J. Am. Chem. Soc. 131 6050-1 doi: 10.1021/ja809598r [7] Kim H-S, et al 2012 Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9% Sci. Rep. 2 591 doi: 10.1038/srep00591 [8] Lee M M, Teuscher J, Miyasaka T, Murakami T N, Snaith H J 2012 Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites Science 338 643-7 doi: 10.1126/science.1228604 [9] Burschka J, Pellet N, Moon S J, Humphry-Baker R, Gao P, Nazeeruddin M K, Gratzel M 2013 Sequential deposition as a route to high-performance perovskite-sensitized solar cells Nature 499 316-9 doi: 10.1038/nature12340 [10] Jeon N J, Noh J H, Yang W S, Kim Y C, Ryu S, Seo J, Seok S I 2015 Compositional engineering of perovskite materials for high-performance solar cells Nature 517 476-80 doi: 10.1038/nature14133 [11] Yang W S, Noh J H, Jeon N J, Kim Y C, Ryu S, Seo J, Seok S I 2015 High-performance photovoltaic perovskite layers fabricated through intramolecular exchange Science 348 1234-7 doi: 10.1126/science.aaa9272 [12] Zhao Y, et al 2022 Inactive (PbI22RbCl stabilizes perovskite films for efficient solar cells Science 377 531-4 doi: 10.1126/science.abp8873 [13] Park J, Kim J, Yun H-S, Paik M J, Noh E, Mun H J, Kim M G, Shin T J, Seok S I 2023 Controlled growth of perovskite layers with volatile alkylammonium chlorides Nature 616 724-30 doi: 10.1038/s41586-023-05825-y [14] Green M A, Ho-Baillie A, Snaith H J 2014 The emergence of perovskite solar cells Nat. Photon. 8 506-14 doi: 10.1038/nphoton.2014.134 [15] Frost J M, Butler K T, Brivio F, Hendon C H, van Schilfgaarde M, Walsh A 2014 Atomistic origins of high-performance in hybrid halide perovskite solar cells Nano Lett. 14 2584-90 doi: 10.1021/nl500390f [16] Boyd C C, Cheacharoen R, Leijtens T, McGehee M D 2019 Understanding degradation mechanisms and improving stability of perovskite photovoltaics Chem. Rev. 119 3418-51 doi: 10.1021/acs.chemrev.8b00336 [17] Turren-Cruz S H, Hagfeldt A, Saliba M 2018 Methylammonium-free, high-performance, and stable perovskite solar cells on a planar architecture Science 362 449-53 doi: 10.1126/science.aat3583 [18] Yang Y, You J 2017 Make perovskite solar cells stable Nature 5 155-6 doi: 10.1038/544155a [19] Kim M, et al 2019 Methylammonium chloride induces intermediate phase stabilization for efficient perovskite solar cells Joule 3 2179-92 doi: 10.1016/j.joule.2019.06.014 [20] Bu T, et al 2022 Modulating crystal growth of formamidinium-caesium perovskites for over 200 cm2 photovoltaic sub-modules Nat. Energy 7 528-36 doi: 10.1038/s41560-022-01039-0 [21] Jiang Q, Zhao Y, Zhang X, Yang X, Chen Y, Chu Z, Ye Q F, Li X, Yin Z, You J 2019 Surface passivation of perovskite film for efficient solar cells Nat. Photon. 13 460-6 doi: 10.1038/s41566-019-0398-2 [22] Wu G, Liang R, Ge M, Sun G, Zhang Y, Xing G 2022 Surface passivation using 2D perovskites toward efficient and stable perovskite solar cells Adv. Mater. 34 e2105635 doi: 10.1002/adma.202105635 [23] Zhou N, Shen Y, Li L, Tan S, Liu N, Zheng G, Chen Q, Zhou H 2018 Exploration of crystallization kinetics in quasi two-dimensional perovskite and high performance solar cells J. Am. Chem. Soc. 140 459-65 doi: 10.1021/jacs.7b11157 [24] Wang T, et al 2022 Transporting holes stably under iodide invasion in efficient perovskite solar cells Science 377 1227-31 doi: 10.1126/science.abq6235 [25] Jung E H, Jeon N J, Park E Y, Moon C S, Shin T J, Yang T Y, Noh J H 2019 Efficient, stable and scalable perovskite solar cells using poly(3-hexylthiophene) Nature 567 511-5 doi: 10.1038/s41586-019-1036-3 [26] Zhang H, Xiao J, Shi J, Su H, Luo Y, Li D, Wu H, Chen Y, Meng Q 2018 Self-adhesive macroporous carbon electrodes for efficient and stable perovskite solar cells Adv. Funct. Mater. 28 1802985 doi: 10.1002/adfm.201802985 [27] Zhang C, et al 2021 Ti1-graphene single-atom material for improved energy level alignment in perovskite solar cells Nat. Energy 6 1154-63 doi: 10.1038/s41560-021-00944-0 [28] Lin Y, et al 2017 -Conjugated Lewis base: efficient trap-passivation and charge-extraction for hybrid perovskite solar cells Adv. Mater. 29 1604545 doi: 10.1002/adma.201604545 [29] Liu K, Chen S, Wu J, Zhang H, Qin M, Lu X, Tu X, Meng Q, Zhan X 2018 Fullerene derivative anchored SnO2 for high-performance perovskite solar cells Energy Environ. Sci. 11 3463-71 doi: 10.1039/C8EE02172D [30] Jiang Y, et al 2022 Reducing energy disorder in perovskite solar cells by chelation J. Am. Chem. Soc. 144 5400-10 doi: 10.1021/jacs.1c12732 [31] Zhang M, Dai S, Chandrabose S, Chen K, Liu K, Qin M, Lu X, Hodgkiss J M, Zhou H, Zhan X 2018 High-performance fused ring electron acceptor-perovskite hybrid J. Am. Chem. Soc. 140 14938-44 doi: 10.1021/jacs.8b09300 [32] Eperon G E, Patern G M, Sutton R J, Zampetti A, Haghighirad A A, Cacialli F, Snaith H J 2015 Inorganic caesium lead iodide perovskite solar cells J. Mater. Chem. A 3 19688-95 doi: 10.1039/C5TA06398A [33] Faheem M B, Khan B, Feng C, Farooq M U, Raziq F, Xiao Y, Li Y 2019 All-inorganic perovskite solar cells: energetics, key challenges, and strategies toward commercialization ACS Energy Lett. 5 290-320 doi: 10.1021/acsenergylett.9b02338 [34] Jiang Y, Yuan J, Ni Y, Yang J, Wang Y, Jiu T, Yuan M, Chen J 2018 Reduced-dimensional -CsPbX3 perovskites for efficient and stable photovoltaics Joule 2 1356-68 doi: 10.1016/j.joule.2018.05.004 [35] Stoumpos C C, Malliakas C D, Kanatzidis M G 2013 Semiconducting tin and lead iodide perovskites with organic cations: phase transitions, high mobilities, and near-infrared photoluminescent properties Inorg. Chem. 52 9019-38 doi: 10.1021/ic401215x [36] Sutton R J, et al 2016 Bandgap-tunable cesium lead halide perovskites with high thermal stability for efficient solar cells Adv. Energy Mater. 6 1502458 doi: 10.1002/aenm.201502458 [37] Zhou Y, Zhao Y 2019 Chemical stability and instability of inorganic halide perovskites Energy Environ. Sci. 12 1495-511 doi: 10.1039/C8EE03559H [38] Zhou W, Zhao Y, Zhou X, Fu R, Li Q, Zhao Y, Liu K, Yu D, Zhao Q 2017 Light-independent ionic transport in inorganic perovskite and ultrastable Cs-based perovskite solar cells J. Phys. Chem. Lett. 8 4122-8 doi: 10.1021/acs.jpclett.7b01851 [39] Wang P, Zhang X, Zhou Y, Jiang Q, Ye Q, Chu Z, Li X, Yang X, Yin Z, You J 2018 Solvent-controlled growth of inorganic perovskite films in dry environment for efficient and stable solar cells Nat. Commun. 9 2225 doi: 10.1038/s41467-018-04636-4 [40] Kulbak M, Cahen D, Hodes G 2015 How important is the organic part of lead halide perovskite photovoltaic cells? Efficient CsPbBr3 cells J. Phys. Chem. Lett. 6 2452-6 doi: 10.1021/acs.jpclett.5b00968 [41] Wang Y, et al 2019 Thermodynamically stabilized beta-CsPbI3-based perovskite solar cells with efficiencies >18% Science 365 591-5 doi: 10.1126/science.aav8680 [42] Yu B, Shi J, Tan S, Cui Y, Zhao W, Wu H, Luo Y, Li D, Meng Q 2021 Efficient (>20%) and stable all-inorganic cesium lead triiodide solar cell enabled by thiocyanate molten salts Angew. Chem, Int. Ed. 60 13436-43 doi: 10.1002/anie.202102466 [43] Yoon S M, Min H, Kim J B, Kim G, Lee K S, Seok S I 2020 Surface engineering of ambient-air-processed cesium lead triiodide layers for efficient solar cells Joule 5 183-96 doi: 10.1016/j.joule.2020.11.020 [44] Wang Y, Zhang T, Kan M, Zhao Y 2018 Bifunctional stabilization of all-inorganic alpha-CsPbI3 perovskite for 17% efficiency photovoltaics J. Am. Chem. Soc. 140 12345-8 doi: 10.1021/jacs.8b07927 [45] Wang Y, Liu X, Zhang T, Wang X, Kan M, Shi J, Zhao Y X 2019 The role of dimethylammonium iodide in CsPbI3 perovskite fabrication: additive or dopant? Angew. Chem., Int. Ed. 58 16691-6 doi: 10.1002/anie.201910800 [46] Cui Y, et al 2022 A versatile molten-salt induction strategy to achieve efficient CsPbI3 perovskite solar cells with a high open-circuit voltage >1.2V Adv. Mater. 34 e2205028 doi: 10.1002/adma.202205028 [47] Wang J, Che Y, Duan Y, Liu Z, Yang S, Xu D, Fang Z, Lei X, Li Y, Liu S Z 2023 21.15%-efficiency and stable gamma-CsPbI3 perovskite solar cells enabled by an acyloin ligand Adv. Mater. 35 e2210223 doi: 10.1002/adma.202210223 [48] Chen H, Xiang S, Li W, Liu H, Zhu L, Yang S 2018 Inorganic perovskite solar cells: a rapidly growing field Solar RRL 2 1700188 doi: 10.1002/solr.201700188 [49] Byranvand M M, Zuo W, Imani R, Pazoki M, Saliba M 2022 Tin-based halide perovskite materials: properties and applications Chem. Sci. 13 6766-81 doi: 10.1039/D2SC01914K [50] Correa-Baena J-P, Saliba M, Buonassisi T, Graetzel M, Abate A, Tress W, Hagfeldt A 2017 Promises and challenges of perovskite solar cells Science 358 739-44 doi: 10.1126/science.aam6323 [51] Sun Q, Yin W J 2017 Thermodynamic stability trend of cubic perovskites J. Am. Chem. Soc. 139 14905-8 doi: 10.1021/jacs.7b09379 [52] Steele J A, et al 2019 Thermal unequilibrium of strained black CsPbI3 thin films Science 365 679-84 doi: 10.1126/science.aax3878 [53] Li X, Wu Y, Zhang S, Cai B, Gu Y, Song J, Zeng H 2016 CsPbX3 quantum dots for lighting and displays: room-temperature synthesis, photoluminescence superiorities, underlying origins and white light-emitting diodes Adv. Funct. Mater. 26 2435-45 doi: 10.1002/adfm.201600109 [54] Yang Z, et al 2017 Impact of the halide cage on the electronic properties of fully inorganic cesium lead halide perovskites ACS Energy Lett. 2 1621-7 doi: 10.1021/acsenergylett.7b00416 [55] Girisun T C S, Dhanuskodi S 2009 Linear and nonlinear optical properties of tris thiourea zinc sulphate single crystals Cryst. Res. Technol. 44 1297-302 doi: 10.1002/crat.200900351 [56] Elbaz G A, Straus D B, Semonin O E, Hull T D, Paley D W, Kim P, Owen J S, Kagan C R, Roy X 2017 Unbalanced hole and electron diffusion in lead bromide perovskites Nano Lett. 17 1727-32 doi: 10.1021/acs.nanolett.6b05022 [57] Song J, et al 2017 Ultralarge all-inorganic perovskite bulk single crystal for high-performance visible-infrared dual-modal photodetectors Adv. Opt. Mater. 5 1700157 doi: 10.1002/adom.201700157 [58] Ye T, et al 2021 Ambient-air-stable lead-free CsSnI3 solar cells with greater than 7.5% efficiency J. Am. Chem. Soc. 143 4319-28 doi: 10.1021/jacs.0c13069 [59] Stoumpos C C, Frazer L, Clark D J, Kim Y S, Rhim S H, Freeman A J, Ketterson J B, Jang J I, Kanatzidis M G 2015 Hybrid germanium iodide perovskite semiconductors: active lone pairs, structural distortions, direct and indirect energy gaps, and strong nonlinear optical properties J. Am. Chem. Soc. 137 6804-19 doi: 10.1021/jacs.5b01025 [60] Huang L Y, Lambrecht W R L 2016 Electronic band structure trends of perovskite halides: beyond Pb and Sn to Ge and Si Phys. Rev. B 93 195211 doi: 10.1103/PhysRevB.93.195211 [61] Jena A K, Kulkarni A, Miyasaka T 2019 Halide perovskite photovoltaics: background, status, and future prospects Chem. Rev. 119 3036-103 doi: 10.1021/acs.chemrev.8b00539 [62] Han X, et al 2019 Lead-free double perovskite Cs2SnX6: facile solution synthesis and excellent stability Small 15 e1901650 doi: 10.1002/smll.201901650 [63] Giustino F, Snaith H J 2016 Toward lead-free perovskite solar cells ACS Energy Lett. 1 1233-40 doi: 10.1021/acsenergylett.6b00499 [64] Slavney A H, Hu T, Lindenberg A M, Karunadasa H I 2016 A bismuth-halide double perovskite with long carrier recombination lifetime for photovoltaic applications J. Am. Chem. Soc. 138 2138-41 doi: 10.1021/jacs.5b13294 [65] Igbari F, Wang Z K, Liao L S 2019 Progress of leadfree halide double perovskites Adv. Energy Mater. 9 1803150 doi: 10.1002/aenm.201803150 [66] Ma C, Grtzel M, Park N-G 2022 Facet engineering for stable, efficient perovskite solar cells ACS Energy Lett. 7 3120-8 doi: 10.1021/acsenergylett.2c01623 [67] Pradhan N 2021 Why do perovskite nanocrystals form nanocubes and how can their facets be tuned? A perspective from synthetic prospects ACS Energy Lett. 7 92-99 doi: 10.1021/acsenergylett.0c02099 [68] Dong S, Hu Z Y, Wei P, Han J, Wang Z, Liu J, Su B-L, Zhao D, Liu Y 2022 All-inorganic perovskite single-crystal photoelectric anisotropy Adv. Mater. 34 e2204342 doi: 10.1002/adma.202204342 [69] Tan S, et al 2022 Temperature-reliable low-dimensional perovskites passivated black-phase CsPbI3 toward stable and efficient photovoltaics Angew. Chem., Int. Ed. 61 e202201300 doi: 10.1002/anie.202201300 [70] Zhang H, et al 2023 Tailored cysteine-derived molecular structures towards efficient and stable inorganic perovskite solar cells Adv. Mater. e2301140 doi: 10.1002/adma.202301140 [71] Liu C, Li W Z, Zhang C L, Ma Y P, Fan J D, Mai Y H 2018 All-inorganic CsPbI2Br perovskite solar cells with high efficiency exceeding 13% J. Am. Chem. Soc. 140 3825-8 doi: 10.1021/jacs.7b13229 [72] Luo X, et al 2023 Efficient perovskite/silicon tandem solar cells on industrially compatible textured silicon Adv. Mater. 35 e2207883 doi: 10.1002/adma.202207883 [73] Ho-Baillie A W Y, Zheng J, Mahmud M A, Fa-Jun M, McKenzie D R, Green M A 2021 Recent progress and future prospects of perovskite tandem solar cells Appl. Phys. Rev. 8 041307 doi: 10.1063/5.0061483 [74] Fu S, Le J, Guo X, Sun N, Zhang W, Song W, Fang J F 2022 Polishing the lead-poor surface for efficient inverted CsPbI3 perovskite solar cells Adv. Mater. 34 e2205066 doi: 10.1002/adma.202205066 [75] Liang J, et al 2016 All-inorganic perovskite solar cells J. Am. Chem. Soc. 138 15829-32 doi: 10.1021/jacs.6b10227 [76] Wang H, Liu H, Dong Z, Wei X, Li W, Zhu L, Zhu C, Bai Y, Chen H N 2023 Dimethyl sulfoxide: a promising solvent for inorganic CsPbI3 perovskite Sci. Bull. 68 192-202 doi: 10.1016/j.scib.2023.01.016 [77] Yu B, Zuo C, Shi J, Meng Q, Ding L 2021 Defect engineering on all-inorganic perovskite solar cells for high efficiency J. Semicond. 42 050203 doi: 10.1088/1674-4926/42/5/050203 [78] Shockley W, Queisser H J 1961 Detailed balance limit of efficiency of pn junction solar cells J. Appl. Phys. 32 510-9 doi: 10.1063/1.1736034 [79] Yuan S, Xian Y, Long Y, Cabot A, Li W, Fan J 2021 Chromiumbased metal-organic framework as asite cation in CsPbI2Br perovskite solar cells Adv. Funct. Mater. 31 2106233 doi: 10.1002/adfm.202106233 [80] Zhu W, Chai W, Chen D, Ma J, Chen D, Xi H, Zhang J, Zhang C, Hao Y 2021 High-Efficiency (>14%) and air-stable carbon-based, all-inorganic CsPbI2Br perovskite solar cells through a top-seeded growth strategy ACS Energy Lett. 6 1500-10 doi: 10.1021/acsenergylett.1c00325 [81] Zhou Q, Duan J, Du J, Guo Q, Zhang Q, Yang X, Duan J, Tang Q 2021 Tailored lattice Tape to confine tensile interface for 11.08%-efficiency all-inorganic CsPbBr3 perovskite solar cell with an ultrahigh voltage of 1.702 V Adv. Sci. 8 e2101418 doi: 10.1002/advs.202101418 [82] Liang J, et al 2019 Defect-engineering-enabled high-efficiency all-inorganic perovskite solar cells Adv. Mater. 31 e1903448 doi: 10.1002/adma.201903448 [83] Uratani H, Yamashita K 2017 Charge carrier trapping at surface defects of perovskite solar cell absorbers: a first-principles study J. Phys. Chem. Lett. 8 742-6 doi: 10.1021/acs.jpclett.7b00055 [84] Ball J M, Petrozza A 2016 Defects in perovskite-halides and their effects in solar cells Nat. Energy 1 16149 doi: 10.1038/nenergy.2016.149 [85] Li Y, Zhang C, Zhang X, Huang D, Shen Q, Cheng Y, Huang W 2017 Intrinsic point defects in inorganic perovskite CsPbI3 from first-principles prediction Appl. Phys. Lett. 111 162106 doi: 10.1063/1.5001535 [86] Chen W, Chen H, Xu G, Xue R, Wang S, Li Y, Li Y 2019 Precise control of crystal growth for highly efficient CsPbI2Br perovskite solar cells Joule 3 191-204 doi: 10.1016/j.joule.2018.10.011 [87] Yu B, et al 2018 Solvent-engineering toward CsPb(IxBr1-x3 films for high-performance inorganic perovskite solar cells J. Mater. Chem. A 6 19810-6 doi: 10.1039/C8TA07968D [88] Chen C Y, Lin H Y, Chiang K M, Tsai W L, Huang Y C, Tsao C S, Lin H W 2017 All-vacuum-deposited stoichiometrically balanced inorganic cesium lead halide perovskite solar cells with stabilized efficiency exceeding 11% Adv. Mater. 29 1605290 doi: 10.1002/adma.201605290 [89] Duan J, Zhao Y Y, He B L, Tang Q W 2018 High-purity inorganic perovskite films for solar cells with 9.72% efficiency Angew. Chem., Int. Ed. 57 3787-91 doi: 10.1002/anie.201800019 [90] Chen W, Zhang J, Xu G, Xue R, Li Y, Zhou Y, Hou J, Li Y 2018 A semitransparent inorganic perovskite film for overcoming ultraviolet light instability of organic solar cells and achieving 14.03% efficiency Adv. Mater. 30 e1800855 doi: 10.1002/adma.201800855 [91] Hutter E M, Sutton R J, Chandrashekar S, Abdi-Jalebi M, Stranks S D, Snaith H J, Sayenije T J 2017 Vapour-deposited cesium lead iodide perovskites: microsecond charge carrier lifetimes and enhanced photovoltaic performance ACS Energy Lett. 2 1901-8 doi: 10.1021/acsenergylett.7b00591 [92] Shi L, et al 2020 Gas chromatography-mass spectrometry analyses of encapsulated stable perovskite solar cells Science 368 6497 doi: 10.1126/science.aba2412 [93] Kulbak M, Gupta S, Kedem N, Levine I, Bendikov T, Hodes G, Cahen D 2016 Cesium enhances long-term stability of lead bromide perovskite-based solar cells J. Phys. Chem. Lett. 7 167-72 doi: 10.1021/acs.jpclett.5b02597 [94] Tian J, Wang J, Xue Q, Niu T, Yan L, Zhu Z, Li N, Brabec C J, Yi H L, Cao Y 2020 Composition engineering of allinorganic perovskite film for efficient and operationally stable solar cells Adv. Funct. Mater. 30 2001764 doi: 10.1002/adfm.202001764 [95] Li W, et al 2017 Phase segregation enhanced ion movement in efficient inorganic CsPbIBr2 solar cells Adv. Energy Mater. 7 1700946 doi: 10.1002/aenm.201700946 [96] Tian J, et al 2019 Dual interfacial design for efficient CsPbI2Br perovskite solar cells with improved photostability Adv. Mater. 31 e1901152 doi: 10.1002/adma.201901152 [97] Zheng K, Ge J, Liu C, Lou Q, Chen X, Meng Y, Yin X, Bu S, Liu C, Ge Z 2021 Improved phase stability of CsPbI2Br perovskite by released microstrain toward highly efficient and stable solar cells InfoMat 3 1431-44 doi: 10.1002/inf2.12246 [98] Zeng Q, et al 2018 Polymer-passivated inorganic cesium lead mixed-halide perovskites for stable and efficient solar cells with high open-circuit voltage over 1.3 V Adv. Mater. 30 1705393 doi: 10.1002/adma.201705393 [99] Xu J, et al 2022 Stable highefficiency CsPbI2Br solar cells by designed passivation using multifunctional 2D perovskite Adv. Funct. Mater. 32 2202829 doi: 10.1002/adfm.202202829 [100] Swarnkar A, Mir W J, Nag A 2018 Can B-site doping or alloying improve thermal- and phase-stability of all-inorganic CsPbX3 (X = Cl, Br, I) perovskites? ACS Energy Lett. 3 286-9 doi: 10.1021/acsenergylett.7b01197 [101] Wang Q, Zheng X, Deng Y, Zhao J, Chen Z, Huang J 2017 Stabilizing the -phase of CsPbI3 perovskite by sulfobetaine zwitterions in one-step spin-coating films Joule 1 371-82 doi: 10.1016/j.joule.2017.07.017 [102] Ghosh D, Ali M Y, Chaudhary D K, Bhattacharyya S 2018 Dependence of halide composition on the stability of highly efficient all-inorganic cesium lead halide perovskite quantum dot solar cells Sol. Energy Mater. Sol. Cells 185 28-35 doi: 10.1016/j.solmat.2018.05.002 [103] Li W, Li J, Li J, Fan J, Mai Y, Wang L 2016 Addictive-assisted construction of all-inorganic CsSnIBr2 mesoscopic perovskite solar cells with superior thermal stability up to 473 K J. Mater. Chem. A 4 17104-10 doi: 10.1039/C6TA08332C [104] Meng F, Yu B, Zhang Q, Cui Y, Tan S, Shi J, Gu L, Li D, Meng Q, Nan C 2022 Ge incorporation to stabilize efficient inorganic CsPbI3 perovskite solar cells Adv. Energy Mater. 12 2103690 doi: 10.1002/aenm.202103690 [105] Yang F, Hirotani D, Kapil G, Kamarudin M A, Ng C H, Zhang Y, Shen Q, Hayase S 2018 All-inorganic CsPb1-xGexI2Br perovskite with enhanced phase stability and photovoltaic performance Angew. Chem., Int. Ed. 57 12745-9 doi: 10.1002/anie.201807270 [106] Hu Y, Bai F, Liu X, Ji Q, Miao X, Qiu T, Zhang S 2017 Bismuth incorporation stabilized -CsPbI3 for fully inorganic perovskite solar cells ACS Energy Lett. 2 2219-27 doi: 10.1021/acsenergylett.7b00508 [107] Jena A K, Kulkarni A, Sanehira Y, Ikegami M, Miyasaka T 2018 Stabilization of -CsPbI3 in ambient room temperature conditions by incorporating Eu into CsPbI3 Chem. Mater. 30 6668-74 doi: 10.1021/acs.chemmater.8b01808 [108] Guo Z, Zhao S, Liu A, Kamata Y, Teo S, Yang S, Xu Z, Hayase S, Ma T 2019 Niobium incorporation into CsPbI2Br for stable and efficient all-inorganic perovskite solar cells ACS Appl Mater. Interfaces 11 19994-20003 doi: 10.1021/acsami.9b03622 [109] Zhao X, Liu T, Burlingame Q C, Liu T, Holley R, Cheng G, Yao N, Gao F, Loo Y L 2022 Accelerated aging of all-inorganic, interface-stabilized perovskite solar cells Science 377 307-10 doi: 10.1126/science.abn5679 [110] Li B, Zhang Y, Fu L, Yu T, Zhou S, Zhang L, Yin L 2018 Surface passivation engineering strategy to fully-inorganic cubic CsPbI3 perovskites for high-performance solar cells Nat. Commun. 9 1076 doi: 10.1038/s41467-018-03169-0 [111] Zhao B, et al 2018 Thermodynamically stable orthorhombic gamma-CsPbI3 thin films for high-performance photovoltaics J. Am. Chem. Soc. 140 11716-25 doi: 10.1021/jacs.8b06050 [112] Zhang J, Fang Y, Zhao W, Han R, Wen J, Liu S Z 2021 Molten-salt-assisted CsPbI3 perovskite crystallization for nearly 20%-efficiency solar cells Adv. Mater. 33 e2103770 doi: 10.1002/adma.202103770 [113] Liu C, et al 2018 Structurally reconstructed CsPbI2Br perovskite for highly stable and square-centimeter all-inorganic perovskite solar cells Adv. Energy Mater. 9 1803572 doi: 10.1002/aenm.201803572 [114] Jiang Q, Zhang L, Wang H, Yang X, Meng J, Liu H, Yin Z, Wu J, Zhang X, You J 2016 Enhanced electron extraction using SnO2 for high-efficiency planar-structure HC(NH22PbI3-based perovskite solar cells Nat. Energy 2 1-7 doi: 10.1038/nenergy.2016.177 [115] Jiang Q, Zhang X, You J 2018 SnO2: a wonderful electron transport layer for perovskite solar cells Small 14 e1801154 doi: 10.1002/smll.201801154 [116] Ye Q, Zhao Y, Mu S, Ma F, Gao F, Chu Z, Yin Z, Gao P, Zhang X, You J 2019 Cesium lead inorganic solar cell with efficiency beyond 18% via reduced charge recombination Adv. Mater. 31 e1905143 doi: 10.1002/adma.201905143 [117] Zhang T, et al 2022 Ion-modulated radical doping of spiro-OMeTAD for more efficient and stable perovskite solar cells Science 377 495-501 doi: 10.1126/science.abo2757 [118] Yuan J, et al 2018 Band-aligned polymeric hole transport materials for extremely low energy loss -CsPbI3 perovskite nanocrystal solar cells Joule 2 2450-63 doi: 10.1016/j.joule.2018.08.011 [119] Li M H, et al 2021 Electrical loss management by molecularly manipulating dopant-free poly(3-hexylthiophene) towards 16.93% CsPbI2Br solar cells Angew. Chem., Int. Ed. 60 16388-93 [120] Liang J, Zhao P, Wang C, Wang Y, Hu Y, Zhu G, Ma L, Liu J, Jin Z 2017 CsPb0.9Sn0.1IBr2 based all-inorganic perovskite solar cells with exceptional efficiency and stability J. Am. Chem. Soc. 139 14009-12 doi: 10.1021/jacs.7b07949 [121] Heo J H, Zhang F, Park J K, Joon Lee H, Lee D S, Heo S J, Luther J M, Berry J J, Zhu K, Im S H 2022 Surface engineering with oxidized Ti3C2Tx MXene enables efficient and stable p-i-n-structured CsPbI3 perovskite solar cells Joule 6 1672-88 doi: 10.1016/j.joule.2022.05.013