Advantages and challenges of self-assembled monolayer as a hole-selective contact for perovskite solar cells
doi: 10.1088/2752-5724/acbb5a
-
Abstract: Charge-transporting layers (CTLs) are important in determining the performance and stability of perovskite solar cells (PSCs). Recently, there has been considerable use of self-assembled monolayers (SAMs) as charge-selective contacts, especially for hole-selective SAMs in inverted PSCs as well as perovskite involving tandem solar cells. The SAM-based charge-selective contact shows many advantages over traditional thin-film organic/inorganic CTLs, including reduced cost, low optical and electric loss, conformal coating on a rough substrate, simple deposition on a large-area substrate and easy modulation of energy levels, molecular dipoles and surface properties. The incorporation of various hole-selective SAMs has resulted in high-efficiency single junction and tandem solar cells. This topical review summarizes both the advantages and challenges of SAM-based charge-selective contacts, and discusses the potential direction for future studies.
-
Figure 1. Application of SAM-based HTLs in PSCs. (a) Configuration of inverted structured PSCs with SAM as a hole-selective contact. (b) Schematic diagram for the molecular structure of SAMs and the roles of each segment. (c) Main progress of efficient SAM-based HTLs in single-junction PSCs (from the year 2018-2022 ) and their chemical structures, including V1036 [17]; MC-43 [19]; MeO-2PACz, 2PACz [18]; MPA-BT-CA [22]; EADR03 [29]; Br-2EPT [30]; MPA-Ph-CA [31]; CbzNaph [28]; MTPA-BA [32].
Figure 3. Low optical and electrical loss of SAM based-HTLs. (a) Transmittance spectra of c-SA fabricated on ITO glass ([20] John Wiley & Sons. [© 2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim]). (b) Comparison of the loss mechanisms partition of PTAA and Me-4PACz (From [23]. Reprinted with permission from AAAS).
Figure 4. Convenient energy-level tuning of SAM-based HTLs, including V1036 [17]; MeO-2PACz, 2PACz, 4PACz, Me-4PACz [18, 23, 28]; DC-PA [45]; Br-2EPT [30]; TPA [19]; MC-43 [19]; EADR03, EADR04 [29]; TPT-P6 [40]; MPA-BT, MPA-BT-CA [22]; MPA-Ph-CA [31]; MTPA-BA [32]. Moreover, the FAMACs-Brx represents the perovskite components Cs0.05(FA1-xMAx)0.95Pb(I1-xBrx)3, where x means the ratio of Br [31, 32]. Energy levels of ITO, FASnI3, FAPbI3, MAPbI3, FA0.8Cs0.2PbI3, PCBM and Ag were collected from the literature ([20]. John Wiley & Sons. [© 2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim]. Reproduced from [21], with permission from Springer Nature).
Figure 5. Modification of interfaces by SAM molecules. (a), (b) Schematic of MeO-2PACz layer deposited on ITO without/with ethanol washing ([54] John Wiley & Sons. [© 2021 The Authors. Advanced Energy Materials published by Wiley-VCH GmbH]). (c) Schematic illustration of the sandwich double-cantilever beam specimen and the magnification shows the idealized arrangement of I-SAM molecules between perovskite and SnO2 (From [56]. Reprinted with permission from AAAS). (d)-(f) Phase stability of perovskite adsorbents on different substrates was analyzed (From [23]. Reprinted with permission from AAAS).
Figure 6. Conformal coating and application in tandem solar cells. (a) J-V curves of a monolithic CIGSe/perovskite tandem solar cell, inset: cross-section scanning electron microscopy (SEM) image of tandem cell (Reproduced from [18] with permission from the Royal Society of Chemistry). (b) Structure of the textured monolithic perovskite/Si tandem device. (c) Champion J-V curves of a 1.03 cm2 tandem cell, inset: photo of the corresponding device. (b), (c) Reprinted from [25], Copyright (2021), with permission from Elsevier. (d) Front of the fabricated tandem module with an aperture area of 12.25 cm2. (e) J-V curves of stepwise accumulated tandem cell stripes and respective FF. (d), (e) Reproduced from [58], with permission from Springer Nature. CC BY 4.0.
-
[1] Min H, et al 2021 Perovskite solar cells with atomically coherent interlayers on SnO2 electrodes Nature 598 444-50 doi: 10.1038/s41586-021-03964-8 [2] Kim M, et al 2022 Conformal quantum dot-SnO2 layers as electron transporters for efficient perovskite solar cells Science 375 302-6 doi: 10.1126/science.abh1885 [3] Li X, Zhang W, Guo X, Lu C, Wei J, Fang J 2022 Constructing heterojunctions by surface sulfidation for efficient inverted perovskite solar cells Science 375 434-7 doi: 10.1126/science.abl5676 [4] Jiang Q, et al 2022 Surface reaction for efficient and stable inverted perovskite solar cells Nature 611 278-83 doi: 10.1038/s41586-022-05268-x [5] Zhu Y, Hu M, Xu M, Zhang B, Huang F, Cheng Y-B, Lu J 2022 Bilayer metal halide perovskite for efficient and stable solar cells and modules Mater. Futures 1 042102 doi: 10.1088/2752-5724/ac9248 [6] Yan W, Ye S, Li Y, Sun W, Rao H, Liu Z, Bian Z, Huang C 2016 Hole-transporting materials in inverted planar perovskite solar cells Adv. Energy Mater. 6 1600474 doi: 10.1002/aenm.201600474 [7] Li L, Wu Y, Li E, Shen C, Zhang H, Xu X, Wu G, Cai M, Zhu W-H 2019 Self-assembled naphthalimide derivatives as an efficient and low-cost electron extraction layer for n-i-p perovskite solar cells Chem. Commun. 55 13239-42 doi: 10.1039/C9CC06345E [8] Shen C, Wu Y, Zhang H, Li E, Zhang W, Xu X, Wu W, Tian H, Zhu W 2019 Semilocked tetrathienylethene as a building block for holetransporting materials: toward efficient and stable perovskite solar cells Angew. Chem. Int. Ed. 58 3784-9 doi: 10.1002/anie.201811593 [9] Guo H, Zhang H, Shen C, Zhang D, Liu S, Wu Y, Zhu W-H 2021 A coplanar -extended quinoxaline based hole-transporting material enabling over 21% efficiency for dopant-free perovskite solar cells Angew. Chem. Int. Ed. 60 2674-9 doi: 10.1002/anie.202013128 [10] Ye F, Zhang D, Xu X, Guo H, Liu S, Zhang S, Wu Y, Zhu W-H 2021 Anchorable perylene diimides as chemically inert electron transport layer for efficient and stable perovskite solar cells with high reproducibility Sol. RRL 5 2000736 doi: 10.1002/solr.202000736 [11] Wu S, et al 2020 Modulation of defects and interfaces through alkylammonium interlayer for efficient inverted perovskite solar cells Joule 4 1248-62 doi: 10.1016/j.joule.2020.04.001 [12] Jeng J-Y, Chiang Y-F, Lee M-H, Peng S-R, Guo T-F, Chen P, Wen T-C 2013 CH3NH3PbI3 perovskite/fullerene planar-heterojunction hybrid solar cells Adv. Mater. 25 3727-32 doi: 10.1002/adma.201301327 [13] Nie W, et al 2018 Critical role of interface and crystallinity on the performance and photostability of perovskite solar cell on nickel oxide Adv. Mater. 30 1703879 doi: 10.1002/adma.201703879 [14] Stolterfoht M, et al 2018 Visualization and suppression of interfacial recombination for high-efficiency large-area pin perovskite solar cells Nat. Energy 3 847-54 doi: 10.1038/s41560-018-0219-8 [15] Li Z, Li B, Wu X, Sheppard S A, Zhang S, Gao D, Long N J, Zhu Z 2022 Organometallic-functionalized interfaces for highly efficient inverted perovskite solar cells Science 373 416-20 doi: 10.1126/science.abm8566 [16] Wang S, et al 2022 Critical role of removing impurities in nickel oxide on highefficiency and longterm stability of inverted perovskite solar cells Angew. Chem. Int. Ed. 61 e202116534 doi: 10.1002/anie.202116534 [17] Magomedov A, Al-Ashouri A, Kasparaviius E, Strazdaite S, Niaura G, Jot M, Malinauskas T, Albrecht S, Getautis V 2018 Self-assembled hole transporting monolayer for highly efficient perovskite solar cells Adv. Energy Mater. 8 1801892 doi: 10.1002/aenm.201801892 [18] Al-Ashouri A, et al 2019 Conformal monolayer contacts with lossless interfaces for perovskite single junction and monolithic tandem solar cells Energy Environ. Sci. 12 3356-69 doi: 10.1039/C9EE02268F [19] Yalcin E, Can M, Rodriguez-Seco C, Aktas E, Pudi R, Cambarau W, Demic S, Palomares E 2019 Semiconductor self-assembled monolayers as selective contacts for efficient PiN perovskite solar cells Energy Environ. Sci. 12 230-7 doi: 10.1039/C8EE01831F [20] Li E, Bi E, Wu Y, Zhang W, Li L, Chen H, Han L, Tian H, Zhu W 2020 Synergistic coassembly of highly wettable and uniform holeextraction monolayers for scalingup perovskite solar cells Adv. Funct. Mater. 30 1909509 doi: 10.1002/adfm.201909509 [21] Isikgor F H, Zhumagali S, T, Merino L V, De B M, McCulloch I, De Wolf S 2023 Molecular engineering of contact interfaces for high-performance perovskite solar cells Nat. Rev. Mater. 8 89-108 doi: 10.1038/s41578-022-00503-3 [22] Wang Y, et al 2020 Teaching an old anchoring group new tricks: enabling low-cost, eco-friendly hole-transporting materials for efficient and stable perovskite solar cells J. Am. Chem. Soc. 142 16632-43 doi: 10.1021/jacs.0c06373 [23] Al-Ashouri A, et al 2020 Monolithic perovskite/silicon tandem solar cell with >29% efficiency by enhanced hole extraction Science 370 1300-9 doi: 10.1126/science.abd4016 [24] Azmi R, et al 2022 Damp heat-stable perovskite solar cells with tailored-dimensionality 2D/3D heterojunctions Science 376 73-77 doi: 10.1126/science.abm5784 [25] Liu J, et al 2021 28.2%-efficient, outdoor-stable perovskite/silicon tandem solar cell Joule 5 3169-86 doi: 10.1016/j.joule.2021.11.003 [26] Datta K, Wang J, Zhang D, Zardetto V, Remmerswaal W H M, Weijtens C H L, Wienk M M, Janssen R A J 2021 Monolithic allperovskite tandem solar cells with minimized optical and energetic losses Adv. Mater. 34 2110053 doi: 10.1002/adma.202110053 [27] Qin S, et al 2022 Constructing monolithic perovskite/organic tandem solar cell with efficiency of 22.0% via reduced opencircuit voltage loss and broadened absorption spectra Adv. Mater. 34 2108829 doi: 10.1002/adma.202108829 [28] Jiang W, Li F, Li M, Qi F, Lin F R, Jen A KY 2022 -expanded carbazoles as hole-selective self-assembled monolayers for high-performance perovskite solar cells Angew. Chem. Int. Ed. 61 e202213560 doi: 10.1002/anie.202213560 [29] Lin X, et al 2017 Dipole-field-assisted charge extraction in metal-perovskite-metal back-contact solar cells Nat. Commun. 8 613 doi: 10.1038/s41467-017-00588-3 [30] Ullah A, et al 2021 Novel phenothiazinebased selfassembled monolayer as a hole selective contact for highly efficient and stable pin perovskite solar cells Adv. Energy Mater. 12 2103175 doi: 10.1002/aenm.202103175 [31] Zhang S, Wu R, Mu C, Wang Y, Han L, Wu Y, Zhu W-H 2022 Conjugated self-assembled monolayer as stable hole-selective contact for inverted perovskite solar cells ACS Mater. Lett. 4 1976-83 doi: 10.1021/acsmaterialslett.2c00799 [32] Guo H, Liu C, Hu H, Zhang S, Ji X, Cao X, Ning Z, Zhu W-H, Tian H, Wu Y 2022 Neglected acidity pitfall: boric acid-anchoring hole selective contact for perovskite solar cells Natl. Sci. Rev. doi: 10.1093/nsr/nwad057 [33] Zhang H, Wu Y, Zhang W, Li E, Shen C, Jiang H, Tian H, Zhu W-H 2018 Low cost and stable quinoxaline-based hole-transporting materials with a D-A-D molecular configuration for efficient perovskite solar cells Chem. Sci. 9 5919-28 doi: 10.1039/C8SC00731D [34] Li E, et al 2019 Efficient p-i-n structured perovskite solar cells employing low-cost and highly reproducible oligomers as hole transporting materials Sci. China Chem. 62 767-74 doi: 10.1007/s11426-018-9452-9 [35] Xu X, Ji X, Chen R, Ye F, Liu S, Zhang S, Chen W, Wu Y, Zhu W-H 2022 Improving contact and passivation of buried interface for high-efficiency and large-area inverted perovskite solar cells Adv. Funct. Mater. 32 2109968 doi: 10.1002/adfm.202109968 [36] Chen R, et al 2022 Robust hole transport material with interface anchors enhances the efficiency and stability of inverted formamidinium-cesium perovskite solar cells with a certified efficiency of 22.3% Energy Environ. Sci. 15 2567-80 doi: 10.1039/D2EE00433J [37] Zhang M, Guo X, Ma W, Ade H, Hou J 2014 A polythiophene derivative with superior properties for practical application in polymer solar cells Adv. Mater. 26 5880-5 doi: 10.1002/adma.201401494 [38] Stolterfoht M, Wolff C M, Amir Y, Paulke A, Perdign-Toro L, Caprioglio P, Neher D 2017 Approaching the fill factor Shockley-Queisser limit in stable, dopant-free triple cation perovskite solar cells Energy Environ. Sci. 10 1530-9 doi: 10.1039/C7EE00899F [39] Gharibzadeh S, et al 2021 Two birds with one stone: dual grain-boundary and interface passivation enables >22% efficient inverted methylammonium-free perovskite solar cells Energy Environ. Sci. 14 5875-93 doi: 10.1039/D1EE01508G [40] Li E, Liu C, Lin H, Xu X, Liu S, Zhang S, Yu M, Cao X, Wu Y, Zhu W 2021 Bonding strength regulates anchoringbased selfassembly monolayers for efficient and stable perovskite solar cells Adv. Funct. Mater. 31 2103847 doi: 10.1002/adfm.202103847 [41] Peng J, et al 2021 Nanoscale localized contacts for high fill factors in polymer-passivated perovskite solar cells Science 371 390-5 doi: 10.1126/science.abb8687 [42] Niu T, et al 2021 D-A--A-D-type dopant-free hole transport material for low-cost, efficient, and stable perovskite solar cells Joule 5 249-69 doi: 10.1016/j.joule.2020.12.003 [43] Jeong J, et al 2021 Pseudo-halide anion engineering for -FAPbI3 perovskite solar cells Nature 592 381-5 doi: 10.1038/s41586-021-03406-5 [44] Peng J, et al 2022 Centimetre-scale perovskite solar cells with fill factors of more than 86% Nature 601 573-8 doi: 10.1038/s41586-021-04216-5 [45] Deng X, Qi F, Li F, Wu S, Lin F R, Zhang Z, Guan Z, Yang Z, Lee C, Jen A K Y 2022 Holeselective contact for highperformance inverted perovskite solar cells with optimized recombination loss and longterm stability Angew. Chem. Int. Ed. 61 e202203088 doi: 10.1002/anie.202203088 [46] Levine I, et al 2021 Charge transfer rates and electron trapping at buried interfaces of perovskite solar cells Joule 5 2915-33 doi: 10.1016/j.joule.2021.07.016 [47] Stolterfoht M, et al 2019 The impact of energy alignment and interfacial recombination on the internal and external open-circuit voltage of perovskite solar cells Energy Environ. Sci. 12 2778-88 doi: 10.1039/C9EE02020A [48] Canil L, et al 2021 Tuning halide perovskite energy levels Energy Environ. Sci. 14 1429-38 doi: 10.1039/D0EE02216K [49] Xiang Y, Guo H, Cai Z, Jiang C, Zhu C, Wu Y, Zhu W-H, Chen T 2022 Dopant-free hole-transporting materials for stable Sb2(S,Se)3 solar cells Chem. Commun. 58 4787-90 doi: 10.1039/D1CC07041J [50] Guo H, Zhang H, Liu S, Zhang D, Wu Y, Zhu W-H 2022 Efficient and stable methylammonium-free tin-lead perovskite solar cells with hexaazatrinaphthylene-based hole-transporting materials ACS Appl. Mater. Interfaces 14 6852-8 doi: 10.1021/acsami.1c22659 [51] Lange I, et al 2014 Tuning the work function of polar zinc oxide surfaces using modified phosphonic acid selfassembled monolayers Adv. Funct. Mater. 24 7014-24 doi: 10.1002/adfm.201401493 [52] Ou Q-D, Li C, Wang Q-K, Li Y-Q, Tang J-X 2017 Recent advances in energetics of metal halide perovskite interfaces Adv. Mater. Interfaces 4 1600694 doi: 10.1002/admi.201600694 [53] Lin X, Raga S R, Chesman A S R, Ou Q, Jiang L, Bao Q, Lu J, Cheng Y-B, Bach U 2020 Honeycomb-shaped charge collecting electrodes for dipole-assisted back-contact perovskite solar cells Nano Energy 67 104223 doi: 10.1016/j.nanoen.2019.104223 [54] Ro M, et al 2021 Coevaporated formamidinium lead iodide based perovskites with 1000 h constant stability for fully textured monolithic perovskite/silicon tandem solar cells Adv. Energy Mater. 11 2101460 doi: 10.1002/aenm.202101460 [55] Zhang D, Zhang H, Guo H, Ye F, Liu S, Wu Y 2022 Stable -FAPbI3 in inverted perovskite solar cells with efficiency exceeding 22% via a self-passivation strategy Adv. Funct. Mater. 32 2200174 doi: 10.1002/adfm.202200174 [56] Dai Z, Yadavalli S K, Chen M, Abbaspourtamijani A, Qi Y, Padture N P 2021 Interfacial toughening with self-assembled monolayers enhances perovskite solar cell reliability Science 372 618-22 doi: 10.1126/science.abf5602 [57] Liu J, et al 2022 Efficient and stable perovskite-silicon tandem solar cells through contact displacement by MgFx Science 377 302-6 doi: 10.1126/science.abn8910 [58] Abdollahi Nejand B, et al 2022 Scalable two-terminal all-perovskite tandem solar modules with a 19.1% efficiency Nat. Energy 7 620-30 doi: 10.1038/s41560-022-01059-w [59] Li L, et al 2022 Flexible all-perovskite tandem solar cells approaching 25% efficiency with molecule-bridged hole-selective contact Nat. Energy 7 708-17 doi: 10.1038/s41560-022-01045-2 [60] Farag A, et al 2023 Evaporated selfassembled monolayer hole transport layers: lossless interfaces in pin perovskite solar cells Adv. Energy Mater. 13 2203982 doi: 10.1002/aenm.202203982 [61] Aktas E, et al 2021 Understanding the perovskite/self-assembled selective contact interface for ultra-stable and highly efficient p-i-n perovskite solar cells Energy Environ. Sci. 14 3976-85 doi: 10.1039/D0EE03807E