留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Advantages and challenges of self-assembled monolayer as a hole-selective contact for perovskite solar cells

Songran Wang Huanxin Guo Yongzhen Wu

Songran Wang, Huanxin Guo, Yongzhen Wu. Advantages and challenges of self-assembled monolayer as a hole-selective contact for perovskite solar cells[J]. Materials Futures, 2023, 2(1): 012105. doi: 10.1088/2752-5724/acbb5a
Citation: Songran Wang, Huanxin Guo, Yongzhen Wu. Advantages and challenges of self-assembled monolayer as a hole-selective contact for perovskite solar cells[J]. Materials Futures, 2023, 2(1): 012105. doi: 10.1088/2752-5724/acbb5a
Topical Review •
OPEN ACCESS

Advantages and challenges of self-assembled monolayer as a hole-selective contact for perovskite solar cells

doi: 10.1088/2752-5724/acbb5a
More Information
  • Figure  1.  Application of SAM-based HTLs in PSCs. (a) Configuration of inverted structured PSCs with SAM as a hole-selective contact. (b) Schematic diagram for the molecular structure of SAMs and the roles of each segment. (c) Main progress of efficient SAM-based HTLs in single-junction PSCs (from the year 2018-2022 ) and their chemical structures, including V1036 [17]; MC-43 [19]; MeO-2PACz, 2PACz [18]; MPA-BT-CA [22]; EADR03 [29]; Br-2EPT [30]; MPA-Ph-CA [31]; CbzNaph [28]; MTPA-BA [32].

    Figure  2.  Illustration of cost advantages of SAM-based HTLs. Conventional thin-film HTLs require a thickness of 10-100 nm to ensure complete coverage and hole selection. SAM greatly reduces the thickness of HTL while ensuring efficient hole extraction.

    Figure  3.  Low optical and electrical loss of SAM based-HTLs. (a) Transmittance spectra of c-SA fabricated on ITO glass ([20] John Wiley & Sons. [© 2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim]). (b) Comparison of the loss mechanisms partition of PTAA and Me-4PACz (From [23]. Reprinted with permission from AAAS).

    Figure  4.  Convenient energy-level tuning of SAM-based HTLs, including V1036 [17]; MeO-2PACz, 2PACz, 4PACz, Me-4PACz [18, 23, 28]; DC-PA [45]; Br-2EPT [30]; TPA [19]; MC-43 [19]; EADR03, EADR04 [29]; TPT-P6 [40]; MPA-BT, MPA-BT-CA [22]; MPA-Ph-CA [31]; MTPA-BA [32]. Moreover, the FAMACs-Brx represents the perovskite components Cs0.05(FA1-xMAx)0.95Pb(I1-xBrx)3, where x means the ratio of Br [31, 32]. Energy levels of ITO, FASnI3, FAPbI3, MAPbI3, FA0.8Cs0.2PbI3, PCBM and Ag were collected from the literature ([20]. John Wiley & Sons. [© 2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim]. Reproduced from [21], with permission from Springer Nature).

    Figure  5.  Modification of interfaces by SAM molecules. (a), (b) Schematic of MeO-2PACz layer deposited on ITO without/with ethanol washing ([54] John Wiley & Sons. [© 2021 The Authors. Advanced Energy Materials published by Wiley-VCH GmbH]). (c) Schematic illustration of the sandwich double-cantilever beam specimen and the magnification shows the idealized arrangement of I-SAM molecules between perovskite and SnO2 (From [56]. Reprinted with permission from AAAS). (d)-(f) Phase stability of perovskite adsorbents on different substrates was analyzed (From [23]. Reprinted with permission from AAAS).

    Figure  6.  Conformal coating and application in tandem solar cells. (a) J-V curves of a monolithic CIGSe/perovskite tandem solar cell, inset: cross-section scanning electron microscopy (SEM) image of tandem cell (Reproduced from [18] with permission from the Royal Society of Chemistry). (b) Structure of the textured monolithic perovskite/Si tandem device. (c) Champion J-V curves of a 1.03 cm2 tandem cell, inset: photo of the corresponding device. (b), (c) Reprinted from [25], Copyright (2021), with permission from Elsevier. (d) Front of the fabricated tandem module with an aperture area of 12.25 cm2. (e) J-V curves of stepwise accumulated tandem cell stripes and respective FF. (d), (e) Reproduced from [58], with permission from Springer Nature. CC BY 4.0.

  • [1] Min H, et al 2021 Perovskite solar cells with atomically coherent interlayers on SnO2 electrodes Nature 598 444-50 doi: 10.1038/s41586-021-03964-8
    [2] Kim M, et al 2022 Conformal quantum dot-SnO2 layers as electron transporters for efficient perovskite solar cells Science 375 302-6 doi: 10.1126/science.abh1885
    [3] Li X, Zhang W, Guo X, Lu C, Wei J, Fang J 2022 Constructing heterojunctions by surface sulfidation for efficient inverted perovskite solar cells Science 375 434-7 doi: 10.1126/science.abl5676
    [4] Jiang Q, et al 2022 Surface reaction for efficient and stable inverted perovskite solar cells Nature 611 278-83 doi: 10.1038/s41586-022-05268-x
    [5] Zhu Y, Hu M, Xu M, Zhang B, Huang F, Cheng Y-B, Lu J 2022 Bilayer metal halide perovskite for efficient and stable solar cells and modules Mater. Futures 1 042102 doi: 10.1088/2752-5724/ac9248
    [6] Yan W, Ye S, Li Y, Sun W, Rao H, Liu Z, Bian Z, Huang C 2016 Hole-transporting materials in inverted planar perovskite solar cells Adv. Energy Mater. 6 1600474 doi: 10.1002/aenm.201600474
    [7] Li L, Wu Y, Li E, Shen C, Zhang H, Xu X, Wu G, Cai M, Zhu W-H 2019 Self-assembled naphthalimide derivatives as an efficient and low-cost electron extraction layer for n-i-p perovskite solar cells Chem. Commun. 55 13239-42 doi: 10.1039/C9CC06345E
    [8] Shen C, Wu Y, Zhang H, Li E, Zhang W, Xu X, Wu W, Tian H, Zhu W 2019 Semilocked tetrathienylethene as a building block for holetransporting materials: toward efficient and stable perovskite solar cells Angew. Chem. Int. Ed. 58 3784-9 doi: 10.1002/anie.201811593
    [9] Guo H, Zhang H, Shen C, Zhang D, Liu S, Wu Y, Zhu W-H 2021 A coplanar -extended quinoxaline based hole-transporting material enabling over 21% efficiency for dopant-free perovskite solar cells Angew. Chem. Int. Ed. 60 2674-9 doi: 10.1002/anie.202013128
    [10] Ye F, Zhang D, Xu X, Guo H, Liu S, Zhang S, Wu Y, Zhu W-H 2021 Anchorable perylene diimides as chemically inert electron transport layer for efficient and stable perovskite solar cells with high reproducibility Sol. RRL 5 2000736 doi: 10.1002/solr.202000736
    [11] Wu S, et al 2020 Modulation of defects and interfaces through alkylammonium interlayer for efficient inverted perovskite solar cells Joule 4 1248-62 doi: 10.1016/j.joule.2020.04.001
    [12] Jeng J-Y, Chiang Y-F, Lee M-H, Peng S-R, Guo T-F, Chen P, Wen T-C 2013 CH3NH3PbI3 perovskite/fullerene planar-heterojunction hybrid solar cells Adv. Mater. 25 3727-32 doi: 10.1002/adma.201301327
    [13] Nie W, et al 2018 Critical role of interface and crystallinity on the performance and photostability of perovskite solar cell on nickel oxide Adv. Mater. 30 1703879 doi: 10.1002/adma.201703879
    [14] Stolterfoht M, et al 2018 Visualization and suppression of interfacial recombination for high-efficiency large-area pin perovskite solar cells Nat. Energy 3 847-54 doi: 10.1038/s41560-018-0219-8
    [15] Li Z, Li B, Wu X, Sheppard S A, Zhang S, Gao D, Long N J, Zhu Z 2022 Organometallic-functionalized interfaces for highly efficient inverted perovskite solar cells Science 373 416-20 doi: 10.1126/science.abm8566
    [16] Wang S, et al 2022 Critical role of removing impurities in nickel oxide on highefficiency and longterm stability of inverted perovskite solar cells Angew. Chem. Int. Ed. 61 e202116534 doi: 10.1002/anie.202116534
    [17] Magomedov A, Al-Ashouri A, Kasparaviius E, Strazdaite S, Niaura G, Jot M, Malinauskas T, Albrecht S, Getautis V 2018 Self-assembled hole transporting monolayer for highly efficient perovskite solar cells Adv. Energy Mater. 8 1801892 doi: 10.1002/aenm.201801892
    [18] Al-Ashouri A, et al 2019 Conformal monolayer contacts with lossless interfaces for perovskite single junction and monolithic tandem solar cells Energy Environ. Sci. 12 3356-69 doi: 10.1039/C9EE02268F
    [19] Yalcin E, Can M, Rodriguez-Seco C, Aktas E, Pudi R, Cambarau W, Demic S, Palomares E 2019 Semiconductor self-assembled monolayers as selective contacts for efficient PiN perovskite solar cells Energy Environ. Sci. 12 230-7 doi: 10.1039/C8EE01831F
    [20] Li E, Bi E, Wu Y, Zhang W, Li L, Chen H, Han L, Tian H, Zhu W 2020 Synergistic coassembly of highly wettable and uniform holeextraction monolayers for scalingup perovskite solar cells Adv. Funct. Mater. 30 1909509 doi: 10.1002/adfm.201909509
    [21] Isikgor F H, Zhumagali S, T, Merino L V, De B M, McCulloch I, De Wolf S 2023 Molecular engineering of contact interfaces for high-performance perovskite solar cells Nat. Rev. Mater. 8 89-108 doi: 10.1038/s41578-022-00503-3
    [22] Wang Y, et al 2020 Teaching an old anchoring group new tricks: enabling low-cost, eco-friendly hole-transporting materials for efficient and stable perovskite solar cells J. Am. Chem. Soc. 142 16632-43 doi: 10.1021/jacs.0c06373
    [23] Al-Ashouri A, et al 2020 Monolithic perovskite/silicon tandem solar cell with >29% efficiency by enhanced hole extraction Science 370 1300-9 doi: 10.1126/science.abd4016
    [24] Azmi R, et al 2022 Damp heat-stable perovskite solar cells with tailored-dimensionality 2D/3D heterojunctions Science 376 73-77 doi: 10.1126/science.abm5784
    [25] Liu J, et al 2021 28.2%-efficient, outdoor-stable perovskite/silicon tandem solar cell Joule 5 3169-86 doi: 10.1016/j.joule.2021.11.003
    [26] Datta K, Wang J, Zhang D, Zardetto V, Remmerswaal W H M, Weijtens C H L, Wienk M M, Janssen R A J 2021 Monolithic allperovskite tandem solar cells with minimized optical and energetic losses Adv. Mater. 34 2110053 doi: 10.1002/adma.202110053
    [27] Qin S, et al 2022 Constructing monolithic perovskite/organic tandem solar cell with efficiency of 22.0% via reduced opencircuit voltage loss and broadened absorption spectra Adv. Mater. 34 2108829 doi: 10.1002/adma.202108829
    [28] Jiang W, Li F, Li M, Qi F, Lin F R, Jen A KY 2022 -expanded carbazoles as hole-selective self-assembled monolayers for high-performance perovskite solar cells Angew. Chem. Int. Ed. 61 e202213560 doi: 10.1002/anie.202213560
    [29] Lin X, et al 2017 Dipole-field-assisted charge extraction in metal-perovskite-metal back-contact solar cells Nat. Commun. 8 613 doi: 10.1038/s41467-017-00588-3
    [30] Ullah A, et al 2021 Novel phenothiazinebased selfassembled monolayer as a hole selective contact for highly efficient and stable pin perovskite solar cells Adv. Energy Mater. 12 2103175 doi: 10.1002/aenm.202103175
    [31] Zhang S, Wu R, Mu C, Wang Y, Han L, Wu Y, Zhu W-H 2022 Conjugated self-assembled monolayer as stable hole-selective contact for inverted perovskite solar cells ACS Mater. Lett. 4 1976-83 doi: 10.1021/acsmaterialslett.2c00799
    [32] Guo H, Liu C, Hu H, Zhang S, Ji X, Cao X, Ning Z, Zhu W-H, Tian H, Wu Y 2022 Neglected acidity pitfall: boric acid-anchoring hole selective contact for perovskite solar cells Natl. Sci. Rev. doi: 10.1093/nsr/nwad057
    [33] Zhang H, Wu Y, Zhang W, Li E, Shen C, Jiang H, Tian H, Zhu W-H 2018 Low cost and stable quinoxaline-based hole-transporting materials with a D-A-D molecular configuration for efficient perovskite solar cells Chem. Sci. 9 5919-28 doi: 10.1039/C8SC00731D
    [34] Li E, et al 2019 Efficient p-i-n structured perovskite solar cells employing low-cost and highly reproducible oligomers as hole transporting materials Sci. China Chem. 62 767-74 doi: 10.1007/s11426-018-9452-9
    [35] Xu X, Ji X, Chen R, Ye F, Liu S, Zhang S, Chen W, Wu Y, Zhu W-H 2022 Improving contact and passivation of buried interface for high-efficiency and large-area inverted perovskite solar cells Adv. Funct. Mater. 32 2109968 doi: 10.1002/adfm.202109968
    [36] Chen R, et al 2022 Robust hole transport material with interface anchors enhances the efficiency and stability of inverted formamidinium-cesium perovskite solar cells with a certified efficiency of 22.3% Energy Environ. Sci. 15 2567-80 doi: 10.1039/D2EE00433J
    [37] Zhang M, Guo X, Ma W, Ade H, Hou J 2014 A polythiophene derivative with superior properties for practical application in polymer solar cells Adv. Mater. 26 5880-5 doi: 10.1002/adma.201401494
    [38] Stolterfoht M, Wolff C M, Amir Y, Paulke A, Perdign-Toro L, Caprioglio P, Neher D 2017 Approaching the fill factor Shockley-Queisser limit in stable, dopant-free triple cation perovskite solar cells Energy Environ. Sci. 10 1530-9 doi: 10.1039/C7EE00899F
    [39] Gharibzadeh S, et al 2021 Two birds with one stone: dual grain-boundary and interface passivation enables >22% efficient inverted methylammonium-free perovskite solar cells Energy Environ. Sci. 14 5875-93 doi: 10.1039/D1EE01508G
    [40] Li E, Liu C, Lin H, Xu X, Liu S, Zhang S, Yu M, Cao X, Wu Y, Zhu W 2021 Bonding strength regulates anchoringbased selfassembly monolayers for efficient and stable perovskite solar cells Adv. Funct. Mater. 31 2103847 doi: 10.1002/adfm.202103847
    [41] Peng J, et al 2021 Nanoscale localized contacts for high fill factors in polymer-passivated perovskite solar cells Science 371 390-5 doi: 10.1126/science.abb8687
    [42] Niu T, et al 2021 D-A--A-D-type dopant-free hole transport material for low-cost, efficient, and stable perovskite solar cells Joule 5 249-69 doi: 10.1016/j.joule.2020.12.003
    [43] Jeong J, et al 2021 Pseudo-halide anion engineering for -FAPbI3 perovskite solar cells Nature 592 381-5 doi: 10.1038/s41586-021-03406-5
    [44] Peng J, et al 2022 Centimetre-scale perovskite solar cells with fill factors of more than 86% Nature 601 573-8 doi: 10.1038/s41586-021-04216-5
    [45] Deng X, Qi F, Li F, Wu S, Lin F R, Zhang Z, Guan Z, Yang Z, Lee C, Jen A K Y 2022 Holeselective contact for highperformance inverted perovskite solar cells with optimized recombination loss and longterm stability Angew. Chem. Int. Ed. 61 e202203088 doi: 10.1002/anie.202203088
    [46] Levine I, et al 2021 Charge transfer rates and electron trapping at buried interfaces of perovskite solar cells Joule 5 2915-33 doi: 10.1016/j.joule.2021.07.016
    [47] Stolterfoht M, et al 2019 The impact of energy alignment and interfacial recombination on the internal and external open-circuit voltage of perovskite solar cells Energy Environ. Sci. 12 2778-88 doi: 10.1039/C9EE02020A
    [48] Canil L, et al 2021 Tuning halide perovskite energy levels Energy Environ. Sci. 14 1429-38 doi: 10.1039/D0EE02216K
    [49] Xiang Y, Guo H, Cai Z, Jiang C, Zhu C, Wu Y, Zhu W-H, Chen T 2022 Dopant-free hole-transporting materials for stable Sb2(S,Se)3 solar cells Chem. Commun. 58 4787-90 doi: 10.1039/D1CC07041J
    [50] Guo H, Zhang H, Liu S, Zhang D, Wu Y, Zhu W-H 2022 Efficient and stable methylammonium-free tin-lead perovskite solar cells with hexaazatrinaphthylene-based hole-transporting materials ACS Appl. Mater. Interfaces 14 6852-8 doi: 10.1021/acsami.1c22659
    [51] Lange I, et al 2014 Tuning the work function of polar zinc oxide surfaces using modified phosphonic acid selfassembled monolayers Adv. Funct. Mater. 24 7014-24 doi: 10.1002/adfm.201401493
    [52] Ou Q-D, Li C, Wang Q-K, Li Y-Q, Tang J-X 2017 Recent advances in energetics of metal halide perovskite interfaces Adv. Mater. Interfaces 4 1600694 doi: 10.1002/admi.201600694
    [53] Lin X, Raga S R, Chesman A S R, Ou Q, Jiang L, Bao Q, Lu J, Cheng Y-B, Bach U 2020 Honeycomb-shaped charge collecting electrodes for dipole-assisted back-contact perovskite solar cells Nano Energy 67 104223 doi: 10.1016/j.nanoen.2019.104223
    [54] Ro M, et al 2021 Coevaporated formamidinium lead iodide based perovskites with 1000 h constant stability for fully textured monolithic perovskite/silicon tandem solar cells Adv. Energy Mater. 11 2101460 doi: 10.1002/aenm.202101460
    [55] Zhang D, Zhang H, Guo H, Ye F, Liu S, Wu Y 2022 Stable -FAPbI3 in inverted perovskite solar cells with efficiency exceeding 22% via a self-passivation strategy Adv. Funct. Mater. 32 2200174 doi: 10.1002/adfm.202200174
    [56] Dai Z, Yadavalli S K, Chen M, Abbaspourtamijani A, Qi Y, Padture N P 2021 Interfacial toughening with self-assembled monolayers enhances perovskite solar cell reliability Science 372 618-22 doi: 10.1126/science.abf5602
    [57] Liu J, et al 2022 Efficient and stable perovskite-silicon tandem solar cells through contact displacement by MgFx Science 377 302-6 doi: 10.1126/science.abn8910
    [58] Abdollahi Nejand B, et al 2022 Scalable two-terminal all-perovskite tandem solar modules with a 19.1% efficiency Nat. Energy 7 620-30 doi: 10.1038/s41560-022-01059-w
    [59] Li L, et al 2022 Flexible all-perovskite tandem solar cells approaching 25% efficiency with molecule-bridged hole-selective contact Nat. Energy 7 708-17 doi: 10.1038/s41560-022-01045-2
    [60] Farag A, et al 2023 Evaporated selfassembled monolayer hole transport layers: lossless interfaces in pin perovskite solar cells Adv. Energy Mater. 13 2203982 doi: 10.1002/aenm.202203982
    [61] Aktas E, et al 2021 Understanding the perovskite/self-assembled selective contact interface for ultra-stable and highly efficient p-i-n perovskite solar cells Energy Environ. Sci. 14 3976-85 doi: 10.1039/D0EE03807E
  • 加载中
图(7)
计量
  • 文章访问数:  2079
  • HTML全文浏览量:  961
  • PDF下载量:  511
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-12-30
  • 录用日期:  2023-02-09
  • 修回日期:  2023-02-07
  • 刊出日期:  2023-03-08

目录

    /

    返回文章
    返回