留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Symmetry-enforced two-dimensional Dirac node-line semimetals

Peng-Jie Guo Chen Peng Zheng-Xin Liu Kai Liu Zhong-Yi Lu

Peng-Jie Guo, Chen Peng, Zheng-Xin Liu, Kai Liu, Zhong-Yi Lu. Symmetry-enforced two-dimensional Dirac node-line semimetals[J]. Materials Futures, 2023, 2(1): 011001. doi: 10.1088/2752-5724/aca816
Citation: Peng-Jie Guo, Chen Peng, Zheng-Xin Liu, Kai Liu, Zhong-Yi Lu. Symmetry-enforced two-dimensional Dirac node-line semimetals[J]. Materials Futures, 2023, 2(1): 011001. doi: 10.1088/2752-5724/aca816
Letter •
OPEN ACCESS

Symmetry-enforced two-dimensional Dirac node-line semimetals

doi: 10.1088/2752-5724/aca816
More Information
  • Figure  1.  (a) The BZ of square lattice. Nonsymmorphic symmetry protects the Dirac line without (b) and with (c). The red dots represent high-symmetry points. The NSOC represents no spin-orbital coupling.

    Figure  2.  (a) The square lattice with p4/mbm space group symmetry. The black and blue lines indicate the nearest hopping t and second nearest hopping t2. The spin-orbital coupling term iλ, for one spin flavor, is shown by the red arrows. (b) The band structure of lattice model with parameter λ=t2=t along the high-symmetry directions. Lattice model and band structures: (c)-(d) breaking T and I with an out-of plane antiferromagnetic order indicated by the green arrow; (e)-(f) breaking I symmetry with the chemical potential ±μ according to the green/red sites and the spin-orbital coupling term iλ2 indicated by the purple arrows.

    Figure  3.  (a) and (b) are the crystal structure of YB4C4 viewed along [001] and [100] directions, respectively. The red, blue and green balls represent Y, B and C atoms. (c) Phonon spectrum of monolayer YB4C4 along the high-symmetry directions.

    Figure  4.  The electronic band structures of monolayer YB4C4 along the high-symmetry direction (a) without and (b) with SOC. The both +’ and -’ represent eigenvalue of Mz. (c) The three-dimensional electronic band structure. The NSOC represents no spin-orbital coupling.

  • [1] Weng H, Dai X, Fang Z 2016 Topological semimetals predicted from first-principles calculations J. Phys.: Condens. Matter 28 303001 doi: 10.1088/0953-8984/28/30/303001
    [2] Soluyanov A A, Gresch D, Wang Z, Wu Q, Troyer M, Dai X, Bernevig B A 2015 Type-II Weyl semimetals Nature 527 495 doi: 10.1038/nature15768
    [3] Huang H, Zhou S, Duan W 2016 Type-II Dirac fermions in the PtSe2 class of transition metal dichalcogenides Phys. Rev. B 94 121117 doi: 10.1103/PhysRevB.94.121117
    [4] Guo P-J, Yang H-C, Liu K, Lu Z-Y 2017 Type-II Dirac semimetals in the YPd2Sn class Phys. Rev. B 95 155112 doi: 10.1103/PhysRevB.95.155112
    [5] Wieder B J, Kim Y, Rappe A M, Kane C L 2016 Double Dirac semimetals in three dimensions Phys. Rev. Lett. 116 186402 doi: 10.1103/PhysRevLett.116.186402
    [6] Bradlyn B, Cano J, Wang Z, Vergniory M G, Felser C, Cava R J, Bernevig B A 2016 Beyond Dirac and Weyl fermions: unconventional quasiparticles in conventional crystals Science 353 aaf5037 doi: 10.1126/science.aaf5037
    [7] Weng H, Fang C, Fang Z, Dai X 2016 Topological semimetals with triply degenerate nodal points in θ-phase tantalum nitride Phys. Rev. B 93 241202 doi: 10.1103/PhysRevB.93.241202
    [8] Guo P-J, Yang H-C, Liu K, Lu Z-Y 2018 Triply degenerate nodal points in RRh6Ge4 (R =Y, La, Lu) Phys. Rev. B 98 045134 doi: 10.1103/PhysRevB.98.045134
    [9] Fang C, Chen Y, Kee H-Y, Fu L 2015 Topological nodal line semimetals with and without spin-orbital coupling Phys. Rev. B 92 081201 doi: 10.1103/PhysRevB.92.081201
    [10] Weng H, Liang Y, Xu Q, Yu R, Fang Z, Dai X, Kawazoe Y 2015 Topological node-line semimetal in three-dimensional graphene networks Phys. Rev. B 92 045108 doi: 10.1103/PhysRevB.92.045108
    [11] Zhang X, Yu Z-M, Sheng X-L, Yang H Y, Yang S A 2017 Coexistence of four-band nodal rings and triply degenerate nodal points in centrosymmetric metal diborides Phys. Rev. B 95 235116 doi: 10.1103/PhysRevB.95.235116
    [12] Yu R, Weng H, Fang Z, Dai X, Hu X 2015 Topological node-line semimetal and Dirac semimetal state in antiperovskite Cu3PdN Phys. Rev. Lett. 115 036807 doi: 10.1103/PhysRevLett.115.036807
    [13] Li S, Liu Y, Wang S-S, Yu Z-M, Guan S, Sheng X-L, Yao Y, Yang S A 2018 Nonsymmorphic-symmetry-protected hourglass Dirac loop, nodal line and Dirac point in bulk and monolayer X3SiTe6X = Ta, Nb) Phys. Rev. B 97 045131 doi: 10.1103/PhysRevB.97.045131
    [14] Gao Y, Guo P-J, Liu K, Lu Z-Y 2020 RRuB2(R=Y,Lu), topological superconductor candidates with hourglass-type Dirac ring Phys. Rev. B 102 115137 doi: 10.1103/PhysRevB.102.115137
    [15] Shao D, Fang C 2020 Filling-enforced Dirac nodal loops in nonmagnetic systems and their evolutions under various perturbations Phys. Rev. B 102 165135 doi: 10.1103/PhysRevB.102.165135
    [16] Yang J, Fang C, Liu Z-X 2021 Symmetry-protected nodal points and nodal lines in magnetic materials Phys. Rev. B 103 245141 doi: 10.1103/PhysRevB.103.245141
    [17] Cui X, Li Y, Guo D, Guo P, Lou C, Mei G, Lin C, Tan S, Zhengxin L, Liu K, Lu Z, Petek H, Cao L, Ji W, Feng M 2020 Two-dimensional Dirac nodal-line semimetal against strong spin-orbit coupling in real materials 2012 15220(arXiv:2012.15220)
    [18] Guo D, Guo P, Tan S, Feng M, Cao L, Liu Z-X, Liu K, Lu Z, Ji W 2022 Two-dimensional Dirac-line semimetals resistant to strong spin-orbit coupling Sci. Bull. 67 1954 doi: 10.1016/j.scib.2022.09.008
    [19] For details see the supplemental material
    [20] Guo P-J, Wei Y-W, Liu K, Liu Z-X, Lu Z-Y 2021 Eightfold degenerate fermions in two dimensions Phys. Rev. Lett. 127 176401 doi: 10.1103/PhysRevLett.127.176401
    [21] Jin Y J, Zheng B B, Xiao X L, Chen Z J, Xu Y, Xu H 2020 Two-dimensional Dirac semimetals without inversion symmetry Phys. Rev. Lett. 125 116402 doi: 10.1103/PhysRevLett.125.116402
    [22] Reckeweg O, DiSalvo F J 2014 Different structural models of YB2C2GdB2C2 on the basis of single-crystal x-ray data Z. Nat.forsch. B 69 289 doi: 10.5560/znb.2014-3333
    [23] Zhou J, et al 2019 2dmatpedia, an open computational database of two-dimensional materials from top-down and bottom-up approaches Sci. Data 6 86 doi: 10.1038/s41597-019-0097-3
    [24] Young S M, Kane C L 2015 Dirac semimetals in two dimensions Phys. Rev. Lett. 115 126803 doi: 10.1103/PhysRevLett.115.126803
  • mfac44absupp1.pdf
  • 加载中
图(5)
计量
  • 文章访问数:  893
  • HTML全文浏览量:  390
  • PDF下载量:  281
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-11-18
  • 录用日期:  2022-12-02
  • 修回日期:  2022-12-01
  • 刊出日期:  2022-12-28

目录

    /

    返回文章
    返回