Tailoring the oxygen concentration in Ge-Sb-O alloys to enable femtojoule-level phase-change memory operations
doi: 10.1088/2752-5724/aca07b
-
Abstract: Chalcogenide phase-change materials (PCMs), in particular, the flagship Ge2Sb2Te5 (GST), are leading candidates for advanced memory applications. Yet, GST in conventional devices suffer from high power consumption, because the RESET operation requires melting of the crystalline GST phase. Recently, we have developed a conductive-bridge scheme for low-power phase-change application utilizing a self-decomposed Ge-Sb-O (GSO) alloy. In this work, we present thorough structural and electrical characterizations of GSO thin films by tailoring the concentration of oxygen in the phase-separating GSO system. We elucidate a two-step process in the as-deposited amorphous film upon the introduction of oxygen: with increasing oxygen doping level, germanium oxides form first, followed by antimony oxides. To enable the conductive-bridge switching mode for femtojoule-level RESET energy, the oxygen content should be sufficiently low to keep the antimony-rich domains easily crystallized under external electrical stimulus. Our work serves as a useful example to exploit alloy decomposition that develops heterogeneous PCMs, minimizing the active switching volume for low-power electronics.
-
Key words:
- phase-change memory /
- amorphous phase /
- low-power /
- conductive-bridge /
- decomposition
-
Figure 1. Tailoring the degree of oxygen incorporation in Ge-Sb-O alloys. (a) The sketch of a potential conductive path inside the heterogeneous network consisting of Sb-rich crystalline nanodomains and Sb-poor glass matrix. (b) Schematic depicting the sputtering of a Ge15Sb85 alloy target with varied O2 flux under a protective atmosphere (Argon), resulting in oxygen incorporation to various levels.
Figure 2. Electrical and structural characterizations of GSO thin films. (a) The resistance-temperature (R-T) curves of Ge15Sb85 and four GSO thin films upon heating. (b) The room temperature XRD pattern measurements of the five annealed thin films obtained after R-T measurements done at 300 C. (c) The Raman spectra of the annealed thin films in the range of 100 and 250 cm-1. The fitted Eg and A1g modes are marked in green and blue, respectively. (d) The corresponding peak positions and FWHM values.
Figure 4. Electrical performance of the GSO devices. (a) Schematic of the experimental setup for electrical testing of GSO devices in a probe station. (b) and (c) The current-voltage (I-V) characteristics of the GSO devices with heavy and light oxygen doping by DC sweeps. (d) The resistance-voltage (R-V) characteristics of the 2 sccm GSO device under RESET operation. The applied pulse waveform is shown in the inset.
-
[1] Wong H-S P, Salahuddin S 2015 Memory leads the way to better computing Nat. Nanotechnol. 10 191-4 doi: 10.1038/nnano.2015.29 [2] Zhang Z, Wang Z, Shi T, Bi C, Rao F, Cai Y, Liu Q, Wu H, Zhou P 2020 Memory materials and devices: from concept to application InfoMat. 2 261-90 doi: 10.1002/inf2.12077 [3] Wang Z, Wu H, Burr G W, Hwang C S, Wang K L, Xia Q, Yang J J 2020 Resistive switching materials for information processing Nat. Rev. Mater. 5 173-95 doi: 10.1038/s41578-019-0159-3 [4] Zidan M A, Strachan J P, Lu W D 2018 The future of electronics based on memristive systems Nat. Electron. 1 22-29 doi: 10.1038/s41928-017-0006-8 [5] Sebastian A, Le Gallo M, Khaddam-Aljameh R, Eleftheriou E 2020 Memory devices and applications for in-memory computing Nat. Nanotechnol. 15 529-44 doi: 10.1038/s41565-020-0655-z [6] Zhang Y, et al 2020 Brain-inspired computing with memristors: challenges in devices, circuits, and systems Appl. Phys. Rev. 7 011308 doi: 10.1063/1.5124027 [7] Wuttig M, Yamada N 2007 Phase-change materials for rewriteable data storage Nat. Mater. 6 824-32 doi: 10.1038/nmat2009 [8] Zhang W, Mazzarello R, Wuttig M, Ma E 2019 Designing crystallization in phase-change materials for universal memory and neuro-inspired computing Nat. Rev. Mater. 4 150-68 doi: 10.1038/s41578-018-0076-x [9] Sebastian A, Le Gallo M, Burr G W, Kim S, BrightSky M, Eleftheriou E 2018 Tutorial: brain-inspired computing using phase-change memory devices J. Appl. Phys. 124 111101 doi: 10.1063/1.5042413 [10] Wong H-S P, Raoux S, Kim S, Liang J, Reifenberg J P, Rajendran B, Asheghi M, Goodson K E 2010 Phase change memory Proc. IEEE 98 2201 doi: 10.1109/JPROC.2010.2070050 [11] Song Z, Song S, Zhu M, Wu L, Ren K, Song W, Feng S 2018 From octahedral structure motif to sub-nanosecond phase transitions in phase change materials for data storage Sci. China Inf. Sci. 61 081302 doi: 10.1007/s11432-018-9404-2 [12] Xu M, Mai X, Lin J, Zhang W, Li Y, He Y, Tong H, Hou X, Zhou P, Miao X 2020 Recent advances on neuromorphic devices based on chalcogenide phase-change materials Adv. Funct. Mater. 30 2003419 doi: 10.1002/adfm.202003419 [13] Xu M, Xu M, Miao X 2022 Deep machine learning unravels the structural origin of midgap states in chalcogenide glass for highdensity memory integration InfoMat. 4 e12315 doi: 10.1002/inf2.12315 [14] Pan F, Gao S, Chen C, Song C, Zeng F 2014 Recent progress in resistive random access memories: materials, switching mechanisms, and performance Mater. Sci. Eng. R 83 1-59 doi: 10.1016/j.mser.2014.06.002 [15] Scott J F, de Araujo C A P 1989 Ferroelectric memories Science 246 1400-5 doi: 10.1126/science.246.4936.1400 [16] Kent A D, Worledge D C 2015 A new spin on magnetic memories Nat Nanotechnol. 10 187-91 doi: 10.1038/nnano.2015.24 [17] Liu L, Sun Y, Huang X, Liu C, Tang Z, Zeng S, Zhang D W, Deng S, Zhou P 2022 Ultrafast flash memory with large self-rectifying ratio based on atomically thin MoS2-channel transistor Mater. Futures 1 025301 doi: 10.1088/2752-5724/ac7067 [18] Ouyang J, Chu C-W, Szmanda C R, Ma L, Yang Y 2004 Programmable polymer thin film and non-volatile memory device Nat. Mater. 3 918-22 doi: 10.1038/nmat1269 [19] Yoon K J, Kim Y, Hwang C S 2019 What will come after VNANDvertical resistive switching memory? Adv. Electron. Mater. 5 1800914 doi: 10.1002/aelm.201800914 [20] Ovshinsky S 1968 Reversible electrical switching phenomena in disordered structures Phys. Rev. Lett. 21 1450-3 doi: 10.1103/PhysRevLett.21.1450 [21] Redaelli A, Pirovano A, Pellizzer F, Lacaita A L, Ielmini D, Bez R 2004 Electronic switching effect and phase change transition in chalcogenide materials IEEE Electron. Dev. Lett. 25 684 doi: 10.1109/LED.2004.836032 [22] Siegrist T, Jost P, Volker H, Woda M, Merkelbach P, Schlockermann C, Wuttig M 2011 Disorder-induced localization in crystalline phase-change materials Nat. Mater. 10 202-8 doi: 10.1038/nmat2934 [23] Zhang W, Thiess A, Zalden P, Zeller R, Dederichs P H, Raty J-Y, Wuttig M, Blgel S, Mazzarello R 2012 Role of vacancies in metal-insulator transitions of crystalline phase-change materials Nat. Mater. 11 952-6 doi: 10.1038/nmat3456 [24] Yamada N, Ohno E, Nishiuchi K, Akahira N, Takao M 1991 Rapid-phase transitions of GeTe-Sb2Te3 pseudobinary amorphous thin films for an optical disk memory J. Appl. Phys. 69 2849-56 doi: 10.1063/1.348620 [25] Shportko K, Kremers S, Woda M, Lencer D, Robertson J, Wuttig M 2008 Resonant bonding in crystalline phase-change materials Nat. Mater. 7 653-8 doi: 10.1038/nmat2226 [26] Huang B, Robertson J 2010 Bonding origin of optical contrast in phase-change memory materials Phys. Rev. B 81 081204(R) doi: 10.1103/PhysRevB.81.081204 [27] Hosseini P, Wright C D, Bhaskaran H 2014 An optoelectronic framework enabled by low-dimensional phase-change films Nature 511 206-11 doi: 10.1038/nature13487 [28] Feldmann J, et al 2021 Parallel convolutional processing using an integrated photonic tensor core Nature 589 52-58 doi: 10.1038/s41586-020-03070-1 [29] Zhang W, Mazzarello R, Ma E 2019 Phase-change materials in electronics and photonics MRS Bull. 44 686-90 doi: 10.1557/mrs.2019.201 [30] Raty J Y, Schumacher M, Golub P, Deringer V L, Gatti C, Wuttig M 2019 A quantum-mechanical map for bonding and properties in solids Adv. Mater. 31 1806280 doi: 10.1002/adma.201806280 [31] Zhang W, Ma E 2020 Unveiling the structural origin to control resistance drift in phase-change memory materials Mater. Today 41 156-76 doi: 10.1016/j.mattod.2020.07.016 [32] Lee T H, Elliott S R 2022 Hypervalency in amorphous chalcogenides Nat. Commun. 13 1458 doi: 10.1038/s41467-022-29054-5 [33] Fong S W, Neumann C M, Wong H-S P 2017 Phase-change memorytowards a storage-class memory IEEE Trans. Electron. Dev. 64 4374-85 doi: 10.1109/TED.2017.2746342 [34] Xiong F, Liao A D, Estrada D, Pop E 2011 Low-power switching of phase-change materials with carbon nanotube electrodes Science 332 568-70 doi: 10.1126/science.1201938 [35] Xiong F, Bae M-H, Dai Y, Liao A D, Behnam A, Carrion E A, Hong S, Ielmini D, Pop E 2013 Self-aligned nanotube-nanowire phase change memory Nano Lett. 13 464-9 doi: 10.1021/nl3038097 [36] Wang X, et al 2022 Minimizing the programming power of phase change memory by using graphene nanoribbon edge-contact Adv. Sci. 9 e2202222 doi: 10.1002/advs.202202222 [37] Rao F, et al 2017 Reducing the stochasticity of crystal nucleation to enable subnanosecond memory writing Science 358 1423-7 doi: 10.1126/science.aao3212 [38] Akola J, Jones R O 2017 Speeding up crystallization Science 358 1386 doi: 10.1126/science.aaq0476 [39] Zewdie G M, Zhou Y-X, Sun L, Rao F, Deringer V L, Mazzarello R, Zhang W 2019 Chemical design principles for cache-type Sc-Sb-Te phase-change memory materials Chem. Mater. 31 4008-15 doi: 10.1021/acs.chemmater.9b00510 [40] Ding K, Chen B, Chen Y, Wang J, Shen X, Rao F 2020 Recipe for ultrafast and persistent phase-change memory materials NPG Asia Mater. 12 63 doi: 10.1038/s41427-020-00246-z [41] Chen B, et al 2019 Kinetics features conducive to cache-type nonvolatile phase-change memory Chem. Mater. 31 8794-800 doi: 10.1021/acs.chemmater.9b02598 [42] Wang X-P, Li X-B, Chen N-K, Bang J, Nelson R, Ertural C, Dronskowski R, Sun H-B, Zhang S 2020 Time-dependent density-functional theory molecular-dynamics study on amorphization of Sc-Sb-Te alloy under optical excitation NPJ Comput. Mater. 6 31 doi: 10.1038/s41524-020-0303-z [43] Qiao C, Guo Y R, Wang S Y, Xu M, Miao X, Wang C Z, Ho K M 2019 Local structure origin of ultrafast crystallization driven by high-fidelity octahedral clusters in amorphous Sc0.2Sb2Te3 Appl. Phys. Lett. 114 071901 doi: 10.1063/1.5085502 [44] Hu S, Xiao J, Zhou J, Elliott S R, Sun Z 2020 Synergy effect of co-doping Sc and Y in Sb2Te3 for phase-change memory J. Mater. Chem. C 8 6672-9 doi: 10.1039/D0TC01693D [45] Hu S, Liu B, Li Z, Zhou J, Sun Z 2019 Identifying optimal dopants for Sb2Te3 phase-change material by high-throughput ab initio calculations with experiments Comput. Mater. Sci. 165 51-58 doi: 10.1016/j.commatsci.2019.04.028 [46] Li Z, Si C, Zhou J, Xu H, Sun Z 2016 Yttrium-Doped Sb2Te3: a promising material for phase-change Memory ACS Appl. Mater. Interfaces 8 26126-34 doi: 10.1021/acsami.6b08700 [47] Li Z, Miao N, Zhou J, Xu H, Sun Z 2017 Reduction of thermal conductivity in YxSb2-xTe3 for phase change memory J. Appl. Phys. 122 195107 doi: 10.1063/1.5004495 [48] Liu B, Liu W, Li Z, Li K, Wu L, Zhou J, Song Z, Sun Z 2020 Y-Doped Sb2Te3 phase-change materials: toward a universal memory ACS Appl. Mater. Interfaces 12 20672-9 doi: 10.1021/acsami.0c03027 [49] Liu B, Li K, Liu W, Zhou J, Wu L, Song Z, Elliott S R, Sun Z 2021 Multi-level phase-change memory with ultralow power consumption and resistance drift Sci. Bull. 66 2217 doi: 10.1016/j.scib.2021.07.018 [50] Zhou Y, Sun L, Zewdie G M, Mazzarello R, Deringer V L, Ma E, Zhang W 2020 Bonding similarities and differences between Y-Sb-Te and Sc-Sb-Te phase-change memory materials J. Mater. Chem. C 8 3646-54 doi: 10.1039/D0TC00096E [51] Zhu M, et al 2014 One order of magnitude faster phase change at reduced power in Ti-Sb-Te Nat. Commun. 5 4086 doi: 10.1038/ncomms5086 [52] Xia M, Zhu M, Wang Y, Song Z, Rao F, Wu L, Cheng Y, Song S 2015 Ti-Sb-Te alloy: a candidate for fast and long-life phase-change memory ACS Appl. Mater. Interfaces 7 7627-34 doi: 10.1021/acsami.5b00083 [53] Zhu M, Xia M, Song Z, Cheng Y, Wu L, Rao F, Song S, Wang M, Lu Y, Feng S 2015 Understanding the crystallization behavior of as-deposited Ti-Sb-Te alloys through real-time radial distribution functions Nanoscale 7 9935-44 doi: 10.1039/C4NR07408D [54] Rao F, Song Z, Cheng Y, Liu X, Xia M, Li W, Ding K, Feng X, Zhu M, Feng S 2015 Direct observation of titanium-centered octahedra in titanium-antimony-tellurium phase-change material Nat. Commun. 6 10040 doi: 10.1038/ncomms10040 [55] Zheng Y, Qi R, Cheng Y, Song Z 2019 The crystallization mechanism of zirconium-doped Sb2Te3 material for phase-change random-access memory application J. Mater. Sci., Mater. Electron. 31 5861-5 doi: 10.1007/s10854-019-02668-0 [56] Xue Y, Cheng Y, Zheng Y, Yan S, Song W, Lv S, Song S, Song Z 2020 Phase change memory based on Ta-Sb-Te alloytowards a universal memory Mater. Today Phys. 15 100266 doi: 10.1016/j.mtphys.2020.100266 [57] Zhao J, Song W X, Xin T, Song Z 2021 Rules of hierarchical melt and coordinate bond to design crystallization in doped phase change materials Nat. Commun. 12 6473 doi: 10.1038/s41467-021-26696-9 [58] Chong T C, Shi L P, Zhao R, Tan P K, Li J M, Lee H K, Miao X S, Du A Y, Tung C H 2006 Phase change random access memory cell with superlattice-like structure Appl. Phys. Lett. 88 122114 doi: 10.1063/1.2181191 [59] Simpson R E, Fons P, Kolobov A V, Fukaya T, Krbal M, Yagi T, Tominaga J 2011 Interfacial phase-change memory Nat. Nanotechnol. 6 501-5 doi: 10.1038/nnano.2011.96 [60] Khan A I, Daus A, Islam R, Neilson K M, Lee H R, Wong H-S P, Pop E 2021 Ultralow-switching current density multilevel phase-change memory on a flexible substrate Science 373 1243-7 doi: 10.1126/science.abj1261 [61] Li X-B, Chen N-K, Wang X-P, Sun H-B 2018 Phase-change superlattice materials toward low power consumption and high density data storage: microscopic picture, working principles, and optimization Adv. Funct. Mater. 28 1803380 doi: 10.1002/adfm.201803380 [62] Lotnyk A, Behrens M, Rauschenbach B 2019 Phase change thin films for non-volatile memory applications Nanoscale Adv. 1 3836-57 doi: 10.1039/C9NA00366E [63] Momand J, Wang R, Boschker J E, Verheijen M A, Calarco R, Kooi B J 2015 Interface formation of two- and three-dimensionally bonded materials in the case of GeTe-Sb2Te3 superlattices Nanoscale 7 19136-43 doi: 10.1039/C5NR04530D [64] Boniardi M, Boschker J E, Momand J, Kooi B J, Redaelli A, Calarco R 2019 Evidence for thermal-based transition in Super-lattice (SL) phase change memory Phys. Status Solidi RRL 13 1800634 doi: 10.1002/pssr.201800634 [65] Trbnec D, Castellani N, Bernier N, Sever V, Kowalczyk P, Bernard M, Cyrille M-C, Tran N-P, Hippert F, No P 2021 Improvement of phasechange memory performance by means of GeTe/Sb2Te3 superlattices Phys. Status Solidi RRL 15 2000538 doi: 10.1002/pssr.202000538 [66] Ding K, Wang J, Zhou Y, Tian H, Lu L, Mazzarello R, Jia C, Zhang W, Rao F, Ma E 2019 Phase-change heterostructure enables ultralow noise and drift for memory operation Science 366 210-5 doi: 10.1126/science.aay0291 [67] Shen J, Lv S, Chen X, Li T, Zhang S, Song Z, Zhu M 2019 Thermal barrier phase change memory ACS Appl. Mater. Interfaces 11 5336-43 doi: 10.1021/acsami.8b18473 [68] Gholipour B 2019 The promise of phase-change materials Science 366 186-7 doi: 10.1126/science.aaz1129 [69] Wang X, Wu Y, Zhou Y, Deringer V L, Zhang W 2021 Bonding nature and optical contrast of TiTe2/Sb2Te3 phase-change heterostructure Mater. Sci. Semicond. Process. 135 106080 doi: 10.1016/j.mssp.2021.106080 [70] Wang X, et al 2022 Unusual phase transitions in two-dimensional telluride heterostructures Mater. Today 54 52-62 doi: 10.1016/j.mattod.2022.02.009 [71] Ding K, Li T, Chen B, Rao F 2021 Reliable 2D phase transitions for low-noise and long-life memory programming Front. Nanotechnol. 3 649560 doi: 10.3389/fnano.2021.649560 [72] Hatayama S, Yamamoto T, Mori S, Song Y-H, Sutou Y 2022 Understanding the origin of low-energy operation characteristics for Cr2Ge2Te6 phase-change material: enhancement of thermal efficiency in the high-scaled memory device ACS Appl. Mater. Interfaces 14 44604-13 doi: 10.1021/acsami.2c13189 [73] Yang Z, et al 2022 Designing conductive-bridge phase-change memory to enable ultralow programming power Adv. Sci. 9 2103478 doi: 10.1002/advs.202103478 [74] Morilla M C, Afonso C N, Petford-Long A K, Doole R C 1997 The role of oxygen content in the crystallization kinetics of (Sb0.9Ge0.10)Oxfilms Phil. Mag. A 75 791-802 doi: 10.1080/01418619708207202 [75] Solis J, Morilla M C, Afonso C N 1998 Laser-induced structural relaxation and crystallization phenomena in the picosecond time scale in GeSbO thin films J. Appl. Phys. 84 5543-6 doi: 10.1063/1.368855 [76] Wu W, He Z, Chen S, Zhai J, Song S, Song Z 2017 Investigation on the crystallization properties and structure of oxygen-doped Ge8Sb92 phase change thin films J. Phys. D: Appl. Phys. 50 095602 doi: 10.1088/1361-6463/aa5611 [77] Solis J, Afonso C N, Trull J F, Morilla M C 1994 Fast crystallization GeSb alloys for optical data storage J. Appl. Phys. 75 7788-94 doi: 10.1063/1.356584 [78] van Pieterson L, Lankhorst M H R, van Schijndel M, Kuiper A E T, Roosen J H J 2005 Phase-change recording materials with a growth-dominated crystallization mechanism: a materials overview J. Appl. Phys. 97 083520 doi: 10.1063/1.1868860 [79] Zalden P, Bichara C, van Eijk J, Braun C, Bensch W, Wuttig M 2010 Atomic structure of amorphous and crystallized Ge15Sb85 J. Appl. Phys. 107 104312 doi: 10.1063/1.3380667 [80] Krusin-Elbaum L, Shakhvorostov D, Cabral C, Raoux S, Jordan-Sweet J L 2010 Irreversible altering of crystalline phase of phase-change Ge-Sb thin films Appl. Phys. Lett. 96 121906 doi: 10.1063/1.3361656 [81] Mazzarello R, Caravati S, Angioletti-Uberti S, Bernasconi M, Parrinello M 2010 Signature of tetrahedral Ge in the Raman spectrum of amorphous phase-change materials Phys. Rev. Lett. 104 085503 doi: 10.1103/PhysRevLett.104.085503 [82] Andrikopoulos K S, Yannopoulos S N, Voyiatzis G A, Kolobov A V, Ribes M, Tominaga J 2006 Raman scattering study of the a-GeTe structure and possible mechanism for the amorphous to crystal transition J. Phys.: Condens. Matter 18 965-79 doi: 10.1088/0953-8984/18/3/014 [83] Andrikopoulos K S, Yannopoulos S N, Kolobov A V, Fons P, Tominaga J 2007 Raman scattering study of GeTe and Ge2Sb2Te5 phase-change materials J. Phys. Chem. Solids 68 1074-8 doi: 10.1016/j.jpcs.2007.02.027 [84] Sosso G C, Caravati S, Mazzarello R, Bernasconi M 2011 Raman spectra of cubic and amorphous Ge2Sb2Te5 from first principles Phys. Rev. B 83 134201 doi: 10.1103/PhysRevB.83.134201 [85] Poska M, Plewa J 2020 Crystallization of GeO2-Al2O3-Bi2O3 glass Crystals 10 522 doi: 10.3390/cryst10060522 [86] Zhang Y, Feng J, Cai B 2010 Effects of nitrogen doping on the properties of Ge15Sb85 phase-change thin film Appl. Surf. Sci. 256 2223-7 doi: 10.1016/j.apsusc.2009.09.077 [87] Nolot E, Sabbione C, Pessoa W, Prazakova L, Navarro G 2021 Germanium, antimony, tellurium, their binary and ternary alloys and the impact of nitrogen: an x-ray photoelectron study Appl. Surf. Sci. 536 147703 doi: 10.1016/j.apsusc.2020.147703 [88] Tuma T, Pantazi A, Le Gallo M, Sebastian A, Eleftheriou E 2016 Stochastic phase-change neurons Nat. Nanotechnol. 11 693-9 doi: 10.1038/nnano.2016.70 [89] Noor N, Silva H 2020 Phase Change Memory for Physical Unclonable Functions, Applications of Emerging Memory TechnologyBerlin:Springer 59-91