留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Scanning probe microscopy in probing low-dimensional carbon-based nanostructures and nanomaterials

Chi Zhang Zewei Yi Wei Xu

Chi Zhang, Zewei Yi, Wei Xu. Scanning probe microscopy in probing low-dimensional carbon-based nanostructures and nanomaterials[J]. Materials Futures, 2022, 1(3): 032301. doi: 10.1088/2752-5724/ac8a63
Citation: Chi Zhang, Zewei Yi, Wei Xu. Scanning probe microscopy in probing low-dimensional carbon-based nanostructures and nanomaterials[J]. Materials Futures, 2022, 1(3): 032301. doi: 10.1088/2752-5724/ac8a63
Topical Review •
OPEN ACCESS

Scanning probe microscopy in probing low-dimensional carbon-based nanostructures and nanomaterials

doi: 10.1088/2752-5724/ac8a63
More Information
  • Figure  1.  Schematic illustration showing the application of SPM techniques in the exploration of carbon-based nanostructures and nanomaterials on surfaces.

    Figure  2.  On-surface synthesis and characterization of 0D nanostructures, including fullerenes and cyclo[18]carbons. (a) Synthesis of triazafullerene C57N3 on Pt(111) and corresponding STM characterization. Reproduced from [24], with permission from Springer Nature. (b) AFM characterization of C60 on a (101) anatase surface with intramolecular resolution using a multipass method. Reprinted with permission from [32]. Copyright (2015) American Chemical Society. (c) In-situ generation of cyclo[18]carbon by atom manipulation and subsequent structural characterization. From [22]. Reprinted with permission from AAAS.

    Figure  3.  On-surface synthesis and characterization of 0D nanographenes in small sizes. (a) Synthesis and STM/STS/nc-AFM characterization of dibenzoperioctacenes on Au(111). Reproduced from [42]. CC BY 4.0. (b) Fabrication of a C108 cycloarene on Au(111). Reprinted with permission from [52]. Copyright (2020) American Chemical Society. (c) Synthesis and characterization of [6]- and [5]coronoids on Au(111). (d) Z-dependent nc-AFM images of a [5]coronoid. (c), (d) Reproduced from [53]. CC BY 4.0. (e) Reaction process and intermediate states detected in the formation of biphenylene dimers on Ag(111). Reprinted with permission from [55]. Copyright (2022) American Chemical Society.

    Figure  4.  On-surface synthesis and characterization of graphene-related oligomers and macrocycles. (a) Chemical structure; (b) constant-height dI/dV map characterization with a CO-tip; and (c) constant-height dI/dV map (at 2.4 V) of nanographenes (C186H60) with azulene moieties embedded on Au(111). Scale bar in (b): 1.2 nm. Reprinted with permission from [67]. Copyright (2018) American Chemical Society. (d) Synthetic route and (e) skeletal characterization of a triangulene-based nanostar. (f) dI/dV spectra acquired at the edge of a triangulene unit on Au(111) as marked by the blue dot in (e). (g) Stacked dI/dV plot along the line AB depicted in (e). (d)-(g) [79] John Wiley & Sons. [© 2021 The Authors. Angewandte Chemie International Edition published by Wiley-VCH GmbH]. (h) Synthesis and (i) skeletal characterization of a covalently linked organic quantum corral on Au(111). Scale bar: 5 Å. (j) dI/dV spectra acquired at different sites inside the organic quantum corral on Au(111). (k) dI/dV maps characterizing the quantum resonance states trapped inside the organic corral. Scale bar: 1 nm. (h)-(k) Reproduced from [81]. CC BY 4.0.

    Figure  5.  On-surface synthesis of polyacetylene, polyene, and polyethylene. (a) Dehydrogenation of n-alkanes to produce all-trans conjugated polyene on Cu(110). Reproduced from [95]. CC BY 4.0. (b) Coupling reaction of conjugated polyenes on Cu(110) with the formation of polyacetylene containing three different connections. Reproduced from [96], with permission from Springer Nature. (c) Polymerization of ethylene on a carburized iron single-crystal surface at RT. (d) An individual C2H4 molecule (left) and ethylidene (CHCH3, right) captured by LT-STM imaging. (e) Polymer chain growth forming C8 and C10 chains. (c)-(e) From [97]. Reprinted with permission from AAAS.

    Figure  6.  On-surface synthesis and characterization of a series of polyacetylenes, organometallic and intrinsic polyynes. (a)-(e) Synthesis and characterization of cis- and trans-polyacetylenes and Cu-carbyne on Cu(110) by applying C2H2 as precursor. (b)-(d) Reproduced from [105], with permission from Springer Nature. (e) Reprinted with permission from [101]. Copyright (2016) American Chemical Society. (f)-(i) Synthesis and characterization of 1D diacetylenic Au-carbyne on Au(111). (g)-(i) Reprinted with permission from [102]. Copyright (2020) American Chemical Society. (j) Triacetylenic Ag-carbyne on Ag(111). Reprinted with permission from [103]. Copyright (2022) American Chemical Society. (k) In-situ synthesis of polyynes on NaCl/Cu(111). Reproduced from [23], with permission from Springer Nature.

    Figure  7.  On-surface synthesis and characterization of graphene nanoribbons including sGNR and 5-sGNR. (a) Synthesis of 5-sGNR on Au(111) from molecular precursor 1 with the formation of sGNR as an intermediate state. (b)-(d) STM images of (b) molecular precursor 1, (c) an isolated sGNR, and (d) 5-sGNR on Au(111). (e) dI/dV spectra and mapping of 5-sGNR on Au(111). State 1, state 3, and state 2 showed the valence band, conduction band, and zero-mode band, respectively. From [118]. Reprinted with permission from AAAS.

    Figure  8.  On-surface synthesis and characterization of 1D -conjugated polymers. (a) Synthesis of -conjugated polymers comprising bisanthene units. (b) Nc-AFM image resolving the chain skeletons. (c) dI/dV spectra conducted at the corresponding positions marked in (b). (d) dI/dV mapping and simulations obtained at the edges of valence band and conduction band. (e) dI/dV spectra showing the distribution of the edge state. The sequence from top to bottom corresponds to the sites from the termination of the polymer to the center. (f) Nc-AFM and STM images of the -conjugated polymer. Reproduced from [157], with permission from Springer Nature.

    Figure  9.  Schematic illustration of the prospect of SPM techniques in probing low-dimensional carbon-based nanostructures and nanomaterials.

  • [1] Hirsch A 2010 The era of carbon allotropes Nat. Mater. 9 868-71 doi: 10.1038/nmat2885
    [2] Kroto H W, Heath J R, O’Brien S C, Curl R F, Smalley R E 1985 C60: buckminsterfullerene Nature 318 162-3 doi: 10.1038/318162a0
    [3] Iijima S 1991 Helical microtubules of graphitic carbon Nature 354 56-58 doi: 10.1038/354056a0
    [4] Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Electric field effect in atomically thin carbon films Science 306 666-9 doi: 10.1126/science.1102896
    [5] Bottari G, Torres T 2017 A new dimension for low-dimensional carbon nanostructures Chem 3 21-24 doi: 10.1016/j.chempr.2017.06.012
    [6] Li G, Li Y, Liu H, Guo Y, Li Y, Zhu D 2010 Architecture of graphdiyne nanoscale films Chem. Commun. 46 3256-8 doi: 10.1039/b922733d
    [7] Li Y, Xu L, Liu H, Li Y 2014 Graphdiyne and graphyne: from theoretical predictions to practical construction Chem. Soc. Rev. 43 2572-86 doi: 10.1039/c3cs60388a
    [8] Gao X, Liu H, Wang D, Zhang J 2019 Graphdiyne: synthesis, properties, and applications Chem. Soc. Rev. 48 908-36 doi: 10.1039/C8CS00773J
    [9] Chalifoux W A, Tykwinski R R 2010 Synthesis of polyynes to model the sp-carbon allotrope carbyne Nat. Chem. 2 967-71 doi: 10.1038/nchem.828
    [10] Liu M, Artyukhov V I, Lee H, Xu F, Yakobson B I 2013 Carbyne from first principles: chain of C atoms, a nanorod or a nanorope ACS Nano 7 10075-82 doi: 10.1021/nn404177r
    [11] Tongay S, Senger R T, Dag S, Ciraci S 2004 Ab-initio electron transport calculations of carbon based string structures Phys. Rev. Lett. 93 136404 doi: 10.1103/PhysRevLett.93.136404
    [12] Li X, Zhang H, Chi L 2018 On-surface synthesis of graphyne-based nanostructures Adv. Mater. 31 1804087 doi: 10.1002/adma.201804087
    [13] Chen H, Zhu H, Huang Z, Rong W, Wu K 2019 Two-sidedness of surface reaction mediation Adv. Mater. 31 1902080 doi: 10.1002/adma.201902080
    [14] Shen Q, Gao H-Y, Fuchs H 2017 Frontiers of on-surface synthesis: from principles to applications Nano Today 13 77-96 doi: 10.1016/j.nantod.2017.02.007
    [15] Grill L, Hecht S 2020 Covalent on-surface polymerization Nat. Chem. 12 115-30 doi: 10.1038/s41557-019-0392-9
    [16] Dong L, Liu P N, Lin N 2015 Surface-activated coupling reactions confined on a surface Acc. Chem. Res. 48 2765-74 doi: 10.1021/acs.accounts.5b00160
    [17] Klappenberger F, Zhang Y-Q, Bjrk J, Klyatskaya S, Ruben M, Barth J V 2015 On-surface synthesis of carbon-based scaffolds and nanomaterials using terminal alkynes Acc. Chem. Res. 48 2140-50 doi: 10.1021/acs.accounts.5b00174
    [18] Held P A, Fuchs H, Studer A 2017 Covalent-bond formation via on-surface chemistry Chem. Eur. J. 23 5874-92 doi: 10.1002/chem.201604047
    [19] Clair S, de Oteyza D G 2019 Controlling a chemical coupling reaction on a surface: tools and strategies for on-surface synthesis Chem. Rev. 119 4717-76 doi: 10.1021/acs.chemrev.8b00601
    [20] Bian K, Gerber C, Heinrich A J, Mller D J, Scheuring S, Jiang Y 2021 Scanning probe microscopy Nat. Rev. Methods Primers 1 36 doi: 10.1038/s43586-021-00033-2
    [21] Gross L, Schuler B, Pavliek N, Fatayer S, Majzik Z, Moll N, Pea D, Meyer G 2018 Atomic force microscopy for molecular structure elucidation Angew. Chem., Int. Ed. 57 3888-908 doi: 10.1002/anie.201703509
    [22] Kaiser K, Scriven L M, Schulz F, Gawel P, Gross L, Anderson H L 2019 An sp-hybridized molecular carbon allotrope, cyclo[18]carbon Science 365 1299-301 doi: 10.1126/science.aay1914
    [23] Pavliek N, Gawel P, Kohn D R, Majzik Z, Xiong Y, Meyer G, Anderson H L, Gross L 2018 Polyyne formation via skeletal rearrangement induced by atomic manipulation Nat. Chem. 10 853-8 doi: 10.1038/s41557-018-0067-y
    [24] Otero G, et al 2008 Fullerenes from aromatic precursors by surface-catalysed cyclodehydrogenation Nature 454 865-8 doi: 10.1038/nature07193
    [25] Amsharov K, Abdurakhmanova N, Stepanow S, Rauschenbach S, Jansen M, Kern K 2010 Towards the isomer-specific synthesis of higher fullerenes and buckybowls by the surface-catalyzed cyclodehydrogenation of aromatic precursors Angew. Chem., Int. Ed. 49 9392-6 doi: 10.1002/anie.201005000
    [26] Pinardi A L, et al 2013 Tailored formation of N-doped nanoarchitectures by diffusion-controlled on-surface (cyclo)-dehydrogenation of heteroaromatics ACS Nano 7 3676-84 doi: 10.1021/nn400690e
    [27] Pinardi A L, Martnez J I, Janak A, Star I G, Star I, Lpez M F, Mndez J, Martn-Gago J 2014 Sequential formation of N-doped nanohelicenes, nanographenes and nanodomes by surface-assisted chemical (cyclo)dehydrogenation of heteroaromatics Chem. Commun. 50 1555-7 doi: 10.1039/c3cc47399f
    [28] Lu J, Yeo P S E, Gan C K, Wu P, Loh K P 2011 Transforming C60 molecules into graphene quantum dots Nat. Nanotechnol. 6 247-52 doi: 10.1038/nnano.2011.30
    [29] Gross L, Mohn F, Moll N, Liljeroth P, Meyer G 2009 The chemical structure of a molecule resolved by atomic force microscopy Science 325 1110-4 doi: 10.1126/science.1176210
    [30] Giessibl F J 2019 The qPlus sensor, a powerful core for the atomic force microscope Rev. Sci. Instrum. 90 11101 doi: 10.1063/1.5052264
    [31] Gross L, Mohn F, Moll N, Schuler B, Criado A, Guitin E, Pea D, Gourdon A, Meyer G 2012 Bond-order discrimination by atomic force microscopy Science 337 1326-9 doi: 10.1126/science.1225621
    [32] Moreno C, Stetsovych O, Shimizu T K, Custance O 2015 Imaging three-dimensional surface objects with submolecular resolution by atomic force microscopy Nano Lett. 15 2257-62 doi: 10.1021/nl504182w
    [33] Scriven L M, Kaiser K, Schulz F, Sterling A J, Woltering S L, Gawel P, Christensen K E, Anderson H L, Gross L 2020 Synthesis of cyclo[18]carbon via debromination of C18Br6 J. Am. Chem. Soc. 142 12921-4 doi: 10.1021/jacs.0c05033
    [34] Mllen K, Rabe J P 2008 Nanographenes as active components of single-molecule electronics and how a scanning tunneling microscope puts them to work Acc. Chem. Res. 41 511-20 doi: 10.1021/ar7001446
    [35] Fujii S, Enoki T 2013 Nanographene and graphene edges: electronic structure and nanofabrication Acc. Chem. Res. 46 2202-10 doi: 10.1021/ar300120y
    [36] Son Y-W, Cohen M L, Louie S G 2006 Energy gaps in graphene nanoribbons Phys. Rev. Lett. 97 216803 doi: 10.1103/PhysRevLett.97.216803
    [37] Zuzak R, et al 2018 Building a 22-ring nanographene by combining in-solution and on-surface syntheses Chem. Commun. 54 10256-9 doi: 10.1039/C8CC05353G
    [38] Mishra S, Beyer D, Berger R, Liu J, Grning O, Urgel J I, Mllen K, Ruffieux P, Feng X, Fasel R 2020 Topological defect-induced magnetism in a nanographene J. Am. Chem. Soc. 142 1147-52 doi: 10.1021/jacs.9b09212
    [39] Rogers C, Chen C, Pedramrazi Z, Omrani A A, Tsai H-Z, Jung H S, Lin S, Crommie M F, Fischer F R 2015 Closing the nanographene gap: surface-assisted synthesis of peripentacene from 6,6ʹ-bipentacene precursors Angew. Chem., Int. Ed. 54 15143-6 doi: 10.1002/anie.201507104
    [40] Wang X-Y, et al 2017 Heteroatom-doped perihexacene from a double helicene precursor: on-surface synthesis and properties J. Am. Chem. Soc. 139 4671-4 doi: 10.1021/jacs.7b02258
    [41] Telychko M, et al 2021 Ultrahigh-yield on-surface synthesis and assembly of circumcoronene into a chiral electronic Kagome-honeycomb lattice Sci. Adv. 7 eabf0269 doi: 10.1126/sciadv.abf0269
    [42] Zhong Q, et al 2019 Benzo-fused periacenes or double helicenes? Different cyclodehydrogenation pathways on surface and in solution J. Am. Chem. Soc. 141 7399-406 doi: 10.1021/jacs.9b01267
    [43] Hu Y, Wang X-Y, Peng P-X, Wang X-C, Cao X-Y, Feng X, Mllen K, Narita A 2017 Benzo-fused double [7]carbohelicene: synthesis, structures, and physicochemical properties Angew. Chem., Int. Ed. 56 3374-8 doi: 10.1002/anie.201610434
    [44] Mishra S, Lohr T G, Pignedoli C A, Liu J, Berger R, Urgel J I, Mllen K, Feng X, Ruffieux P, Fasel R 2018 Tailoring bond topologies in open-shell graphene nanostructures ACS Nano 12 11917-27 doi: 10.1021/acsnano.8b07225
    [45] Mishra S, et al 2020 Topological frustration induces unconventional magnetism in a nanographene Nat. Nanotechnol. 15 22-28 doi: 10.1038/s41565-019-0577-9
    [46] Mishra S, et al 2021 Large magnetic exchange coupling in rhombus-shaped nanographenes with zigzag periphery Nat. Chem. 13 581-6 doi: 10.1038/s41557-021-00678-2
    [47] Buttrick J C, King B T 2017 Kekulenes, cycloarenes, and heterocycloarenes: addressing electronic structure and aromaticity through experiments and calculations Chem. Soc. Rev. 46 7-20 doi: 10.1039/C6CS00174B
    [48] Pozo I, Majzik Z, Pavliek N, Melle-Franco M, Guitin E, Pea D, Gross L, Prez D 2019 Revisiting kekulene: synthesis and single-molecule imaging J. Am. Chem. Soc. 141 15488-93 doi: 10.1021/jacs.9b07926
    [49] Treier M, Pignedoli C A, Laino T, Rieger R, Mllen K, Passerone D, Fasel R 2011 Surface-assisted cyclodehydrogenation provides a synthetic route towards easily processable and chemically tailored nanographenes Nat. Chem. 3 61-67 doi: 10.1038/nchem.891
    [50] Su J, Wu X, Song S, Telychko M, Lu J 2020 Substrate induced strain for on-surface transformation and synthesis Nanoscale 12 7500-8 doi: 10.1039/D0NR01270J
    [51] Shiotari A, Nakae T, Iwata K, Mori S, Okujima T, Uno H, Sakaguchi H, Sugimoto Y 2017 Strain-induced skeletal rearrangement of a polycyclic aromatic hydrocarbon on a copper surface Nat. Commun. 8 16089 doi: 10.1038/ncomms16089
    [52] Fan Q, Martin-Jimenez D, Werner S, Ebeling D, Koehler T, Vollgraff T, Sundermeyer J, Hieringer W, Schirmeisen A, Gottfried J M 2020 On-surface synthesis and characterization of a cycloarene: C108 graphene ring J. Am. Chem. Soc. 142 894-9 doi: 10.1021/jacs.9b10151
    [53] Di Giovannantonio M, Yao X, Eimre K, Urgel J I, Ruffieux P, Pignedoli C A, Mllen K, Fasel R, Narita A 2020 Large-cavity coronoids with different inner and outer edge structures J. Am. Chem. Soc. 142 12046-50 doi: 10.1021/jacs.0c05268
    [54] Xu K, et al 2019 On-surface synthesis of a nonplanar porous nanographene J. Am. Chem. Soc. 141 7726-30 doi: 10.1021/jacs.9b03554
    [55] Zeng Z, et al 2022 Chemisorption-induced formation of biphenylene dimer on Ag(111) J. Am. Chem. Soc. 144 723-32 doi: 10.1021/jacs.1c08284
    [56] Zhang C, Kazuma E, Kim Y 2019 Atomic-scale visualization of the stepwise metal-mediated dehalogenative cycloaddition reaction pathways: competition between radicals and organometallic intermediates Angew. Chem., Int. Ed. 58 17736-44 doi: 10.1002/anie.201909111
    [57] Li Q, Gao J, Li Y, Fuentes-Cabrera M, Liu M, Qiu X, Lin H, Chi L, Pan M 2018 Self-assembly directed one-step synthesis of [4]radialene on Cu(100) surfaces Nat. Commun. 9 3113 doi: 10.1038/s41467-018-05472-2
    [58] Liu J, et al 2019 Open-shell non-benzenoid nanographenes containing two pairs of pentagonal and heptagonal rings J. Am. Chem. Soc. 141 12011-20 doi: 10.1021/jacs.9b04718
    [59] Lohr T G, et al 2020 On-surface synthesis of non-benzenoid nanographenes by oxidative ring-closure and ring-rearrangement reactions J. Am. Chem. Soc. 142 13565-72 doi: 10.1021/jacs.0c05668
    [60] Mallada B, et al 2021 On-surface strain-driven synthesis of nonalternant non-benzenoid aromatic compounds containing four- to eight-membered rings J. Am. Chem. Soc. 143 14694-702 doi: 10.1021/jacs.1c06168
    [61] Stetsovych O, vec M, Vacek J, Chocholouov J V, Janak A, Rybek J, Kosmider K, Star I G, Jelnek P, Stary I 2017 From helical to planar chirality by on-surface chemistry Nat. Chem. 9 213-8 doi: 10.1038/nchem.2662
    [62] Bischoff F, Riss A, Michelitsch G S, Ducke J, Barth J V, Reuter K, Auwrter W 2021 Surface-mediated ring-opening and porphyrin deconstruction via conformational distortion J. Am. Chem. Soc. 143 15131-8 doi: 10.1021/jacs.1c05348
    [63] Kawai S, et al 2016 Thermal control of sequential on-surface transformation of a hydrocarbon molecule on a copper surface Nat. Commun. 7 12711 doi: 10.1038/ncomms12711
    [64] Kawai S, et al 2017 Competing annulene and radialene structures in a single anti-aromatic molecule studied by high-resolution atomic force microscopy ACS Nano 11 8122-30 doi: 10.1021/acsnano.7b02973
    [65] Nakamura K, Li Q-Q, Krej O, Foster A S, Sun K, Kawai S, Ito S 2020 On-surface synthesis of a -extended diaza[8]circulene J. Am. Chem. Soc. 142 11363-9 doi: 10.1021/jacs.0c02534
    [66] Mishra S, Fatayer S, Fernndez S, Kaiser K, Pea D, Gross L 2022 Nonbenzenoid high-spin polycyclic hydrocarbons generated by atom manipulation ACS Nano 16 3264-71 doi: 10.1021/acsnano.1c11157
    [67] Hieulle J, Carbonell-Sanrom E, Vilas-Varela M, Garcia-Lekue A, Guitin E, Pea D, Pascual J I 2018 On-surface route for producing planar nanographenes with azulene moieties Nano Lett. 18 418-23 doi: 10.1021/acs.nanolett.7b04309
    [68] Hou I C-Y, Sun Q, Eimre K, Di Giovannantonio M, Urgel J I, Ruffieux P, Narita A, Fasel R, Mllen K 2020 On-surface synthesis of unsaturated carbon nanostructures with regularly fused pentagon-heptagon pairs J. Am. Chem. Soc. 142 10291-6 doi: 10.1021/jacs.0c03635
    [69] Su J, Telychko M, Song S, Lu J 2020 Triangulenes: from precursor design to on-surface synthesis and characterization Angew. Chem., Int. Ed. 59 7658-68 doi: 10.1002/anie.201913783
    [70] Pavliek N, Mistry A, Majzik Z, Moll N, Meyer G, Fox D J, Gross L 2017 Synthesis and characterization of triangulene Nat. Nanotechnol. 12 308-11 doi: 10.1038/nnano.2016.305
    [71] Mishra S, et al 2019 Synthesis and characterization of -extended triangulene J. Am. Chem. Soc. 141 10621-5 doi: 10.1021/jacs.9b05319
    [72] Su J, et al 2019 Atomically precise bottom-up synthesis of -extended [5]triangulene Sci. Adv. 5 eaav7717 doi: 10.1126/sciadv.aav7717
    [73] Mishra S, Xu K, Eimre K, Komber H, Ma J, Pignedoli C A, Fasel R, Feng X, Ruffieux P 2021 Synthesis and characterization of [7]triangulene Nanoscale 13 1624-8 doi: 10.1039/D0NR08181G
    [74] Su J, et al 2021 On-surface synthesis and characterization of [7]triangulene quantum ring Nano Lett. 21 861-7 doi: 10.1021/acs.nanolett.0c04627
    [75] Mishra S, et al 2020 Collective all-carbon magnetism in triangulene dimers Angew. Chem., Int. Ed. 59 12041-7 doi: 10.1002/anie.202002687
    [76] Cheng S, Xue Z, Li C, Liu Y, Xiang L, Ke Y, Yan K, Wang S, Yu P 2022 On-surface synthesis of triangulene trimers via dehydration reaction Nat. Commun. 13 1705 doi: 10.1038/s41467-022-29371-9
    [77] Mishra S, et al 2021 Observation of fractional edge excitations in nanographene spin chains Nature 598 287-92 doi: 10.1038/s41586-021-03842-3
    [78] Wang T, Berdonces-Layunta A, Friedrich N, Vilas-Varela M, Calupitan J P, Pascual J I, Pea D, Casanova D, Corso M, de Oteyza D G 2022 Aza-triangulene: on-surface synthesis and electronic and magnetic properties J. Am. Chem. Soc. 144 4522-9 doi: 10.1021/jacs.1c12618
    [79] Hieulle J, et al 2021 On-surface synthesis and collective spin excitations of a triangulene-based nanostar Angew. Chem., Int. Ed. 60 25224-9 doi: 10.1002/anie.202108301
    [80] Song S, Su J, Telychko M, Li J, Li G, Li Y, Su C, Wu J, Lu J 2021 On-surface synthesis of graphene nanostructures with -magnetism Chem. Soc. Rev. 50 3238-62 doi: 10.1039/D0CS01060J
    [81] Peng X, et al 2021 Visualizing designer quantum states in stable macrocycle quantum corrals Nat. Commun. 12 5895 doi: 10.1038/s41467-021-26198-8
    [82] Labinger J A, Bercaw J E 2002 Understanding and exploiting C-H bond activation Nature 417 507-14 doi: 10.1038/417507a
    [83] Kruppe C M, Krooswyk J D, Trenary M 2017 Selective hydrogenation of acetylene to ethylene in the presence of a carbonaceous surface layer on a Pd/Cu(111) single-atom alloy ACS Catal. 7 8042-9 doi: 10.1021/acscatal.7b02862
    [84] Molina D L, Muir M, Abdel-Rahman M K, Trenary M 2021 The influence of palladium on the hydrogenation of acetylene on Ag(111) J. Chem. Phys. 154 184701 doi: 10.1063/5.0050587
    [85] Shilov A E, Shul’pin G B 1997 Activation of C-H bonds by metal complexes Chem. Rev. 97 2879-923 doi: 10.1021/cr9411886
    [86] Marcinkowski M D, Darby M T, Liu J, Wimble J M, Lucci F R, Lee S, Michaelides A, Flytzani-Stephanopoulos M, Stamatakis M, Sykes E C H 2018 Pt/Cu single-atom alloys as coke-resistant catalysts for efficient C-H activation Nat. Chem. 10 325-32 doi: 10.1038/nchem.2915
    [87] Rabe J P, Buchholz S 1991 Commensurability and mobility in two-dimensional molecular patterns on graphite Science 253 424-7 doi: 10.1126/science.253.5018.424
    [88] Askadskaya L, Rabe J P 1992 Anisotropic molecular dynamics in the vicinity of order-disorder transitions in organic monolayers Phys. Rev. Lett. 69 1395-8 doi: 10.1103/PhysRevLett.69.1395
    [89] Zhong D, Franke J-H, Podiyanachari S K, Blmker T, Zhang H, Kehr G, Erker G, Fuchs H, Chi L 2011 Linear alkane polymerization on a gold surface Science 334 213-6 doi: 10.1126/science.1211836
    [90] Li Q, et al 2016 Surface-controlled mono/diselective ortho C-H bond activation J. Am. Chem. Soc. 138 2809-14 doi: 10.1021/jacs.5b13286
    [91] Fan Q, Werner S, Tschakert J, Ebeling D, Schirmeisen A, Hilt G, Hieringer W, Gottfried J M 2018 Precise monoselective aromatic C-H bond activation by chemisorption of meta-aryne on a metal surface J. Am. Chem. Soc. 140 7526-32 doi: 10.1021/jacs.8b01658
    [92] Sun Q, Zhang C, Kong H, Tan Q, Xu W 2014 On-surface aryl-aryl coupling via selective C-H activation Chem. Commun. 50 11825-8 doi: 10.1039/C4CC05482B
    [93] Zhang C, Sun Q, Chen H, Tan Q, Xu W 2015 Formation of polyphenyl chains through hierarchical reactions: Ullmann coupling followed by cross-dehydrogenative coupling Chem. Commun. 51 495-8 doi: 10.1039/C4CC07953A
    [94] Hao Z, et al 2022 Converting n-alkanol to conjugated polyenal on Cu(110) surface at mild temperature J. Phys. Chem. Lett. 13 3276-82 doi: 10.1021/acs.jpclett.2c00369
    [95] Li X, et al 2021 Direct transformation of n-alkane into all-trans conjugated polyene via cascade dehydrogenation Natl Sci. Rev. 8 nwab093 doi: 10.1093/nsr/nwab093
    [96] Hao Z, et al 2022 From n-alkane to polyacetylene on Cu (110): linkage modulation in chain growth Sci. China Chem. 65 733-9 doi: 10.1007/s11426-021-1213-2
    [97] Guo W, et al 2022 Visualization of on-surface ethylene polymerization through ethylene insertion Science 375 1188-91 doi: 10.1126/science.abi4407
    [98] Okawa Y, Aono M 2001 Nanoscale control of chain polymerization Nature 409 683-4 doi: 10.1038/35055625
    [99] Okawa Y, Aono M 2001 Linear chain polymerization initiated by a scanning tunneling microscope tip at designated positions J. Chem. Phys. 115 2317-22 doi: 10.1063/1.1384554
    [100] Miura A, De Feyter S, Abdel-Mottaleb M M S, Gesquire A, Grim P C M, Moessner G, Sieffert M, Klapper M, Mllen K, De Schryver F C 2003 Light- and STM-tip-induced formation of one-dimensional and two-dimensional organic nanostructures Langmuir 19 6474-82 doi: 10.1021/la027051p
    [101] Sun Q, et al 2016 Bottom-up synthesis of metalated carbyne J. Am. Chem. Soc. 138 1106-9 doi: 10.1021/jacs.5b10725
    [102] Yu X, Li X, Lin H, Liu M, Cai L, Qiu X, Yang D, Fan X, Qiu X, Xu W 2020 Bond-scission-induced structural transformation from cumulene to diyne moiety and formation of semiconducting organometallic polyyne J. Am. Chem. Soc. 142 8085-9 doi: 10.1021/jacs.0c01925
    [103] Gao W, Kang F, Qiu X, Yi Z, Shang L, Liu M, Qiu X, Luo Y, Xu W 2022 On-surface debromination of C6Br6: C6 ring versus C6 chain ACS Nano 16 6578-84 doi: 10.1021/acsnano.2c00945
    [104] Yu X, et al 2022 Lattice-directed selective synthesis of acetylenic and diacetylenic organometallic polyynes Chem. Mater. 34 1770-7 doi: 10.1021/acs.chemmater.1c04015
    [105] Wang S, et al 2019 On-surface synthesis and characterization of individual polyacetylene chains Nat. Chem. 11 924-30 doi: 10.1038/s41557-019-0316-8
    [106] Wang C, Batsanov A S, Bryce M R, Martn S, Nichols R J, Higgins S J, Garca-Surez V M, Lambert C J 2009 Oligoyne single molecule wires J. Am. Chem. Soc. 131 15647-54 doi: 10.1021/ja9061129
    [107] Pavliek N, Schuler B, Collazos S, Moll N, Prez D, Guitin E, Meyer G, Pea D, Gross L 2015 On-surface generation and imaging of arynes by atomic force microscopy Nat. Chem. 7 623-8 doi: 10.1038/nchem.2300
    [108] Schuler B, Fatayer S, Mohn F, Moll N, Pavliek N, Meyer G, Pea D, Gross L 2016 Reversible Bergman cyclization by atomic manipulation Nat. Chem. 8 220-4 doi: 10.1038/nchem.2438
    [109] Pavliek N, Majzik Z, Collazos S, Meyer G, Prez D, Guitin E, Pea D, Gross L 2017 Generation and characterization of a meta-aryne on Cu and NaCl surfaces ACS Nano 11 10768-73 doi: 10.1021/acsnano.7b06137
    [110] de Oteyza D G, et al 2013 Direct imaging of covalent bond structure in single-molecule chemical reactions Science 340 1434-7 doi: 10.1126/science.1238187
    [111] Repp J, Meyer G, Stojkovi S M, Gourdon A, Joachim C 2005 Molecules on insulating films: scanning-tunneling microscopy imaging of individual molecular orbitals Phys. Rev. Lett. 94 26803 doi: 10.1103/PhysRevLett.94.026803
    [112] Albrecht F, Rey D, Fatayer S, Schulz F, Prez D, Pea D, Gross L 2020 Intramolecular coupling of terminal alkynes by atom manipulation Angew. Chem., Int. Ed. 59 22989-93 doi: 10.1002/anie.202009200
    [113] Repp J, Meyer G, Paavilainen S, Olsson F E, Persson M 2006 Imaging bond formation between a gold atom and pentacene on an insulating surface Science 312 1196-9 doi: 10.1126/science.1126073
    [114] Liljeroth P, Repp J, Meyer G 2007 Current-induced hydrogen tautomerization and conductance switching of naphthalocyanine molecules Science 317 1203-6 doi: 10.1126/science.1144366
    [115] Morgenstern K, Lorente N, Rieder K-H 2013 Controlled manipulation of single atoms and small molecules using the scanning tunnelling microscope Phys. Status Solidi b 250 1671-751 doi: 10.1002/pssb.201248392
    [116] Hla S-W, Bartels L, Meyer G, Rieder K-H 2000 Inducing all steps of a chemical reaction with the scanning tunneling microscope tip: towards single molecule engineering Phys. Rev. Lett. 85 2777-80 doi: 10.1103/PhysRevLett.85.2777
    [117] Zhong Q, Ihle A, Ahles S, Wegner H A, Schirmeisen A, Ebeling D 2021 Constructing covalent organic nanoarchitectures molecule by molecule via scanning probe manipulation Nat. Chem. 13 1133-9 doi: 10.1038/s41557-021-00773-4
    [118] Rizzo D J, Veber G, Jiang J, McCurdy R, Cao T, Bronner C, Chen T, Louie S G, Fischer F R, Crommie M F 2020 Inducing metallicity in graphene nanoribbons via zero-mode superlattices Science 369 1597-603 doi: 10.1126/science.aay3588
    [119] Fan Q, et al 2021 Biphenylene network: a nonbenzenoid carbon allotrope Science 372 852-6 doi: 10.1126/science.abg4509
    [120] Blackwell R E, Zhao F, Brooks E, Zhu J, Piskun I, Wang S, Delgado A, Lee Y-L, Louie S G, Fischer F R 2021 Spin splitting of dopant edge state in magnetic zigzag graphene nanoribbons Nature 600 647-52 doi: 10.1038/s41586-021-04201-y
    [121] Wang T, et al 2022 Magnetic interactions between radical pairs in chiral graphene nanoribbons Nano Lett. 22 164-71 doi: 10.1021/acs.nanolett.1c03578
    [122] Yang L, Park C-H, Son Y-W, Cohen M L, Louie S G 2007 Quasiparticle energies and band gaps in graphene nanoribbons Phys. Rev. Lett. 99 186801 doi: 10.1103/PhysRevLett.99.186801
    [123] Talirz L, Ruffieux P, Fasel R 2016 On-surface synthesis of atomically precise graphene nanoribbons Adv. Mater. 28 6222-31 doi: 10.1002/adma.201505738
    [124] Cai J, et al 2010 Atomically precise bottom-up fabrication of graphene nanoribbons Nature 466 470-3 doi: 10.1038/nature09211
    [125] Ruffieux P, et al 2016 On-surface synthesis of graphene nanoribbons with zigzag edge topology Nature 531 489-92 doi: 10.1038/nature17151
    [126] Berdonces-Layunta A, Schulz F, Aguilar-Galindo F, Lawrence J, Mohammed M S G, Muntwiler M, Lobo-Checa J, Liljeroth P, de Oteyza D G 2021 Order from a mess: the growth of 5-armchair graphene nanoribbons ACS Nano 15 16552-61 doi: 10.1021/acsnano.1c06226
    [127] Snchez-Snchez C, Dienel T, Deniz O, Ruffieux P, Berger R, Feng X, Mllen K, Fasel R 2016 Purely armchair or partially chiral: noncontact atomic force microscopy characterization of dibromo-bianthryl-based graphene nanoribbons grown on Cu(111) ACS Nano 10 8006-11 doi: 10.1021/acsnano.6b04025
    [128] de Oteyza D G, et al 2016 Substrate-independent growth of atomically precise chiral graphene nanoribbons ACS Nano 10 9000-8 doi: 10.1021/acsnano.6b05269
    [129] Cai J, et al 2014 Graphene nanoribbon heterojunctions Nat. Nanotechnol. 9 896-900 doi: 10.1038/nnano.2014.184
    [130] Kawai S, Saito S, Osumi S, Yamaguchi S, Foster A S, Spijker P, Meyer E 2015 Atomically controlled substitutional boron-doping of graphene nanoribbons Nat. Commun. 6 8098 doi: 10.1038/ncomms9098
    [131] Zhang Y, et al 2022 On-surface synthesis of a nitrogen-doped graphene nanoribbon with multiple substitutional sites Angew. Chem., Int. Ed. 61 e202204736 doi: 10.1002/anie.202204736
    [132] Moreno C, et al 2018 Bottom-up synthesis of multifunctional nanoporous graphene Science 360 199-203 doi: 10.1126/science.aar2009
    [133] Tenorio M, Moreno C, Febrer P, Castroesteban J, Ordejn P, Pea D, Pruneda M, Mugarza A 2022 Atomically sharp lateral superlattice heterojunctions built-in nitrogen-doped nanoporous graphene Adv. Mater. 34 e2110099 doi: 10.1002/adma.202110099
    [134] Chen Y-C, de Oteyza D G, Pedramrazi Z, Chen C, Fischer F R, Crommie M F 2013 Tuning the band gap of graphene nanoribbons synthesized from molecular precursors ACS Nano 7 6123-8 doi: 10.1021/nn401948e
    [135] Talirz L, et al 2017 On-surface synthesis and characterization of 9-atom wide armchair graphene nanoribbons ACS Nano 11 1380-8 doi: 10.1021/acsnano.6b06405
    [136] Ruffieux P, et al 2012 Electronic structure of atomically precise graphene nanoribbons ACS Nano 6 6930-5 doi: 10.1021/nn3021376
    [137] Rizzo D J, Veber G, Cao T, Bronner C, Chen T, Zhao F, Rodriguez H, Louie S G, Crommie M F, Fischer F R 2018 Topological band engineering of graphene nanoribbons Nature 560 204-8 doi: 10.1038/s41586-018-0376-8
    [138] Grning O, et al 2018 Engineering of robust topological quantum phases in graphene nanoribbons Nature 560 209-13 doi: 10.1038/s41586-018-0375-9
    [139] Cao T, Zhao F, Louie S G 2017 Topological phases in graphene nanoribbons: junction states, spin centers, and quantum spin chains Phys. Rev. Lett. 119 76401 doi: 10.1103/PhysRevLett.119.076401
    [140] Rizzo D J, et al 2021 Rationally designed topological quantum dots in bottom-up graphene nanoribbons ACS Nano 15 20633-42 doi: 10.1021/acsnano.1c09503
    [141] Li S, Liu M, Qiu X 2020 Scanning probe microscopy of topological structure induced electronic states of graphene Small Methods 4 1900683 doi: 10.1002/smtd.201900683
    [142] Liu M, et al 2017 Graphene-like nanoribbons periodically embedded with four- and eight-membered rings Nat. Commun. 8 14924 doi: 10.1038/ncomms14924
    [143] Liu M, Liu M, Zha Z, Pan J, Qiu X, Li T, Wang J, Zheng Y, Zhong D 2018 Thermally induced transformation of nonhexagonal carbon rings in graphene-like nanoribbons J. Phys. Chem. C 122 9586-92 doi: 10.1021/acs.jpcc.8b02565
    [144] Li D-Y, et al 2021 Ladder phenylenes synthesized on Au(111) surface via selective [2+2] cycloaddition J. Am. Chem. Soc. 143 12955-60 doi: 10.1021/jacs.1c05586
    [145] Fan Q, Martin-Jimenez D, Ebeling D, Krug C K, Brechmann L, Kohlmeyer C, Hilt G, Hieringer W, Schirmeisen A, Gottfried J M 2019 Nanoribbons with nonalternant topology from fusion of polyazulene: carbon allotropes beyond graphene J. Am. Chem. Soc. 141 17713-20 doi: 10.1021/jacs.9b08060
    [146] de la Torre B, et al 2020 Tailoring -conjugation and vibrational modes to steer on-surface synthesis of pentalene-bridged ladder polymers Nat. Commun. 11 4567 doi: 10.1038/s41467-020-18371-2
    [147] Di Giovannantonio M, Urgel J I, Beser U, Yakutovich A V, Wilhelm J, Pignedoli C A, Ruffieux P, Narita A, Mllen K, Fasel R 2018 On-surface synthesis of indenofluorene polymers by oxidative five-membered ring formation J. Am. Chem. Soc. 140 3532-6 doi: 10.1021/jacs.8b00587
    [148] Sun Q, et al 2018 Direct formation of C-C triple-bonded structural motifs by on-surface dehalogenative homocouplings of tribromomethyl-substituted arenes Angew. Chem., Int. Ed. 57 4035-8 doi: 10.1002/anie.201801056
    [149] SnchezGrande A, et al 2019 On-surface synthesis of ethynylene-bridged anthracene polymers Angew. Chem., Int. Ed. 58 6559-63 doi: 10.1002/anie.201814154
    [150] Sun K, Sagisaka K, Peng L, Watanabe H, Xu F, Pawlak R, Meyer E, Okuda Y, Orita A, Kawai S 2021 Head-to-tail oligomerization by silylene-tethered Sonogashira coupling on Ag(111) Angew. Chem., Int. Ed. 60 19598-603 doi: 10.1002/anie.202102882
    [151] Kawai S, et al 2022 On-surface synthesis of porphyrin-complex multi-block co-oligomers by defluorinative coupling Angew. Chem., Int. Ed. 61 e202114697 doi: 10.1002/anie.202114697
    [152] Sun Q, Cai L, Ma H, Yuan C, Xu W 2016 Dehalogenative homocoupling of terminal alkynyl bromides on Au(111): incorporation of acetylenic scaffolding into surface nanostructures ACS Nano 10 7023-30 doi: 10.1021/acsnano.6b03048
    [153] Kawai S, Krej O, Foster A S, Pawlak R, Xu F, Peng L, Orita A, Meyer E 2018 Diacetylene linked anthracene oligomers synthesized by one-shot homocoupling of trimethylsilyl on Cu(111) ACS Nano 12 8791-7 doi: 10.1021/acsnano.8b05116
    [154] SnchezGrande A, et al 2020 Diradical organic one-dimensional polymers synthesized on a metallic surface Angew. Chem., Int. Ed. 59 17594-9 doi: 10.1002/anie.202006276
    [155] Zhang C, Jaculbia R B, Tanaka Y, Kazuma E, Imada H, Hayazawa N, Muranaka A, Uchiyama M, Kim Y 2021 Chemical identification and bond control of -skeletons in a coupling reaction J. Am. Chem. Soc. 143 9461-7 doi: 10.1021/jacs.1c02624
    [156] Urgel J I, et al 2020 On-surface synthesis of cumulene-containing polymers via two-step dehalogenative homocoupling of dibromomethylene-functionalized tribenzoazulene Angew. Chem., Int. Ed. 59 13281-7 doi: 10.1002/anie.202001939
    [157] Cirera B, et al 2020 Tailoring topological order and -conjugation to engineer quasi-metallic polymers Nat. Nanotechnol. 15 437-43 doi: 10.1038/s41565-020-0668-7
    [158] Zhong Q, Niu K, Chen L, Zhang H, Ebeling D, Bjrk J, Mllen K, Schirmeisen A, Chi L 2022 Substrate-modulated synthesis of metal-organic hybrids by tunable multiple aryl-metal bonds J. Am. Chem. Soc. 144 8214-22 doi: 10.1021/jacs.2c01338
    [159] Fan Q, Wang T, Dai J, Kuttner J, Hilt G, Gottfried J M, Zhu J 2017 On-surface pseudo-high-dilution synthesis of macrocycles: principle and mechanism ACS Nano 11 5070-9 doi: 10.1021/acsnano.7b01870
    [160] Kolmer M, Zuzak R, Steiner A K, Zajac L, Engelund M, Godlewski S, Szymonski M, Amsharov K 2019 Fluorine-programmed nanozipping to tailored nanographenes on rutile TiO2 surfaces Science 363 57-60 doi: 10.1126/science.aav4954
    [161] Zhan G, Cai Z-F, Strutyski K, Yu L, Herrmann N, Martnez-Abada M, Melle-Franco M, Mateo-Alonso A, De Feyter S 2022 Observing polymerization in 2D dynamic covalent polymers Nature 603 835-40 doi: 10.1038/s41586-022-04409-6
    [162] Lu C, Mo Y-P, Hong Y, Chen T, Yang Z-Y, Wan L-J, Wang D 2020 On-surface growth of single-layered homochiral 2D covalent organic frameworks by steric hindrance strategy J. Am. Chem. Soc. 142 14350-6 doi: 10.1021/jacs.0c06468
    [163] Liu X-H, Guan C-Z, Ding S-Y, Wang W, Yan H-J, Wang D, Wan L-J 2013 On-surface synthesis of single-layered two-dimensional covalent organic frameworks via solid-vapor interface reactions J. Am. Chem. Soc. 135 10470-4 doi: 10.1021/ja403464h
    [164] Dienstmaier J F, Medina D D, Dogru M, Knochel P, Bein T, Heckl W M, Lackinger M 2012 Isoreticular two-dimensional covalent organic frameworks synthesized by on-surface condensation of diboronic acids ACS Nano 6 7234-42 doi: 10.1021/nn302363d
    [165] Liu X-H, Guan C-Z, Wang D, Wan L-J 2014 Graphene-like single-layered covalent organic frameworks: synthesis strategies and application prospects Adv. Mater. 26 6912-20 doi: 10.1002/adma.201305317
    [166] Zhang R, et al 2013 Chemical mapping of a single molecule by plasmon-enhanced Raman scattering Nature 498 82-86 doi: 10.1038/nature12151
    [167] Wang R-P, et al 2021 Raman detection of bond breaking and making of a chemisorbed up-standing single molecule at single-bond level J. Phys. Chem. Lett. 12 1961-8 doi: 10.1021/acs.jpclett.1c00074
    [168] Xu J, et al 2021 Determining structural and chemical heterogeneities of surface species at the single-bond limit Science 371 818-22 doi: 10.1126/science.abd1827
    [169] Kazuma E, Jung J, Ueba H, Trenary M, Kim Y 2017 Direct pathway to molecular photodissociation on metal surfaces using visible light J. Am. Chem. Soc. 139 3115-21 doi: 10.1021/jacs.6b12680
    [170] Yu M, et al 2020 Long-range ordered and atomic-scale control of graphene hybridization by photocycloaddition Nat. Chem. 12 1035-41 doi: 10.1038/s41557-020-0540-2
    [171] Nacci C, Baroncini M, Credi A, Grill L 2018 Reversible photoswitching and isomer-dependent diffusion of single azobenzene tetramers on a metal surface Angew. Chem., Int. Ed. 57 15034-9 doi: 10.1002/anie.201806536
    [172] Galanti A, Diez-Cabanes V, Santoro J, Valek M, Minoia A, Mayor M, Cornil J, Samor P 2018 Electronic decoupling in C3-symmetrical light-responsive tris(azobenzene) scaffolds: self-assembly and multiphotochromism J. Am. Chem. Soc. 140 16062-70 doi: 10.1021/jacs.8b06324
    [173] Zhang X, Xu S, Li M, Shen Y, Wei Z, Wang S, Zeng Q, Wang C 2012 Photo-induced polymerization and isomerization on the surface observed by scanning tunneling microscopy J. Phys. Chem. C 116 8950-5 doi: 10.1021/jp2115884
    [174] Kazuma E, Jung J, Ueba H, Trenary M, Kim Y 2018 Real-space and real-time observation of a plasmon-induced chemical reaction of a single molecule Science 360 521-6 doi: 10.1126/science.aao0872
    [175] Kazuma E, Lee M, Jung J, Trenary M, Kim Y 2020 Single-molecule study of a plasmon-induced reaction for a strongly chemisorbed molecule Angew. Chem., Int. Ed. 59 7960-6 doi: 10.1002/anie.202001863
    [176] Bckmann H, Gawinkowski S, Waluk J, Raschke M B, Wolf M, Kumagai T 2018 Near-field enhanced photochemistry of single molecules in a scanning tunneling microscope junction Nano Lett. 18 152-7 doi: 10.1021/acs.nanolett.7b03720
    [177] Mahapatra S, Schultz J F, Li L, Zhang X, Jiang N 2022 Controlling localized plasmons via an atomistic approach: attainment of site-selective activation inside a single molecule J. Am. Chem. Soc. 144 2051-5 doi: 10.1021/jacs.1c11547
    [178] Tanaka H, Kawai T 2009 Partial sequencing of a single DNA molecule with a scanning tunnelling microscope Nat. Nanotechnol. 4 518-22 doi: 10.1038/nnano.2009.155
    [179] Saywell A, Sprafke J K, Esdaile L J, Britton A J, Rienzo A, Anderson H L, O’Shea J N, Beton P H 2010 Conformation and packing of porphyrin polymer chains deposited using electrospray on a gold surface Angew. Chem., Int. Ed. 49 9136-9 doi: 10.1002/anie.201004896
    [180] O’Sullivan M C, et al 2011 Vernier templating and synthesis of a 12-porphyrin nano-ring Nature 469 72-75 doi: 10.1038/nature09683
    [181] McCurdy R D, Jacobse P H, Piskun I, Veber G C, Rizzo D J, Zuzak R, Mutlu Z, Bokor J, Crommie M F, Fischer F R 2021 Synergetic bottom-up synthesis of graphene nanoribbons by matrix-assisted direct transfer J. Am. Chem. Soc. 143 4174-8 doi: 10.1021/jacs.1c01355
    [182] Loth S, Etzkorn M, Lutz C P, Eigler D M, Heinrich A J 2010 Measurement of fast electron spin relaxation times with atomic resolution Science 329 1628-30 doi: 10.1126/science.1191688
    [183] Terada Y, Yoshida S, Takeuchi O, Shigekawa H 2010 Real-space imaging of transient carrier dynamics by nanoscale pump-probe microscopy Nat. Photon. 4 869-74 doi: 10.1038/nphoton.2010.235
    [184] Cocker T L, Peller D, Yu P, Repp J, Huber R 2016 Tracking the ultrafast motion of a single molecule by femtosecond orbital imaging Nature 539 263-7 doi: 10.1038/nature19816
    [185] Wiesendanger R, Gntherodt H, Gntherodt G, Gambino R J, Ruf R 1990 Observation of vacuum tunneling of spin-polarized electrons with the scanning tunneling microscope Phys. Rev. Lett. 65 247-50 doi: 10.1103/PhysRevLett.65.247
    [186] Wiesendanger R 2009 Spin mapping at the nanoscale and atomic scale Rev. Mod. Phys. 81 1495-550 doi: 10.1103/RevModPhys.81.1495
    [187] Yamamoto S, Imada H, Kim Y 2022 Atomic-scale photon mapping revealing spin-current relaxation Phys. Rev. Lett. 128 206804 doi: 10.1103/PhysRevLett.128.206804
    [188] Zhong J-H, Jin X, Meng L, Wang X, Su H-S, Yang Z-L, Williams C T, Ren B 2017 Probing the electronic and catalytic properties of a bimetallic surface with 3 nm resolution Nat. Nanotechnol. 12 132-6 doi: 10.1038/nnano.2016.241
    [189] Lee J, Crampton K T, Tallarida N, Apkarian V A 2019 Visualizing vibrational normal modes of a single molecule with atomically confined light Nature 568 78-82 doi: 10.1038/s41586-019-1059-9
    [190] Jaculbia R B, Imada H, Miwa K, Iwasa T, Takenaka M, Yang B, Kazuma E, Hayazawa N, Taketsugu T, Kim Y 2020 Single-molecule resonance Raman effect in a plasmonic nanocavity Nat. Nanotechnol. 15 105-10 doi: 10.1038/s41565-019-0614-8
    [191] Yin H, et al 2020 Nanometre-scale spectroscopic visualization of catalytic sites during a hydrogenation reaction on a Pd/Au bimetallic catalyst Nat. Catal. 3 834-42 doi: 10.1038/s41929-020-00511-y
    [192] Schultz J F, Li S, Jiang S, Jiang N 2020 Optical scanning tunneling microscopy based chemical imaging and spectroscopy J. Phys.: Condens. Matter 32 463001 doi: 10.1088/1361-648X/aba8c7
    [193] Nonnenmacher M, O’Boyle M P, Wickramasinghe H K 1991 Kelvin probe force microscopy Appl. Phys. Lett. 58 2921-3 doi: 10.1063/1.105227
    [194] Castaeda-Uribe O A, Reifenberger R, Raman A, Avila A 2015 Depth-sensitive subsurface imaging of polymer nanocomposites using second harmonic Kelvin probe force microscopy ACS Nano 9 2938-47 doi: 10.1021/nn507019c
  • 加载中
图(10)
计量
  • 文章访问数:  758
  • HTML全文浏览量:  286
  • PDF下载量:  162
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-06-30
  • 录用日期:  2022-08-17
  • 修回日期:  2022-08-03
  • 刊出日期:  2022-08-30

目录

    /

    返回文章
    返回