Microstructure and long-term stability of Ni-YSZ anode supported fuel cells: a review
doi: 10.1088/2752-5724/ac88e7
-
Abstract: Nickel-yttria stabilized zirconia (Ni-YSZ) cermet is the most commonly used anode in solid oxide fuel cells (SOFCs). The current article provides an insight into parameters which affect cell performance and stability by reviewing and discussing the related publications in this field. Understanding the parameters which affect the microstructure of Ni-YSZ such as grain size (Leng et al 2003 J. Power Sources 117 26-34) and ratio of Ni to YSZ, volume fraction of porosity, pore size and its distribution, tortuosity factor, characteristic pathway diameter and density of triple phase boundaries is the key to designing a fuel cell which shows high electrochemical performance. Lack of stability has been the main barrier to commercialization of SOFC technology. Parameters influencing the degradation of Ni-YSZ supported SOFCs such as Ni migration inside the anode during prolonged operation are discussed. The longest Ni-supported SOFC tests reported so far are examined and the crucial role of chromium poisoning due to interconnects, stack design and operating conditions in degradation of SOFCs is highlighted. The importance of calcination and milling of YSZ to development of porous structures suitable for Ni infiltration is explained and several methods to improve the electrochemical performance and stability of Ni-YSZ anode supported SOFCs are suggested.
-
Key words:
- long-term stability /
- Ni /
- YSZ /
- microstructure /
- SOFC /
- anode
-
Figure 2. (a) SEM image taken by a low acceleration voltage (1 kV) secondary electron detector. Bright, gray and dark colors are Ni, YSZ and epoxy, respectively. Reprinted from [21]. Copyright (2008), with permission from Elsevier. (b) Schematic of TPB region inside a typical Ni-YSZ AFL. [26] John Wiley & Sons. [© 2018 John Wiley & Sons, Ltd].
Figure 3. (a) Reconstructed 3D anode microstructures (Ni: yellow, 8 YSZ: blue, pore: transparent), (b) the corresponding Ni phase of each sample illustrates that Ni grains are not percolated in samples A1 and A2 while they are almost totally percolated in sample A3. Reprinted from [41]. Copyright (2011), with permission from Elsevier.
Figure 4. Schematic of the characteristic pathway diameter concept. (Red arrows highlight the characteristic pathway for the Ni phase, and percolating TPB between Ni (red), YSZ (gray) and pore (transparent) are circled in green). Reproduced from [52]. © 2019 The Electrochemical Society.
Figure 5. Cross-sections SEM images of (a)-(c) pure Ni anodes reduced at 500 C, (d), (e) 800 C and (f), (g) 1000 C, (a) right after reduction, (b), (d), (f) before operation and (c), (e), (g) after operation and kept at 800 C under humidified hydrogen for 100 h [64].
Figure 6. TEM images of YSZ powders after 72 h milling. (a) As-received Tosoh YSZ (b) calcined at 1300, milled for 72 h (c) calcined at 1400, milled for 72 h and (d) calcined at 1500, milled for 72 h. [79] John Wiley & Sons. [© 2011 The American Ceramic Society].
Figure 7. (a) YSZ zeta potential curve as a function of pH and (b) amount of acid or base per unit of YSZ surface consumed for pH adjustment. Reprinted from [76]. Copyright (2012), with permission from Elsevier.
Figure 8. SEM images of the YSZ substrate sintered at 1350 C. (a) Tosoh YSZ + 20 vol.% graphite, (b) Tosoh YSZ + 20 vol.% PMMA, (c) calcined 1500 C-milled YSZ + 20 vol.% graphite and (d) calcined 1500 C-milled YSZ + 20 vol.% PMMA. [79] John Wiley & Sons. [© 2011 The American Ceramic Society].
Figure 9. (a) Ni-YSZ coverage by SDC near the interface of the fuel electrode and electrolyte, (b) YSZ coverage by LSM near the interface of the cathode and electrolyte. Reprinted from [99]. Copyright (2014), with permission from Elsevier.
Figure 10. (a) Electrochemical performance of the Ni-SDC infiltrated cell at different temperatures, (b) OCV curve during a redox cycling test at 650 C. Reproduced from [109]. © 2014 The Electrochemical Society.
Figure 11. SEM images showing the microstructure of infiltrated porous YSZ support structures (a) within the Ni-SDC infiltrated porous YSZ anode and (b) within the middle of a typical Ni infiltrated porous YSZ support. Reprinted from [14]. Copyright (2014), with permission from Elsevier.
Figure 12. SEM images of the cross-section of the anode after running under humidified hydrogen for 150 h. (a) Substrate with fine YSZ grains and pores (b) substrate with large pores. Reprinted from [110]. Copyright (2015), with permission from Elsevier.
Figure 13. SEM images of the cell following testing. (a) Interfaces between cathode, electrolyte, and part of the cell anode, (b) interface between Ni-YSZ support and Ni-BZCYYb AFL. [122] John Wiley & Sons. [© 2017 The American Ceramic Society].
Figure 14. Location of the samples taken from the inlet, middle and the outlet of the cell. Reprinted from [126]. Copyright (2015), with permission from Elsevier.
Figure 15. Quantified microstructure parameters conducted for the reference sample and the sample after 3700 h of long-term SOFC operation for (a) TPB length density (b) average grain size (c) tortuosity factor and (d) volume fraction. Samples were taken at different locations of the cell in the vicinity of the anode/electrolyte interface. Reprinted from [126]. Copyright (2015), with permission from Elsevier.
Figure 16. Stability test for a stack operating at 700 C with 0.5 A cm-2. The fluctuations of the voltage for cell 6 is due to a contact wire issue and not the degradation. Reprinted from [126]. Copyright (2015), with permission from Elsevier.
Figure 17. Visualization of skeletonized phase networks in the anode sample after redox cycling for Ni (top left), YSZ (top right), pores (bottom left) and all three skeletons superimposed. Reprinted from [153]. Copyright (2013), with permission from Elsevier.
Figure 19. Stability tests of stacks developed at Julich with different IC protective coating, cathode contact material and IC materials (Crofer 22 APU vs ITM). Reprinted from [125]. Copyright (2020), with permission from Elsevier.
Figure 21. Stability of different stacks developed at Julich with WPS-MnOx protective coating onto the IC at 700 C and 800 C. As can be seen, changing the IC material did not affect the degradation rate. Reprinted from [125]. Copyright (2020), with permission from Elsevier.
Figure 22. The effect of fuel type and fuel utilization on the stability of two stacks at 700 C developed at Julich. The composition of the single cells is described in table 2. Stack 2018-07 undergoes a change of fuel utilization from 40% to 80% and type of fuel from hydrogen to liquefied natural gas. Reprinted from [125]. Copyright (2020), with permission from Elsevier.
Table 1. Summary of the long-term stack and single cell tests mentioned in the text. SP, FL, TC, CD, FU, OU, WPS and T stand for screen print, functional layer thermal cycling, current density, fuel utilization, oxygen utilization, wet powder spray and temperature, correspondingly.
Year Anode Electrolyte Cathode Studied parameters Reason for degradation Improving factor Degradation rate (% in mV kh-1) Test condition Duration (h) Reference 1 2015Six-cell stack
SOFC power Co.Ni-YSZ240 m YSZ GDC + LSCF/GDC 50 mLSCF contact layer Ni-YSZ anode microstructure FIB-SEM 3D reconstruction Ni coarsening specially at the inlet of the cell Reduction of Ni:YSZ ratio from 50:50 vol.% to lower value a sign of the diffusion of Ni from FL to the Supp. Reduction of TBP density from 5 to 3 m m-3 close to the electrolyte Improvement of the mixed conducting LSCF cathode kinetics gradually Increase of the volume fraction of the YSZ close to the electrolyte extending the reaction zone Design factors such as the gas distributor channels and temperature management affect the microstructure locally 0 T: 800 CH2 1.8 l min-1
N2 1.2 l min-1
Air 18 l min-1
FU 75%
Air inlet 630 C
Fuel inlet 550 C3700 [126] 2 2017Commercial cell Ni-YSZ500 m
Ni-YSZ FL
12m 3-YSZ GDC(2 m) + LSC (10-20 m) Performance of the stack at high flow of H2 and air Performance of the stack at low flow of H2 and air 60 thermal cycles (700 C-250 C and 700 C-50 C) For long-term test before the thermal cycles: Ni agglomeration at anode (also new pore formation) After thermal cycles: vertical cracks inside the cathode + cathode/GDC interface separation (CTE mismatch) Cells were resistant to thermal cycles For 700 C-250 C and 700 C-50 C thermal cycles: almost the same degradation rates Increasing the T from 700 C to 800 C and returning back to 700 C power recovery for 8.1% 1.16 for I2.64 for II T: 700 CI: 3000 h: H2 0.8 l min-1 and air 2 LPM
II: 2000 h: H2 0.5 LPM and air 1.5 LPM
CD 0.4 A cm-2
TC 1 C min-15000 [127] 3 2012Four-cell stack Ni-YSZ YSZ LSM The effect of spinel protective coating onto the IC to suppress Cr species evaporation and migration at cathode side Mn diffusion from LSM into the YSZ grain boundary YSZ fracture + short circuiting the cell MCF coating protective spinel onto the IC and LCC10 contact suppressing Cr evaporation and migration into the cathode 0.5 T 800 CFU 39.8%
OU 26.6%
CD 0.5 A cm-219 000 [128] 4 2011Two-cell stack
F1002-95Ni-YSZ YSZ GDC (7 m) + LSCF (40 m)Cr-retention layer Post-mortem analysis of the microstructure and composition Interaction between LSCF and Cr evaporated from the IC SrCrO4 crystals formation at IC/cathode interface and forming insulating layer gradually Iron oxide corroded spots close to the IC/protective coat interface due to the lack of Cr inside the IC MnOx protective coat and perovskite contact layer onto the IC at the air side suppressing Cr species evaporation from IC 1 T 700 CCD 0.5 A cm-2
Fuel: 3% humidified H2
FU 40%
Air17 660 [129] 5 2013Stack
F1002-97Ni-8 YSZ(1 mm) YSZ10 m GDC(5 m SP) + LSCF (SP)
MnOx protective layer + LCC12 contact layer by WPSThe effect of protective layer coated onto the IC on the stability of the cell Coating methods of layers Cr poisoning of the cathode from the IC Thermomechanical stress onto the sealing material Temperature gradient inside the large cell surface and stress into the sealing gas leakage Protective later onto the IC to trap the Cr species Optimized sealing material reliable sealing in long-term Changing the design of the ICs for better gas flow and sealing issues Adding LCC10 contact layer to reduce the degradation (compared 3500 h without this layer) 0.9(before 4 kh)
0.3
(40-70 kh)
0.6
(0-70 kh average)T 700 CCD 0.5 A cm-2
H2 1.400 SLM
H2O 0.373 SLM
Air 5.280 SLM (dried with due point of -40 C)
FU 40%
OU 25%45 000 [130] 6 2013Four-cell stack
F1004-21Ni-8 YSZ 8-YSZ GDC/LSCF The effect of protective layer coated onto the IC on stability Coating methods of layers Compared to 45 000 h: Coating GDC layer by physical vapor deposition (PVD) for a denser layer less unwanted diffusions into the electrolyte IC protective layer is coated by atmospheric plasma spray (APS) method denser layer and less Cr diffusion into the cathode 0.12 T 700 CAir 5280 SLM
H2 1400 SLM
H2O 0.373 SLM
FU 40%
CD 0.5 A cm-215 000 [130] 7 2018Four-cell stack
F1004-21Ni-YSZSupp. 500 m
FL
7m
Tape castYSZ10 m (SP) GDC(PVD 1 m) + LSCF 50 m
LCC12 contact WPS
Cr-retention layer APSPost-mortem microstructural analysis Providing a hypothesis for degradation reason Delamination of the anode/electrolyte interface (Mn diffusion from contact layer coated onto the IC to the YSZ grain boundaries) manganese oxide containing secondary phase formation inside YSZ grain boundaries YSZ fracture and possibly gas leakage Cr-retention layer was coated by APS denser layer to suppress Cr diffusion into the cathode Very low Cr content inside the cathode was found after the test low degradation rate is attributed to low Cr species inside the cathode Volatize manganese oxide species should be avoided at cathode contact layer replacing contact layer to a contact layer without Mn 0.2 T 700 CCD 0.5 A cm-2
H2 2.8 nl min-1
H2O 0.747 nl min-1
Air 6.64 nl min-1
FU 40%35 000 [131] 8 2020Julich stacks comparison
Electrolyte-supported cellNi-YSZNi:YSZ
Vol ratio = 60:40YSZ1500 C sinter GDC + LSCFLSM-YSZ Different protective coatings for Cr retention (WPS MnOx vs APS-MCF) Different contact layer on cathode side (LCC12, LCC10, LSCF) Different IC material (ITM vs Crofer 22 APU) Operation temperature (700 C vs 800 C) Different fuel utilizations Different fuels (H2 vs CH4) Increasing the operation T by 100 C, increases the degradation rate by a factor of 1.5-2 Applying cathode protective coat with WPS cannot suppress Cr diffusion into the cathode completely Mn diffuses from the contact layer (in the case of existing Mn inside contact layer) or LSM (being as the cathode) into the electrolyte grain boundaries Changing the coating method of Cr retention layer from WPS to APS denser layer for suppressing Cr diffusion into the cathode No remarkable change in degradation using IC materials Changing the Mn containing contact layer to LSFC possibly reduces Mn diffusion into the YSZ grains Applying GDC by PVD method instead of SP method denser layer and less Sr-zirconate formation at electrolyte surface No change in degradation rate is noticed by increasing the FU or changing the fuel to liquid natural gas Changing the cathode from LSM/YSZ to LSCF without Mn Glass ceramic crystallization at 850 C for 10 h no interaction with the IC 0.2(the least voltage degradation value reported by them) T 700 C and 800 CCD 0.5 A cm-2
Fuels:
H2 (20% humidified)
Dry H2
CH4/H2
FU 40%-80%For different stacks (5450-93 kh) [125] 9 2018Five-cell stack Ni-YSZ YSZ LCN-YSZ Degradation of the interfaces (anode/electrolyte/cathode current collector interface) Oxidation of IC at cathode side due to leakage of hydrogen and accelerating the iron oxides formation Coating Ni paste at anode side between Ni foam and the anode Mn2O3-LCN layer formation at oxide scale of the IC on cathode side lowering the contact resistance and suppressing the oxidation of steel IC 1.5 T 750 CH2: 1.67 SLM
Air: 3 SLM
CD 335 mA cm-24400 [132] Table 2. Components for different stacks developed at Julich. SP, WPS and IC stand for screen print, wet powder spray and interconnect. All cells are composed of Ni-YSZ anode and YSZ electrolyte. Reprinted from [125]. Copyright (2020), with permission from Elsevier.
Composition Operation parameter Stack (reference) Cathode Barrier layer Cathode contact layer IC Cr-retention layer IC Temp (C) Current density (A cm-2) Fuel Fuel utilization (%) Operation time Voltage degradation rate (%kh-1) Reference F1002-95 LSCF GDC (SP) LCC12 WPS-MnOx Crofer22APU 700 0.5 H2 40 17 660 1-1.4 [129] F1002-97 LSCF GDC (SP) LCC10 WPS-MnOx TIM 700 0.5 H2 40 >93 000 1/0.55 [123] F1004-21 LSCF GDC (PVD) LCC12 APS-MCF Crofer22APU 700 0.5 H2 40 34 500 0.2 [131] F1004-67 LSCF GDC (SP) LSCF APS-MCF Crofer22APU 700 0.5 H2 40 >23 500 0.3 [201] F1002-132 LSCF GDC (SP) LCC12 WPS-MnOx ITM 800 0.5 H2 40 15 144 1.5 [202] F1004-08 LSM/8 YSZ LCC10 APS-MCF Crofer22APU 800 0.5 H2 40 19 036 0.4 [128] F2018-07 LSCF GDC (SP) LCC10 APS-MCF Crofer22APU 700 0.5 CH4/H2 70-80 5450 0.3 [203] -
[1] Ng K H, Rahman H A, Somalu M R 2019 Review: enhancement of composite anode materials for low-temperature solid oxide fuels Int. J. Hydrog. Energy 44 30692-704 doi: 10.1016/j.ijhydene.2018.11.137 [2] Zakaria Z, Awang Mat Z, Abu Hassan S H, Boon Kar Y 2020 A review of solid oxide fuel cell component fabrication methods toward lowering temperature Int. J. Energy Res. 44 594-611 doi: 10.1002/er.4907 [3] Khan M S, Lee S-B, Song R-H, Lee J-W, Lim T-H, Park S-J 2016 Fundamental mechanisms involved in the degradation of nickel-yttria stabilized zirconia (Ni-YSZ) anode during solid oxide fuel cells operation: a review Ceram. Int. 42 35-48 doi: 10.1016/j.ceramint.2015.09.006 [4] Jiang S P, Chen X 2014 Chromium deposition and poisoning of cathodes of solid oxide fuel cellsa review Int. J. Hydrog. Energy 39 505-31 doi: 10.1016/j.ijhydene.2013.10.042 [5] Shi N, Xie Y, Yang Y, Xue S, Li X, Zhu K, Huan D, Peng R, Xia C, Lu Y 2020 Review of anodic reactions in hydrocarbon fueled solid oxide fuel cells and strategies to improve anode performance and stability Mater. Renew. Sustain. Energy 9 6 doi: 10.1007/s40243-020-0166-8 [6] Gao Z, Mogni L V, Miller E C, Railsback J G, Barnett S A 2016 A perspective on low-temperature solid oxide fuel cells Energy Environ. Sci. 9 1602-44 doi: 10.1039/c5ee03858h [7] Shaigan N, Qu W, Ivey D G, Chen W 2010 A review of recent progress in coatings, surface modifications and alloy developments for solid oxide fuel cell ferritic stainless steel interconnects J. Power Sources 195 1529-42 doi: 10.1016/j.jpowsour.2009.09.069 [8] Fan L, Zhu B, Su P-C, He C 2018 Nanomaterials and technologies for low temperature solid oxide fuel cells: recent advances, challenges and opportunities Nano Energy 45 148-76 doi: 10.1016/j.nanoen.2017.12.044 [9] Chen Y, Lin Y, Zhang Y, Wang S, Su D, Yang Z, Han M, Chen F 2014 Low temperature solid oxide fuel cells with hierarchically porous cathode nano-network Nano Energy 8 25-33 doi: 10.1016/j.nanoen.2014.05.010 [10] Jiang S P, Badwal S P S 1999 An electrode kinetics study of H2 oxidation on Ni/Y2O3-ZrO2 cermet electrode of the solid oxide fuel cell Solid State Ion. 123 209-24 doi: 10.1016/s0167-2738(99)00124-1 [11] Verda V, Ciano C 2008 Tubular cells and stacks Modeling Solid Oxide Fuel Cells: Methods, Procedures and TechniquesBove R, Ubertini S 2008 DordrechtSpringer Netherlands 207-38 doi: 10.1007/978-1-4020-6995-6_7 [12] Tanasini P, Cannarozzo M, Costamagna P, Faes A, van Herle J, Hessler-Wyser A, Comninellis C 2009 Experimental and theoretical investigation of degradation mechanisms by particle coarsening in SOFC electrodes Fuel Cells 9 740-52 doi: 10.1002/fuce.200800192 [13] Abdeljawad F, Haataja M 2013 Microstructural coarsening effects on redox instability and mechanical damage in solid oxide fuel cell anodes J. Appl. Phys. 114 183519 doi: 10.1063/1.4830015 [14] Hanifi A R, Paulson S, Torabi A, Shinbine A, Tucker M C, Birss V, Etsell T H, Sarkar P 2014 Slip-cast and hot-solution infiltrated porous yttria stabilized zirconia (YSZ) supported tubular fuel cells J. Power Sources 266 121-31 doi: 10.1016/j.jpowsour.2014.05.001 [15] Abdeljawad F, Vlker B, Davis R, McMeeking R M, Haataja M 2014 Connecting microstructural coarsening processes to electrochemical performance in solid oxide fuel cells: an integrated modeling approach J. Power Sources 250 319-31 doi: 10.1016/j.jpowsour.2013.10.121 [16] Chen-Wiegart Y-C K, Kennouche D, Scott Cronin J, Barnett S A, Wang J 2016 Effect of Ni content on the morphological evolution of Ni-YSZ solid oxide fuel cell electrodes Appl. Phys. Lett. 108 083903 doi: 10.1063/1.4942459 [17] Xiao G, Chen F 2014 Redox stable anodes for solid oxide fuel cells Front. Energy Res. 2 1-13 doi: 10.3389/fenrg.2014.00018 [18] Jiang S P 2003 Sintering behavior of Ni/Y2O3-ZrO2 cermet electrodes of solid oxide fuel cells J. Mater. Sci. 38 3775-82 doi: 10.1023/A:1025936317472 [19] Haile S M 2003 Fuel cell materials and components Acta Mater. 51 5981-6000 doi: 10.1016/j.actamat.2003.08.004 [20] Singh B, Ghosh S, Aich S, Roy B 2017 Low temperature solid oxide electrolytes (LT-SOE): a review J. Power Sources 339 103-35 doi: 10.1016/j.jpowsour.2016.11.019 [21] Thyden K, Liu Y L, Bilde-Sorensen J B 2008 Microstructural characterization of SOFC Ni-YSZ anode composites by low-voltage scanning electron microscopy Solid State Ion. 178 1984-9 doi: 10.1016/j.ssi.2007.12.075 [22] Hanna J, Lee W Y, Shi Y, Ghoniem A F 2014 Fundamentals of electro- and thermochemistry in the anode of solid-oxide fuel cells with hydrocarbon and syngas fuels Prog. Energy Combust. Sci. 40 74-111 doi: 10.1016/j.pecs.2013.10.001 [23] Mahato N, Banerjee A, Gupta A, Omar S, Balani K 2015 Progress in material selection for solid oxide fuel cell technology: a review Prog. Mater. Sci. 72 141-337 doi: 10.1016/j.pmatsci.2015.01.001 [24] Shri Prakash B, Senthil Kumar S, Aruna S T 2014 Properties and development of Ni/YSZ as an anode material in solid oxide fuel cell: a review Renew. Sustain. Energy Rev. 36 149-79 doi: 10.1016/j.rser.2014.04.043 [25] Jiang S P, Badwal S P S 1997 Hydrogen oxidation at the nickel and platinum electrodes on yttriatetragonal zirconia electrolyte J. Electrochem. Soc. 144 3777-84 doi: 10.1149/1.1838091 [26] Rafique M, Nawaz H, Shahid Rafique M, Bilal Tahir M, Nabi G, Khalid N R 2019 Material and method selection for efficient solid oxide fuel cell anode: recent advancements and reviews Int. J. Energy Res. 43 2423-46 doi: 10.1002/er.4210 [27] Jiang S P 2003 A comparative study of fabrication and performance of Ni/3 mol % Y2O3ZrO2 and Ni/8 mol % Y2O3ZrO2 cermet electrodes J. Electrochem. Soc. 150 E548 doi: 10.1149/1.1612505 [28] Vafaeenezhad S, Sandhu N K, Hanifi A R, Etsell T H, Sarkar P 2019 Development of proton conducting fuel cells using nickel metal support J. Power Sources 435 226763 doi: 10.1016/j.jpowsour.2019.226763 [29] Zhao F, Virkar A V 2005 Dependence of polarization in anode-supported solid oxide fuel cells on various cell parameters J. Power Sources 141 79-95 doi: 10.1016/j.jpowsour.2004.08.057 [30] Atkinson A, Barnett S, Gorte R J, Irvine J T S, McEvoy A J, Mogensen M, Singhal S C, Vohs J 2004 Advanced anodes for high-temperature fuel cells Nat. Mater. 3 17-27 doi: 10.1038/nmat1040 [31] Brown M, Primdahl S, Mogensen M 2000 Structure/performance relations for Ni/yttria-stabilized zirconia anodes for solid oxide fuel cells J. Electrochem. Soc. 147 475 doi: 10.1149/1.1393220 [32] Deseure J, Bultel Y, Dessemond L, Siebert E 2005 Theoretical optimisation of a SOFC composite cathode Electrochim. Acta 50 2037-46 doi: 10.1016/j.electacta.2004.09.012 [33] Yu J H, Park G W, Lee S, Woo S K 2007 Microstructural effects on the electrical and mechanical properties of Ni-YSZ cermet for SOFC anode J. Power Sources 163 926-32 doi: 10.1016/j.jpowsour.2006.10.017 [34] Hanifi A R, Laguna-Bercero M A, Sandhu N K, Etsell T H, Sarkar P 2016 Tailoring the microstructure of a solid oxide fuel cell anode support by calcination and milling of YSZ Sci. Rep. 6 27359 doi: 10.1038/srep27359 [35] Morales M, Laguna-Bercero M 2018 Influence of anode functional layers on electrochemical performance and mechanical strength in microtubular solid oxide fuel cells fabricated by gel-casting ACS Appl. Energy Mater. 1 2024-31 doi: 10.1021/acsaem.8b00115 [36] Laguna-Bercero M A 2012 Recent advances in high temperature electrolysis using solid oxide fuel cells: a review J. Power Sources 203 4-16 doi: 10.1016/j.jpowsour.2011.12.019 [37] Koide H, Someya Y, Yoshida T, Maruyama T 2000 Properties of Ni/YSZ cermet as anode for SOFC Solid State Ion. 132 253-60 doi: 10.1016/s0167-2738(00)00652-4 [38] Wilson J R, Barnett S A 2008 Solid oxide fuel cell Ni-YSZ anodes: effect of composition on microstructure and performance Electrochem. Solid-State Lett. 11 B181 doi: 10.1149/1.2960528 [39] Lee J H, Moon H, Lee H W, Kim J, Kim J D, Yoon K H 2002 Quantitative analysis of microstructure and its related electrical property of SOFC anode, Ni-YSZ cermet Solid State Ion. 148 15-26 doi: 10.1016/S0167-2738(02)00050-4 [40] Xi X, Abe H, Naito M 2014 Effect of composition on microstructure and polarization resistance of solid oxide fuel cell anode Ni-YSZ composites made by co-precipitation Ceram. Int. 40 16549-55 doi: 10.1016/j.ceramint.2014.08.009 [41] Vivet N, Chupin S, Estrade E, Richard A, Bonnamy S, Rochais D, Bruneton E 2011 Effect of Ni content in SOFC Ni-YSZ cermets: a three-dimensional study by FIB-SEM tomography J. Power Sources 196 9989-97 doi: 10.1016/j.jpowsour.2011.07.010 [42] Hong H S, Chae U-S, Choo S-T 2008 The effect of ball milling parameters and Ni concentration on a YSZ-coated Ni composite for a high temperature electrolysis cathode J. Alloys Compd. 449 331-4 doi: 10.1016/j.jallcom.2006.01.131 [43] Pratihar S K, Dassharma A, Maiti H S 2005 Processing microstructure property correlation of porous Ni-YSZ cermets anode for SOFC application Mater. Res. Bull. 40 1936-44 doi: 10.1016/j.materresbull.2005.06.002 [44] Clemmer R M C, Corbin S F 2009 The influence of pore and Ni morphology on the electrical conductivity of porous Ni/YSZ composite anodes for use in solid oxide fuel cell applications Solid State Ion. 180 721-30 doi: 10.1016/j.ssi.2009.02.030 [45] Minh N Q 1993 Ceramic fuel cells J. Am. Ceram. Soc. 76 563-88 doi: 10.1111/j.1151-2916.1993.tb03645.x [46] Morales M, Laguna-Bercero M A, Navarro M E, Espiell F, Segarra M 2015 The effect of anode support on the electrochemical performance of microtubular solid oxide fuel cells fabricated by gel-casting RSC Adv. 5 39350-7 doi: 10.1039/c5ra02304a [47] Morales M, Laguna-Bercero M A 2017 Microtubular solid oxide fuel cells fabricated by gel-casting: the role of supporting microstructure on the mechanical properties RSC Adv. 7 17620-8 doi: 10.1039/c7ra01259d [48] Monzn H, Laguna-Bercero M A, Larrea A, Arias B I, Vrez A, Levenfeld B 2014 Design of industrially scalable microtubular solid oxide fuel cells based on an extruded support Int. J. Hydrog. Energy 39 5470-6 doi: 10.1016/j.ijhydene.2014.01.010 [49] Laguna-Bercero M A, Hanifi A R, Menand L, Sandhu N K, Anderson N E, Etsell T H, Sarkar P 2018 The effect of pore-former morphology on the electrochemical performance of solid oxide fuel cells under combined fuel cell and electrolysis modes Electrochim. Acta 268 195-201 doi: 10.1016/j.electacta.2018.02.055 [50] Jrgensen P S, Ebbehj S L, Hauch A 2015 Triple phase boundary specific pathway analysis for quantitative characterization of solid oxide cell electrode microstructure J. Power Sources 279 686-93 doi: 10.1016/j.jpowsour.2015.01.054 [51] Trini M, Jrgensen P S, Hauch A, Chen M, Hendriksen P V 2017 Microstructural characterization of Ni/YSZ electrodes in a solid oxide electrolysis stack tested for 9000 hours ECS Trans. 78 3049-64 doi: 10.1149/07801.3049ecst [52] Trini M, Jrgensen P S, Hauch A, Bentzen J J, Hendriksen P V, Chen M 2019 3D microstructural characterization of Ni/YSZ electrodes exposed to 1 year of electrolysis testing J. Electrochem. Soc. 166 F158-67 doi: 10.1149/2.1281902jes [53] Iwai H, et al 2010 Quantification of SOFC anode microstructure based on dual beam FIB-SEM technique J. Power Sources 195 955-61 doi: 10.1016/j.jpowsour.2009.09.005 [54] Kishimoto M, Iwai H, Saito M, Yoshida H 2011 Quantitative evaluation of solid oxide fuel cell porous anode microstructure based on focused ion beam and scanning electron microscope technique and prediction of anode overpotentials J. Power Sources 196 4555-63 doi: 10.1016/j.jpowsour.2010.12.100 [55] Wilson J R, Kobsiriphat W, Mendoza R, Chen H-Y, Hiller J M, Miller D J, Thornton K, Voorhees P W, Adler S B, Barnett S A 2006 Three-dimensional reconstruction of a solid-oxide fuel-cell anode Nat. Mater. 5 541-4 doi: 10.1038/nmat1668 [56] Izzo J R, Joshi A S, Grew K N, Chiu W K S, Tkachuk A, Wang S H, Yun W 2008 Nondestructive reconstruction and analysis of SOFC anodes using x-ray computed tomography at sub-50 nm resolution J. Electrochem. Soc. 155 B504 doi: 10.1149/1.2895067 [57] Chen H-Y, Yu H-C, Scott Cronin J, Wilson J R, Barnett S A, Thornton K 2011 Simulation of coarsening in three-phase solid oxide fuel cell anodes J. Power Sources 196 1333-7 doi: 10.1016/j.jpowsour.2010.08.010 [58] Kishimoto M, Miyawaki K, Iwai H, Saito M, Yoshida H 2013 Effect of composition ratio of Ni-YSZ anode on distribution of effective three-phase boundary and power generation performance Fuel Cells 13 476-86 doi: 10.1002/fuce.201200174 [59] Pihlatie M H, Kaiser A, Mogensen M, Chen M 2011 Electrical conductivity of Ni-YSZ composites: degradation due to Ni particle growth Solid State Ion. 189 82-90 doi: 10.1016/j.ssi.2011.02.001 [60] Lee Y-H, Muroyama H, Matsui T, Eguchi K 2014 Degradation of nickel-yttria-stabilized zirconia anode in solid oxide fuel cells under changing temperature and humidity conditions J. Power Sources 262 451-6 doi: 10.1016/j.jpowsour.2014.03.031 [61] Cheng S-W, Tsai C-H, Wu S-H, Liu C-K, Cheng Y-N, Lee R-Y 2015 Effects of reduction process on the electrochemical and microstructural properties for electrolyte-supported SOFC Int. J. Hydrog. Energy 40 1534-40 doi: 10.1016/j.ijhydene.2014.11.034 [62] Monzn H, Laguna-Bercero M A 2016 The influence of the reducing conditions on the final microstructure and performance of nickel-yttria stabilized zirconia cermets Electrochim. Acta 221 41-47 doi: 10.1016/j.electacta.2016.10.152 [63] Li T S, Wang W G, Miao H, Chen T, Xu C 2010 Effect of reduction temperature on the electrochemical properties of a Ni/YSZ anode-supported solid oxide fuel cell J. Alloys Compd. 495 138-43 doi: 10.1016/j.jallcom.2010.01.103 [64] Jiao Z, Shikazono N 2015 Quantitative study on the correlation between solid oxide fuel cell Ni-YSZ composite anode performance and reduction temperature based on three-dimensional reconstruction J. Electrochem. Soc. 162 F571-8 doi: 10.1149/2.0721506jes [65] Skinner S J 2019 Recent advances in the understanding of the evolution of surfaces and interfaces in solid oxide cells Adv. Mater. Interfaces 6 1-7 doi: 10.1002/admi.201900580 [66] Liu -S-S, Jiao Z, Shikazono N, Matsumura S, Koyama M 2015 Observation of the Ni/YSZ interface in a conventional SOFC J. Electrochem. Soc. 162 F750-4 doi: 10.1149/2.0591507jes [67] Revcolevschi A, Dhalenne G 1985 Crystallographically aligned metal-oxide composite made by reduction of a directionally solidified oxide-oxide eutectic Nature 316 335-6 doi: 10.1038/316335a0 [68] Merino R I, Pena J I, Laguna-Bercero M A, Larrea A, Orera V M 2004 Directionally solidified calcia stabilised zirconia-nickel oxide plates in anode supported solid oxide fuel cells J. Eur. Ceram. Soc. 24 1349-53 doi: 10.1016/S0955-2219(03)00562-4 [69] Cubero A, Pea J I, Laguna-Bercero M A 2015 Optimization of Ni-YSZ solid oxide fuel cell anodes by surface laser melting Appl. Surf. Sci. 335 39-43 doi: 10.1016/j.apsusc.2015.01.230 [70] Laguna-Bercero M A, Larrea A, Merino R I, Pea J I, Orera V M 2005 Stability of channeled Ni-YSZ cermets produced from self-assembled NiO-YSZ directionally solidified eutectics J. Am. Ceram. Soc. 88 3215-7 doi: 10.1111/j.1551-2916.2005.00540.x [71] Laguna-Bercero M A, Larrea 2007 YSZ-induced crystallographic reorientation of Ni particles in Ni-YSZ cermets J. Am. Ceram. Soc. 90 2954-60 doi: 10.1111/j.1551-2916.2007.01824.x [72] Jeangros Q, Faes A, Wagner J B, Hansen T W, Aschauer U, van Herle J, Hessler-Wyser A, Dunin-Borkowski R E 2010 In situ redox cycle of a nickel-YSZ fuel cell anode in an environmental transmission electron microscope Acta Mater. 58 4578-89 doi: 10.1016/j.actamat.2010.04.019 [73] Muoz M C, Gallego S, Beltrn J I, Cerd J 2006 Adhesion at metal-ZrO2 interfaces Surf. Sci. Rep. 61 303-44 doi: 10.1016/j.surfrep.2006.03.002 [74] Liu -S-S, Saha L C, Iskandarov A, Ishimoto T, Yamamoto T, Umeno Y, Matsumura S, Koyama M 2019 Atomic structure observations and reaction dynamics simulations on triple phase boundaries in solid-oxide fuel cells Commun. Chem. 2 1-9 doi: 10.1038/s42004-019-0148-x [75] Jiang S P, Zhang S, Zhen Y D, Wang W 2005 Fabrication and performance of impregnated Ni anodes of solid oxide fuel cells J. Am. Ceram. Soc. 88 1779-85 doi: 10.1111/j.1551-2916.2005.00362.x [76] Hanifi A R, Zazulak M, Etsell T H, Sarkar P 2012 Effects of calcination and milling on surface properties, rheological behaviour and microstructure of 8mol% yttria-stabilised zirconia (8 YSZ) Powder Technol. 231 35-43 doi: 10.1016/j.powtec.2012.07.040 [77] Hanifi A R, Torabi A, Etsell T H, Yamarte L, Sarkar P 2011 Porous electrolyte-supported tubular micro-SOFC design Solid State Ion. 192 368-71 doi: 10.1016/j.ssi.2010.07.010 [78] Hanifi A R, Torabi A, Shinbine A, Etsell T H, Sarkar P 2011 Fabrication of thin porous electrolyte-supported tubular fuel cells using slip casting J. Ceram. Process. Res. 12 336-42 [79] Hanifi A R, Shinbine A, Etsell T H, Sarkar P 2012 Development of monolithic YSZ porous and dense layers through multiple slip casting for ceramic fuel cell applications Int. J. Appl. Ceram. Technol. 9 1011-21 doi: 10.1111/j.1744-7402.2011.02617.x [80] Hanifi A R, Zahiri B, Mitlin D, Vincent A L, Etsell T H, Sarkar P 2016 Effects of washing and calcination-milling on ionic release and surface properties of yttria stabilized zirconia Ceram. Int. 42 6755-60 doi: 10.1016/j.ceramint.2016.01.049 [81] Othman M H D, Droushiotis N, Wu Z, Kelsall G, Li K 2011 High-performance, anode-supported, microtubular SOFC prepared from single-step-fabricated, dual-layer hollow fibers Adv. Mater. 23 2480-3 doi: 10.1002/adma.201100194 [82] Ren C, Zhang Y, Xu Q, Tian T, Chen F 2020 Effect of non-solvent from the phase inversion method on the morphology and performance of the anode supported microtubular solid oxide fuel cells Int. J. Hydrog. Energy 45 6926-33 doi: 10.1016/j.ijhydene.2019.12.104 [83] Ab Rahman M, et al 2020 Development of high-performance anode/electrolyte/cathode micro-tubular solid oxide fuel cell via phase inversion-based co-extrusion/co-sintering technique J. Power Sources 467 228345 doi: 10.1016/j.jpowsour.2020.228345 [84] Emley B, Panthi D, Du Y, Yao Y 2020 Controlling porosity of anode support in tubular solid oxide fuel cells by freeze casting J. Electrochem. Energy Convers. Storage 17 1-10 doi: 10.1115/1.4046489 [85] Chen Y, Bunch J, Li T, Mao Z, Chen F 2012 Novel functionally graded acicular electrode for solid oxide cells fabricated by the freeze-tape-casting process J. Power Sources 213 93-99 doi: 10.1016/j.jpowsour.2012.03.109 [86] Sholklapper T Z, Jacobson C P, Visco S J, Dejonghe L C 2008 Synthesis of dispersed and contiguous nanoparticles in solid oxide fuel cell electrodes Fuel Cells 8 303-12 doi: 10.1002/fuce.200800030 [87] Vohs J M, Gorte R J 2009 High-performance SOFC cathodes prepared by infiltration Adv. Mater. 21 943-56 doi: 10.1002/adma.200802428 [88] Jiang S P 2012 Nanoscale and nano-structured electrodes of solid oxide fuel cells by infiltration: advances and challenges Int. J. Hydrog. Energy 37 449-70 doi: 10.1016/j.ijhydene.2011.09.067 [89] Sholklapper T Z, Lu C, Jacobson C P, Visco S J, de Jonghe L C 2006 LSM-infiltrated solid oxide fuel cell cathodes Electrochem. Solid-State Lett. 9 A376-8 doi: 10.1149/1.2206011 [90] Laguna-Bercero M A, Hanifi A R, Etsell T H, Sarkar P, Orera V M 2015 Microtubular solid oxide fuel cells with lanthanum strontium manganite infiltrated cathodes Int. J. Hydrog. Energy 40 5469-74 doi: 10.1016/j.ijhydene.2015.01.060 [91] Burye T E, Tang H, Nicholas J D 2016 The effect of precursor solution desiccation or nano-ceria pre-infiltration on various La0.6Sr0.4FeyCo1-yO3-x infiltrate compositions J. Electrochem. Soc. 163 F1017-22 doi: 10.1149/2.0431609jes [92] Shah M, Barnett S A 2008 Solid oxide fuel cell cathodes by infiltration of La0.6Sr0.4Co0.2Fe0.8O3- into Gd-doped ceria Solid State Ion. 179 2059-64 doi: 10.1016/j.ssi.2008.07.002 [93] Vincent A L, Hanifi A R, Luo J-L, Chuang K T, Sanger A R, Etsell T H, Sarkar P 2012 Porous YSZ impregnated with La0.4Sr0.5Ba0.1TiO3 as a possible composite anode for SOFCs fueled with sour feeds J. Power Sources 215 301-6 doi: 10.1016/j.jpowsour.2012.04.063 [94] Vincent A L, Hanifi A R, Zazulak M, Luo J-L, Chuang K T, Sanger A R, Etsell T, Sarkar P 2013 Preparation and characterization of an solid oxide fuel cell tubular cell for direct use with sour gas J. Power Sources 240 411-6 doi: 10.1016/j.jpowsour.2013.03.104 [95] Choi S, Yoo S, Shin J-Y, Kim G 2011 High performance SOFC cathode prepared by infiltration of Lan+1NinO3n+1 (n = 1, 2, and 3) in porous YSZ J. Electrochem. Soc. 158 B995 doi: 10.1149/1.3598170 [96] Li Y, Zhang S-L, Li C-X, Wei T, Yang G-J, Li C-J, Liu M 2016 La2NiO4+ infiltration of plasma-sprayed LSCF coating for cathode performance improvement J. Therm. Spray Technol. 25 392-400 doi: 10.1007/s11666-015-0369-1 [97] Laguna-Bercero M A, Hanifi A R, Monzn H, Cunningham J, Etsell T H, Sarkar P 2014 High performance of microtubular solid oxide fuel cells using Nd2NiO4+-based composite cathodes J. Mater. Chem. A 2 9764-70 doi: 10.1039/C4TA00665H [98] Chen T, Liu M, Yuan C, Zhou Y, Ye X, Zhan Z, Xia C, Wang S 2015 High performance of intermediate temperature solid oxide electrolysis cells using Nd2NiO4+ impregnated scandia stabilized zirconia oxygen electrode J. Power Sources 276 1-6 doi: 10.1016/j.jpowsour.2014.11.042 [99] Hanifi A R, Laguna-Bercero M A, Etsell T H, Sarkar P 2014 The effect of electrode infiltration on the performance of tubular solid oxide fuel cells under electrolysis and fuel cell modes Int. J. Hydrog. Energy 39 8002-8 doi: 10.1016/j.ijhydene.2014.03.071 [100] Torabi A, Hanifi A R, Etsell T H, Sarkar P 2011 Effects of porous support microstructure on performance of infiltrated electrodes in solid oxide fuel cells J. Electrochem. Soc. 159 B201-10 doi: 10.1149/2.068202jes [101] Sholklapper T Z, Kurokawa H, Jacobson C P, Visco S J, de Jonghe L C 2007 Nanostructured solid oxide fuel cell electrodes Nano Lett. 7 2136-41 doi: 10.1021/nl071007i [102] Klemens T, Thydn K, Chen M, Wang H-J 2010 Stability of Ni-yttria stabilized zirconia anodes based on Ni-impregnation J. Power Sources 195 7295-301 doi: 10.1016/j.jpowsour.2010.05.047 [103] Park S, Gorte R J, Vohs J M 2000 Applications of heterogeneous catalysis in the direct oxidation of hydrocarbons in a solid-oxide fuel cell Appl. Catal. A: Gen. 200 55-61 doi: 10.1016/S0926-860X(00)00650-5 [104] Sarboa V, Faruk kszmer M A 2016 Cu-CeO2 anodes for solid oxide fuel cells: determination of infiltration characteristics J. Alloys Compd. 688 323-31 doi: 10.1016/j.jallcom.2016.07.217 [105] Tucker M C, Lau G Y, Jacobson C P, DeJonghe L C, Visco S J 2007 Performance of metal-supported SOFCs with infiltrated electrodes J. Power Sources 171 477-82 doi: 10.1016/j.jpowsour.2007.06.076 [106] Corbin S F, Qiao X 2003 Development of solid oxide fuel cell anodes using metal-coated pore-forming agents J. Am. Ceram. Soc. 86 401-6 doi: 10.1111/j.1151-2916.2003.tb03312.x [107] Howe K S, Hanifi A R, Kendall K, Zazulak M, Etsell T H, Sarkar P 2013 Performance of microtubular SOFCs with infiltrated electrodes under thermal cycling Int. J. Hydrog. Energy 38 1058-67 doi: 10.1016/j.ijhydene.2012.10.098 [108] Buyukaksoy A, Petrovsky V, Dogan F 2011 Redox stable solid oxide fuel cells with Ni-YSZ cermet anodes prepared by polymeric precursor infiltration J. Electrochem. Soc. 159 B232-4 doi: 10.1149/2.082202jes [109] Hanifi A R, Torabi A, Chen X, Hill S, Sarkar P, Etsell T H 2014 Development of redox resistant fully infiltrated tubular SOFCs J. Electrochem. Soc. 161 F391-7 doi: 10.1149/2.022404jes [110] Buyukaksoy A, Kammampata S P, Birss V I 2015 Effect of porous YSZ scaffold microstructure on the long-term performance of infiltrated Ni-YSZ anodes J. Power Sources 287 349-58 doi: 10.1016/j.jpowsour.2015.04.072 [111] Keyvanfar P, Hanifi A R, Sarkar P, Etsell T H, Birss V 2015 Enhancing the stability of infiltrated Ni/YSZ anodes ECS Trans. 68 1255-63 doi: 10.1149/06801.1255ecst [112] Yue W, et al 2019 Enhancing coking resistance of Ni/YSZ electrodes: in situ characterization, mechanism research, and surface engineering Nano Energy 62 64-78 doi: 10.1016/j.nanoen.2019.05.006 [113] Ganduglia-Pirovano M V, Hofmann A, Sauer J 2007 Oxygen vacancies in transition metal and rare earth oxides: current state of understanding and remaining challenges Surf. Sci. Rep. 62 219-70 doi: 10.1016/j.surfrep.2007.03.002 [114] Papaefthimiou V, et al 2013 On the active surface state of nickel-ceria solid oxide fuel cell anodes during methane electrooxidation Adv. Energy Mater. 3 762-9 doi: 10.1002/aenm.201200727 [115] Chen X J, Khor K A, Chan S H 2005 Suppression of carbon deposition at CeO2-modified Ni/YSZ anodes in weakly humidified CH4 at 850 C Electrochem. Solid-State Lett. 8 A79 doi: 10.1149/1.1843791 [116] Lyu Z, Wang Y, Zhang Y, Han M 2020 Solid oxide fuel cells fueled by simulated biogas: comparison of anode modification by infiltration and reforming catalytic layer Chem. Eng. J. 393 124755 doi: 10.1016/j.cej.2020.124755 [117] Chen Y, Bunch J, Jin C, Yang C, Chen F 2012 Performance enhancement of Ni-YSZ electrode by impregnation of Mo0.1Ce0.9O2+ J. Power Sources 204 40-45 doi: 10.1016/j.jpowsour.2012.01.019 [118] Choi Y, Brown E C, Haile S M, Jung W C 2016 Electrochemically modified, robust solid oxide fuel cell anode for direct-hydrocarbon utilization Nano Energy 23 161-71 doi: 10.1016/j.nanoen.2016.03.015 [119] Li X, et al 2015 In situ probing of the mechanisms of coking resistance on catalyst-modified anodes for solid oxide fuel cells Chem. Mater. 27 822-8 doi: 10.1021/cm503852v [120] Bae K, Noh H-S, Jang D Y, Hong J, Kim H, Yoon K J, Lee J-H, Kim B-K, Shim J H, Son J-W 2016 High-performance thin-film protonic ceramic fuel cells fabricated on anode supports with a non-proton-conducting ceramic matrix J. Mater. Chem. A 4 6395-404 doi: 10.1039/c5ta10670b [121] Amiri T, Singh K, Sandhu N K, Hanifi A R, Etsell T H, Luo J-L, Thangadurai V, Sarkar P 2018 High performance tubular solid oxide fuel cell based on Ba0.5Sr0.5Ce0.6Zr0.2Gd0.1Y0.1O3- proton conducting electrolyte J. Electrochem. Soc. 165 F764-9 doi: 10.1149/2.0331810jes [122] Hanifi A R, Sandhu N K, Etsell T H, Sarkar P 2017 Development of a novel proton conducting fuel cell based on a Ni-YSZ support J. Am. Ceram. Soc. 100 4983-7 doi: 10.1111/jace.15084 [123] Blum L, de Haart L G J, Malzbender J, Margaritis N, Menzler N H 2016 Anode-supported solid oxide fuel cell achieves 70 000 hours of continuous operation Energy Technol. 4 939-42 doi: 10.1002/ente.201600114 [124] Weber A, Ivers-Tiffe E 2004 Materials and concepts for solid oxide fuel cells (SOFCs) in stationary and mobile applications J. Power Sources 127 273-83 doi: 10.1016/j.jpowsour.2003.09.024 [125] Blum L, Fang Q, Gro-Barsnick S M, (Bert) de Haart L G J, Malzbender J, Menzler N H, Quadakkers W J 2020 Long-term operation of solid oxide fuel cells and preliminary findings on accelerated testing Int. J. Hydrog. Energy 45 8955-64 doi: 10.1016/j.ijhydene.2020.01.074 [126] Brus G, Iwai H, Sciazko A, Saito M, Yoshida H, Szmyd J S 2015 Local evolution of anode microstructure morphology in a solid oxide fuel cell after long-term stack operation J. Power Sources 288 199-205 doi: 10.1016/j.jpowsour.2015.04.092 [127] Lee D, Lin J-K, Tsai C-H, Wu S-H, Cheng Y-N, Lee R-Y 2017 Analysis of long-term and thermal cycling tests for a commercial solid oxide fuel cell J. Electrochem. Energy Convers. Storage 14 1-8 doi: 10.1115/1.4037232 [128] Malzbender J, Batfalsky P, Vaen R, Shemet V, Tietz F 2012 Component interactions after long-term operation of an SOFC stack with LSM cathode J. Power Sources 201 196-203 doi: 10.1016/j.jpowsour.2011.10.117 [129] Menzler N H, Batfalsky P, Gro S, Shemet V, Tietz F 2019 Post-test characterization of an SOFC short-stack after 17,000 hours of steady operation ECS Trans. 35 195-206 doi: 10.1149/1.3569994 [130] Blum L, de Haart L G J, Malzbender J, Menzler N H, Remmel J, Steinberger-Wilckens R 2013 Recent results in Jlich solid oxide fuel cell technology development J. Power Sources 241 477-85 doi: 10.1016/j.jpowsour.2013.04.110 [131] Menzler N H, Sebold D, Guillon O 2018 Post-test characterization of a solid oxide fuel cell stack operated for more than 30,000 hours: the cell J. Power Sources 374 69-76 doi: 10.1016/j.jpowsour.2017.11.025 [132] Yang J, Huang W, Wang X, Li J, Yan D, Pu J, Chi B, Li J 2018 Study on component interface evolution of a solid oxide fuel cell stack after long term operation J. Power Sources 387 57-63 doi: 10.1016/j.jpowsour.2018.03.040 [133] Zhang L, Jiang S P, He H Q, Chen X, Ma J, Song X C 2010 A comparative study of H2S poisoning on electrode behavior of Ni/YSZ and Ni/GDC anodes of solid oxide fuel cells Int. J. Hydrog. Energy 35 12359-68 doi: 10.1016/j.ijhydene.2010.08.067 [134] Simwonis D, Tietz F, Stver D 2000 Nickel coarsening in annealed Ni/8YSZ anode substrates for solid oxide fuel cells Solid State Ion. 132 241-51 doi: 10.1016/s0167-2738(00)00650-0 [135] Nelson G J, et al 2012 Three-dimensional microstructural changes in the Ni-YSZ solid oxide fuel cell anode during operation Acta Mater. 60 3491-500 doi: 10.1016/j.actamat.2012.02.041 [136] Chen T, Wang W G, Miao H, Li T, Xu C 2011 Evaluation of carbon deposition behavior on the nickel/yttrium-stabilized zirconia anode-supported fuel cell fueled with simulated syngas J. Power Sources 196 2461-8 doi: 10.1016/j.jpowsour.2010.11.095 [137] Yokokawa H, Tu H, Iwanschitz B, Mai A 2008 Fundamental mechanisms limiting solid oxide fuel cell durability J. Power Sources 182 400-12 doi: 10.1016/j.jpowsour.2008.02.016 [138] Khrustov A V, Pavlov D S, Ananyev M V 2020 3D-modeling of microstructure and electrical conductivity degradation of Ni-YSZ cermets Solid State Ion. 346 115202 doi: 10.1016/j.ssi.2019.115202 [139] Laosiripojana N, Assabumrungrat S 2007 Catalytic steam reforming of methane, methanol, and ethanol over Ni/YSZ: the possible use of these fuels in internal reforming SOFC J. Power Sources 163 943-51 doi: 10.1016/j.jpowsour.2006.10.006 [140] He H, Hill J M 2007 Carbon deposition on Ni/YSZ composites exposed to humidified methane Appl. Catal. A: Gen. 317 284-92 doi: 10.1016/j.apcata.2006.10.040 [141] Matsuzaki Y, Yasuda I 2000 Poisoning effect of sulfur-containing impurity gas on a SOFC anode: part I. Dependence on temperature, time, and impurity concentration Solid State Ion. 132 261-9 doi: 10.1016/s0167-2738(00)00653-6 [142] Cheng Z, Liu M 2007 Characterization of sulfur poisoning of Ni-YSZ anodes for solid oxide fuel cells using in situ Raman microspectroscopy Solid State Ion. 178 925-35 doi: 10.1016/j.ssi.2007.04.004 [143] Holzer L, et al 2011 Microstructure degradation of cermet anodes for solid oxide fuel cells: quantification of nickel grain growth in dry and in humid atmospheres J. Power Sources 196 1279-94 doi: 10.1016/j.jpowsour.2010.08.017 [144] Jiao Z, Takagi N, Shikazono N, Kasagi N 2011 Study on local morphological changes of nickel in solid oxide fuel cell anode using porous Ni pellet electrode J. Power Sources 196 1019-29 doi: 10.1016/j.jpowsour.2010.08.047 [145] Parhizkar T, Roshandel R 2017 Long term performance degradation analysis and optimization of anode supported solid oxide fuel cell stacks Energy Convers. Manage. 133 20-30 doi: 10.1016/j.enconman.2016.11.045 [146] Baumann F S, Fleig J, Konuma M, Starke U, Habermeier H-U, Maier J 2005 Strong performance improvement of La0.6Sr0.4Co0.8Fe0.2O3- SOFC cathodes by electrochemical activation J. Electrochem. Soc. 152 A2074 doi: 10.1149/1.2034529 [147] Son J W 2012 Solid oxide fuel cell comprising nanostructure composite cathode and fabrication method thereof US PatentNo. 20120251917 A1 p 1 [148] Monzn H, Laguna-Bercero M A 2012 Redox-cycling studies of anode-supported microtubular solid oxide fuel cells Int. J. Hydrog. Energy 37 7262-70 doi: 10.1016/j.ijhydene.2011.10.026 [149] Sarantaridis D, Atkinson A 2007 Redox cycling of Ni-based solid oxide fuel cell anodes: a review Fuel Cells 7 246-58 doi: 10.1002/fuce.200600028 [150] Waldbillig D, Wood A, Ivey D G 2005 Thermal analysis of the cyclic reduction and oxidation behaviour of SOFC anodes Solid State Ion. 176 847-59 doi: 10.1016/j.ssi.2004.12.002 [151] Primdahl S, Mogensen M 2000 Durability and thermal cycling of Ni/YSZ cermet anodes for solid oxide fuel cells J. Appl. Electrochem. 30 247-57 doi: 10.1023/A:1003991529552 [152] Klemens T, Mogensen M 2007 Ni-YSZ solid oxide fuel cell anode behavior upon redox cycling based on electrical characterization J. Am. Ceram. Soc. 90 3582-8 doi: 10.1111/j.1551-2916.2007.01909.x [153] Holzer L, Iwanschitz B, Hocker T, Keller L, Pecho O, Sartoris G, Gasser P, Muench B 2013 Redox cycling of Ni-YSZ anodes for solid oxide fuel cells: influence of tortuosity, constriction and percolation factors on the effective transport properties J. Power Sources 242 179-94 doi: 10.1016/j.jpowsour.2013.05.047 [154] Pecho O M, Stenzel O, Iwanschitz B, Gasser P, Neumann M, Schmidt V, Prestat M, Hocker T, Flatt R, Holzer L 2015 3D microstructure effects in Ni-YSZ anodes: prediction of effective transport properties and optimization of redox stability Materials 8 5554-85 doi: 10.3390/ma8095265 [155] Pecho O, Mai A, Mnch B, Hocker T, Flatt R, Holzer L 2015 3D microstructure effects in Ni-YSZ anodes: influence of TPB lengths on the electrochemical performance Materials 8 7129-44 doi: 10.3390/ma8105370 [156] Boldrin P, Ruiz-Trejo E, Mermelstein J, Bermdez Menndez J M, Ramrez Reina T, Brandon N P 2016 Strategies for carbon and sulfur tolerant solid oxide fuel cell materials, incorporating lessons from heterogeneous catalysis Chem. Rev. 116 13633-84 doi: 10.1021/acs.chemrev.6b00284 [157] Wang W, Su C, Wu Y, Ran R, Shao Z 2013 Progress in solid oxide fuel cells with nickel-based anodes operating on methane and related fuels Chem. Rev. 113 8104-51 doi: 10.1021/cr300491e [158] Pan J, Ye Y, Zhou M, Sun X, Ling Y, Yashiro K, Chen Y 2021 Improving the activity and stability of Ni-based electrodes for solid oxide cells through surface engineering: recent progress and future perspectives Mater. Rep. Energy 1 100025 doi: 10.1016/j.matre.2021.100025 [159] Ferrari A C, Robertson J 2000 Interpretation of Raman spectra of disordered and amorphous carbon Phys. Rev. B 61 14095-107 doi: 10.1103/PhysRevB.61.14095 [160] Nikiel L, Jagodzinski P W 1993 Raman spectroscopic characterization of graphites: a re-evaluation of spectra/ structure correlation Carbon 31 1313-7 doi: 10.1016/0008-6223(93)90091-N [161] Watanabe H, Okino R, Hanamura K 2019 Structural evolution of carbon deposition on a Ni/YSZ cermet of a SOFC analyzed by soft x-ray XANES spectroscopy Int. J. Hydrog. Energy 44 24028-35 doi: 10.1016/j.ijhydene.2019.07.122 [162] Bengaard H S, Nrskov J K, Sehested J, Clausen B S, Nielsen L P, Molenbroek A M, Rostrup-Nielsen J R 2002 Steam reforming and graphite formation on Ni catalysts J. Catal. 209 365-84 doi: 10.1006/jcat.2002.3579 [163] Bartholomew C H 1982 Carbon deposition in steam reforming and methanation Catal. Rev. 24 67-112 doi: 10.1080/03602458208079650 [164] Chen Z-Y, Bian L-Z, Wang L-J, Yu Z-Y, Zhao H-L, Li F-S, Chou K-C 2017 Topography, structure, and formation kinetic mechanism of carbon deposited onto nickel in the temperature range from 400 to 850 C Int. J. Miner. Metall. Mater. 24 574-83 doi: 10.1007/s12613-017-1439-9 [165] Blinn K S, Abernathy H, Li X, Li M, Bottomley L A, Liu M 2012 Raman spectroscopic monitoring of carbon deposition on hydrocarbon-fed solid oxide fuel cell anodes Energy Environ. Sci. 5 7913-7 doi: 10.1039/c2ee21499g [166] Helveg S, Lpez-Cartes L-C, Sehested J, Hansen P L, Clausen B S, Rostrup-Nielsen J R, Abild-Pedersen F, Nrskov J K 2004 Atomic scale growth of carbon nanofibre Nature 427 426-9 doi: 10.1038/nature02278 [167] Kirtley J, Singh A, Halat D, Oswell T, Hill J M, Walker R A 2013 In situ Raman studies of carbon removal from high temperature Ni-YSZ cermet anodes by gas phase reforming agents J. Phys. Chem. C 117 25908-16 doi: 10.1021/jp408192e [168] Kirtley J D, Qadri S N, Steinhurst D A, Owrutsky J C 2016 In situ, simultaneous thermal imaging and infrared molecular emission studies of solid oxide fuel cell electrodes J. Power Sources 336 54-62 doi: 10.1016/j.jpowsour.2016.10.047 [169] Pomfret M B, Marda J, Jackson G S, Eichhorn B W, Dean A M, Walker R A 2008 Hydrocarbon fuels in solid oxide fuel cells: in situ Raman studies of graphite formation and oxidation J. Phys. Chem. C 112 5232-40 doi: 10.1021/jp711312p [170] Yin W, Chuang S S C 2017 CH4 internal dry reforming over a Ni/YSZ/ScSZ anode catalyst in a SOFC: a transient kinetic study Catal. Commun. 102 62-66 doi: 10.1016/j.catcom.2017.08.027 [171] Sasaki K, Teraoka Y 2003 Equilibria in fuel cell gases J. Electrochem. Soc. 150 A885 doi: 10.1149/1.1577338 [172] Xiao J, Xie Y, Liu J, Liu M 2014 Deactivation of nickel-based anode in solid oxide fuel cells operated on carbon-containing fuels J. Power Sources 268 508-16 doi: 10.1016/j.jpowsour.2014.06.082 [173] Sumi H, Puengjinda P, Muroyama H, Matsui T, Eguchi K 2011 Effects of crystal structure of yttria- and scandia-stabilized zirconia in nickel-based SOFC anodes on carbon deposition and oxidation behavior J. Power Sources 196 6048-54 doi: 10.1016/j.jpowsour.2011.03.092 [174] Kim Y, Kim J H, Bae J, Yoon C W, Nam S W 2012 In situ analyses of carbon dissolution into Ni-YSZ anode materials J. Phys. Chem. C 116 13281-8 doi: 10.1021/jp3035693 [175] Liu Y, Shao Z, Mori T, Jiang S P 2021 Development of nickel based cermet anode materials in solid oxide fuel cellsnow and future Mater. Rep. Energy 1 100003 doi: 10.1016/j.matre.2020.11.002 [176] Kuhn J, Kesler O 2014 Method for in situ carbon deposition measurement for solid oxide fuel cells J. Power Sources 246 430-7 doi: 10.1016/j.jpowsour.2013.07.106 [177] Kirtley J D, Halat D M, McIntyre M D, Eigenbrodt B C, Walker R A 2012 High-temperature spectrochronopotentiometry’: correlating electrochemical performance with in situ Raman spectroscopy in solid oxide fuel cells Anal. Chem. 84 9745-53 doi: 10.1021/ac301504g [178] Eigenbrodt B C, Pomfret M B, Steinhurst D A, Owrutsky J C, Walker R A 2011 Direct, in situ optical studies of Ni-YSZ anodes in solid oxide fuel cells operating with methanol and methane J. Phys. Chem. C 115 2895-903 doi: 10.1021/jp109292r [179] Hagen A, Johnson G B, Hjalmarsson P 2014 Electrochemical evaluation of sulfur poisoning in a methane-fuelled solid oxide fuel cell: effect of current density and sulfur concentration J. Power Sources 272 776-85 doi: 10.1016/j.jpowsour.2014.08.125 [180] Gong M, Liu X, Trembly J, Johnson C 2007 Sulfur-tolerant anode materials for solid oxide fuel cell application J. Power Sources 168 289-98 doi: 10.1016/j.jpowsour.2007.03.026 [181] Niakolas D K 2014 Sulfur poisoning of Ni-based anodes for solid oxide fuel cells in H/C-based fuels Appl. Catal. A: Gen. 486 123-42 doi: 10.1016/j.apcata.2014.08.015 [182] Harris W M, et al 2014 Three-dimensional microstructural imaging of sulfur poisoning-induced degradation in a Ni-YSZ anode of solid oxide fuel cells Sci. Rep. 4 1-7 doi: 10.1038/srep05246 [183] Hansen J B 2008 Correlating sulfur poisoning of SOFC nickel anodes by a Temkin isotherm Electrochem. Solid-State Lett. 11 178-81 doi: 10.1149/1.2960521 [184] Bgild Hansen J, Rostrup-Nielsen J 2010 Sulfur poisoning on Ni catalyst and anodes Handbook of Fuel Cells vol 6Hoboken, NJWiley 1-13 doi: 10.1002/9780470974001.f500064 [185] Sasaki K, et al 2006 H2S poisoning of solid oxide fuel cells J. Electrochem. Soc. 153 A2023 doi: 10.1149/1.2336075 [186] Zha S, Cheng Z, Liu M 2007 Sulfur poisoning and regeneration of Ni-based anodes in solid oxide fuel cells J. Electrochem. Soc. 154 B201 doi: 10.1149/1.2404779 [187] Ogura T, Ishimoto T, Koyama M 2014 Density functional theory study of sulfur poisoning on nickel anode in solid oxide fuel cells: effects of surface and subsurface sulfur atoms J. Chem. Eng. Japan 47 793-800 doi: 10.1252/jcej.12we249 [188] Cheng Z, Zha S, Liu M 2007 Influence of cell voltage and current on sulfur poisoning behavior of solid oxide fuel cells J. Power Sources 172 688-93 doi: 10.1016/j.jpowsour.2007.07.052 [189] Li T S, Wang W G 2011 Sulfur-poisoned Ni-based solid oxide fuel cell anode characterization by varying water content J. Power Sources 196 2066-9 doi: 10.1016/j.jpowsour.2010.10.015 [190] Lee H S, Lee H M, Lim H-T 2018 Sulfur poisoning of Ni anode as a function of operating conditions in solid oxide fuel cells J. Korean Inst. Met. Mater. 56 893-9 doi: 10.3365/KJMM.2018.56.12.893 [191] Hauch A, Hagen A, Hjelm J, Ramos T 2014 Sulfur poisoning of SOFC anodes: effect of overpotential on long-term degradation J. Electrochem. Soc. 161 F734-43 doi: 10.1149/2.080406jes [192] Mai A, Haanappel V A C, Uhlenbruck S, Tietz F, Stver D 2005 Ferrite-based perovskites as cathode materials for anode-supported solid oxide fuel cells: part I. Variation of composition Solid State Ion. 176 1341-50 doi: 10.1016/j.ssi.2005.03.009 [193] Aphale A, Liang C, Hu B, Singh P 2017 Cathode degradation from airborne contaminants in solid oxide fuel cells: a review Solid Oxide Fuel Cell Lifetime and ReliabilityLondonElsevier Ltd doi: 10.1016/B978-0-08-101102-7.00006-4 [194] Yokokawa H, Sakai N, Horita T, Yamaji K, Brito M E, Kishimoto H 2008 Thermodynamic and kinetic considerations on degradations in solid oxide fuel cell cathodes J. Alloys Compd. 452 41-47 doi: 10.1016/j.jallcom.2006.12.150 [195] Keane M, Mahapatra M K, Verma A, Singh P 2012 LSM-YSZ interactions and anode delamination in solid oxide electrolysis cells Int. J. Hydrog. Energy 37 16776-85 doi: 10.1016/j.ijhydene.2012.08.104 [196] Xiong Y, Yamaji K, Horita T, Yokokawa H, Akikusa J, Eto H, Inagaki T 2009 Sulfur poisoning of SOFC cathodes J. Electrochem. Soc. 156 B588 doi: 10.1149/1.3090169 [197] Liu R R, Kim S H, Taniguchi S, Oshima T, Shiratori Y, Ito K, Sasaki K 2011 Influence of water vapor on long-term performance and accelerated degradation of solid oxide fuel cell cathodes J. Power Sources 196 7090-6 doi: 10.1016/j.jpowsour.2010.08.014 [198] Sharma V, Mahapatra M K, Krishnan S, Thatcher Z, Huey B D, Singh P, Ramprasad R 2016 Effects of moisture on (La, A)MnO3 (A = Ca, Sr, and Ba) solid oxide fuel cell cathodes: a first-principles and experimental study J. Mater. Chem. A 4 5605-15 doi: 10.1039/c6ta00603e [199] Zhao Z, Liu L, Zhang X, Wu W, Tu B, Ou D, Cheng M 2013 A comparison on effects of CO2 on La0.8Sr0.2MnO3+ and La0.6Sr0.4CoO3- cathodes J. Power Sources 222 542-53 doi: 10.1016/j.jpowsour.2012.09.023 [200] Darvish S, Asadikiya M, Hu B, Singh P, Zhong Y 2016 Thermodynamic prediction of the effect of CO2 to the stability of (La0.8Sr0.20.98MnO3 system Int. J. Hydrog. Energy 41 10239-48 doi: 10.1016/j.ijhydene.2016.05.063 [201] Zurek J, Margaritis N, Naumenko D, Menzler N H, Quadakkers W J 2019 Behaviour of metallic materials in simulated service environments of CO2/H2O co-electrolysis systems for power-to-X application Oxid. Met. 92 353-77 doi: 10.1007/s11085-019-09927-9 [202] de Haart L G J, Vinke I C 2019 Long-term operation of planar type SOFC stacks ECS Trans. 35 187-94 doi: 10.1149/1.3569993 [203] Fang Q, Blum L, Batfalsky P, Menzler N H, Packbier U, Stolten D 2013 Durability test and degradation behavior of a 2.5 kW SOFC stack with internal reforming of LNG Int. J. Hydrog. Energy 38 16344-53 doi: 10.1016/j.ijhydene.2013.09.140 [204] Blum L, Packbier U, Vinke I C, de Haart L G J 2013 Long-term testing of SOFC stacks at forschungszentrum jlich Fuel Cells 13 646-53 doi: 10.1002/fuce.201200151 [205] Menzler N H, Malzbender J, Schoderbck P, Kauert R, Buchkremer H P 2014 Sequential tape casting of anode-supported solid oxide fuel cells Fuel Cells 14 96-106 doi: 10.1002/fuce.201300153 [206] Tabernig B, Franco T, Venskutonis A, Kestler H, Sigl L 2011 Properties of a P/M FeCr alloy as interconnector and substrate materials for metal supported solid oxide fuel cells Euro PMvol 3 449-54 [207] Menzler N H, Sebold D, Wessel E 2014 Interaction of La0.58Sr0.40Co0.20Fe0.80O3- cathode with volatile Cr in a stack testscanning electron microscopy and transmission electron microscopy investigations J. Power Sources 254 148-52 doi: 10.1016/j.jpowsour.2013.12.066 [208] Menzler N H, Sebold D, Fang Q 2015 Chromium-related degradation of thin-film electrolyte solid oxide fuel cell stacks J. Electrochem. Soc. 162 F1275-81 doi: 10.1149/2.0101512jes [209] Matsui T, Kishida R, Kim J, Muroyama H, Eguchi K 2019 Performance deterioration of Ni-based cermet induced by electrochemically-generated steam in anode ECS Trans. 25 2023-30 doi: 10.1149/1.3205747 [210] Yang L, Cheng Z, Liu M, Wilson L 2010 New insights into sulfur poisoning behavior of Ni-YSZ anode from long-term operation of anode-supported SOFCs Energy Environ. Sci. 3 1804-9 doi: 10.1039/c0ee00386g [211] Zhao Y, Malzbender J, Gross S M 2011 The effect of room temperature and high temperature exposure on the elastic modulus, hardness and fracture toughness of glass ceramic sealants for solid oxide fuel cells J. Eur. Ceram. Soc. 31 541-8 doi: 10.1016/j.jeurceramsoc.2010.10.032 [212] Gross S M, Federmann D, Remmel J, Pap M 2011 Reinforced composite sealants for solid oxide fuel cell applications J. Power Sources 196 7338-42 doi: 10.1016/j.jpowsour.2011.02.002