留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Recent developments and perspectives of advanced high-strength medium Mn steel: from material design to failure mechanisms

Chengpeng Huang Chen Hu Yuxuan Liu Zhiyuan Liang Mingxin Huang

Chengpeng Huang, Chen Hu, Yuxuan Liu, Zhiyuan Liang, Mingxin Huang. Recent developments and perspectives of advanced high-strength medium Mn steel: from material design to failure mechanisms[J]. Materials Futures, 2022, 1(3): 032001. doi: 10.1088/2752-5724/ac7fae
Citation: Chengpeng Huang, Chen Hu, Yuxuan Liu, Zhiyuan Liang, Mingxin Huang. Recent developments and perspectives of advanced high-strength medium Mn steel: from material design to failure mechanisms[J]. Materials Futures, 2022, 1(3): 032001. doi: 10.1088/2752-5724/ac7fae
Topical Review •
OPEN ACCESS

Recent developments and perspectives of advanced high-strength medium Mn steel: from material design to failure mechanisms

doi: 10.1088/2752-5724/ac7fae
More Information
  • Figure  1.  Total elongation versus ultimate tensile strength of various AHSS grades.

    Figure  2.  (a) Equilibrium austenite fraction in 0.1C-1.5Mn and 0.1C-6Mn steels overlapped with recrystallization fraction of cold-rolled microstructure; and (b) influence of Al and Si on austenite fraction. Reprinted from [30]. Copyright (2017), with permission from Elsevier (c) Composition-dependent stacking fault energy (SFE) maps of Fe-C-Mn system and (d) Fe-C-Mn-1.5Al system. Reproduced from [31]. CC BY 4.0.

    Figure  3.  Thermomechanical processing routes of high-performance MMS. (a) Intercritical annealing; (b) quenching and partitioning; (c) chemical patterning; (d) warm rolling and warm stamping; (e) deforming and partitioning.

    Figure  4.  Microstructures and mechanical properties of MMS produced by different IA processes. Microstructure of (a) HR-IA, (b) CR-IA, (c) CR-FA, characterized by scanning electron microscope (SEM) (a1), (b1), (c1), electron backscatter diffraction (EBSD) phase mapping (a2), (b2), (c2), transmission electron microscope (TEM) (a3), (b3), (c3), and energy dispersive x-ray spectroscopy (EDXS) line profiling (a4), (b4), (c4). Note here the HR-IA MMS has a composition of 0.2C-7Mn-3Al (wt.%), and the CR-IA and CR-FA MMS have a composition of 0.23C-5.38Mn-1.7Al (wt.%). (d) Engineering strain-stress curves of HR-IA and CR-FA MMS with composition of 0.2C-7Mn-3Al (wt.%). (e) Engineering strain-stress curves and (f) HDI stress with increasing true strain of CR-IA and CR-FA MMS with composition of 0.23C-5.38Mn-1.7Al (wt.%). Reprinted from [40, 41]. Copyright (2021), with permission from Elsevier.

    Figure  5.  Microstructure and mechanical property of MMS produced by Q&P process. (a) EBSD phase map and (b) EBSD inverse pole figure (IPF) map (c) SEM image of a typical RT-Q&P MMS with a composition of 0.2C-10Mn-2Al-0.1V (wt.%). Reproduced from [44]. CC BY 4.0. (d) Engineering stress-strain curves of the present RT-Q&P MMS, commercial dual phase steel and press hardening steel. Reproduced from [42], with permission from Springer Nature.

    Figure  6.  Microstructures and mechanical properties of MMS produced by chemical patterning process. (a) TEM image of the initial pearlite. (b) TEM image of the chemical patterned MMS. (c) EDXS line profile of Mn distribution of the initial pearlite. (d) EDXS line profile of Mn distribution of the chemical patterned MMS. (e) Engineering stress-strain curves and (f) corresponding true strain hardening rate curves of the initial pearlite steel and chemical patterned MMS with different processing parameters. Note that this MMS has a composition of 0.51C-4.35Mn (wt.%). Reprinted from [45]. Copyright (2018), with permission from Elsevier.

    Figure  7.  Microstructures and mechanical properties of MMS produced by WR and WS processes. Microstructure of (a) WR 0% (b) WR 89% (c) WS MMS characterized by TEM (a1), (b1), SEM (c1) and EBSD phase mapping (a2), (b2), (c2). Note that the WR MMS has a composition of 0.22C-4.88Mn-3.11Al-0.62Si (wt.%), and the WS MMS have a composition of 0.25C-6.94Mn-0.23Al-0.38Si-3.29Cr-0.12Nb (wt.%). (d) Engineering strain-stress curves of WR 0% and WR 89% MMS. (e) Engineering strain-stress curves of the baked and non-baked WS MMS and commercial 22MnB5 hot stamping steel. (a), (b), (d) Reprinted from [48]. Copyright (2019), with permission from Elsevier. (c), (e) Reprinted from [60]. Copyright (2021), with permission from Elsevier.

    Figure  8.  Microstructure and mechanical property of MMS produced by D&P process. (a) EBSD phase map. (b) EBSD IPF map. (c) TEM image showing the dislocation cell structure in a large martensite grain. The inset is the selected-area diffraction pattern (SADP). (d) TEM image showing the ultrafine nanolamellar martensite lath and austenite lath. (e) The SADP of the area of (d). (f) Engineering stress-strain curves of the D&P steel with a composition of 0.47C-10Mn-2Al-0.7V (wt.%). (g) Ashby map in terms of uniform elongation versus yield strength of the D&P steel. From [62, 63]. Reprinted with permission from AAAS.

    Figure  9.  SEM observations near the fracture surface of the tensile samples, showing the void formation at different sites (marked by red elliptical frames) in an MMS with a chemical composition of 0.2C-10.4Mn-2.9Al (wt.%) produced by CR-IA processing route. IA temperature: (a)-(c) 700 C, (d), (e) 750 C. Reprinted from [74]. Copyright (2019), with permission from Elsevier.

    Figure  10.  EBSD IPF maps of the fractured samples showing the long cleavage cracks in coarse-grained -ferrite (indicated by white arrows) in an MMS with a chemical composition of 0.3C-6Mn-3Al-1.5Si (wt.%) produced by HR-IA processing route. IA temperature: (a) 760 C, (b) 800 C, (c) 840 C, (d) 880 C. Reprinted from [78]. Copyright (2017), with permission from Elsevier.

    Figure  11.  SEM fractographs of (a) AsQ and (b) RQ MMS samples fractured at 77 K. Cross-sectional EBSD fractographs observed in the normal direction (ND) of (c) AsQ and (d) RQ MMS samples fractured at 77 K. White arrows indicate the <100> orientations of each packet. The MMS has a chemical composition of 0.1C-5Mn (wt.%). Reprinted from [79]. Copyright (2021), with permission from Elsevier.

    Figure  12.  SEM fractographs of an MMS after Charpy impact tests at (a) room temperature and (b) -90 C. Note that the MMS has a chemical composition of 0.2C-9.4Mn-2.1Al (wt.%) produced by CR-IA processing route.

    Figure  13.  (a) Ashby map in terms of yield strength versus fracture toughness of various metals. From [63]. Reprinted with permission from AAAS. (b) Ashby map in terms of yield strength versus Charpy impact energy of various low-alloy BBC steels. From [83]. Reprinted with permission from AAAS.

    Figure  14.  SEM micrographs taken close to the crack tip of TRIP steel; (a) crack propagation path; (b) decohesion between two martensite grains; (c) decohesion between ferrite and martensite grains; and (d) cleavage of a martensite grain. Reprinted from [89]. Copyright (2008), with permission from Elsevier.

    Figure  15.  Delamination toughening mechanism of MMS steel with a composition of 0.44C-9.95Mn-1.87Al-0.67V (wt.%) produced by D&P processing route. (a) Schematic diagram of fractured C(T) sample with extensive long and short delamination cracks. (b) and (c) Images of the fracture surface of C(T) sample showing numerous thin-layer delamination cracks. (d) and (e) SEM image and schematic diagram of the cross-section of the fracture sample showing the development of delamination cracks along the elongated PAGBs. The blue arrows indicate short delamination cracks, the black arrows indicate the long delamination cracks, the pink arrows indicate the secondary delamination cracks that usually observed in the vicinity of long delamination cracks. From [63]. Reprinted with permission from AAAS.

    Figure  16.  Hydrogen desorption rate curves of MMS with (a), (c), (e) low and (b), (d), (f) high Al content at different conditions. Reprinted from [116]. Copyright (2012), with permission from Elsevier.

    Figure  17.  Schematic diagrams of H diffusion and distribution in the MMS with a composition of 0.2C-10.2Mn-2.8Al-1Si (wt.%) fabricated by IA at (a) 700 C and (b) 800 C. Reprinted from [117]. Copyright (2020), with permission from Elsevier.

    Figure  18.  (a) Elongation loss of the base and different micro-alloyed MMS. (b) Hydrogen desorption rate curves and (c), (d) Ag decoration of the base and high Nb-alloyed MMS, respectively. Reprinted from [123]. Copyright (2020), with permission from Elsevier.

    Figure  19.  The microstructures of (a) 770 C and (b), (c) 850 C intercritically annealed MMS after 5% tensile strain. Note that the MMS has a composition of 0.2C-4.88Mn-3.11Al-0.62Si (wt.%). White and yellow arrows indicate micro-cracks at / and / boundaries, respectively. Reprinted from [125]. Copyright (2019), with permission from Elsevier.

    Figure  20.  Slow strain rate tensile (SSRT) curves of the MMS intercritically annealed at 750 C for (a) 10 min (b) 60 min and (c) 360 min. (d) Variations of index of relative susceptibility to HE (HEI) with intercritical annealing time. Note that the MMS has a composition of the 0.2C-5Mn-3Al-0.6Si (wt.%). Reprinted from [126]. Copyright (2018), with permission from Elsevier.

    Figure  21.  (a) SSRT curves, (b) hydrogen desorption rate curves, (c) evolution of austenite volume fraction with increasing strain, and (d) stress level in different region of the MMS with 25% and 75% cold rolling reduction prior to IA. Note that this MMS has a composition of 0.14C-7.65Mn-1.49Al (wt.%). Reprinted from [127]. Copyright (2021), with permission from Elsevier.

    Figure  22.  (a) Schematic diagram of blunting of crack by chemical heterogeneity. (b) A representative blunted and arrested H-induced crack. (c) APT result of the tip marked in (b). Reproduced from [128]. CC BY 4.0.

    Figure  23.  (a) SSRT curves, (b) nanoindentation curves and (c) nano-hardness of Cu-Free and Cu-Added MMS, respectively. Reprinted from [130]. Copyright (2020), with permission from Elsevier.

  • [1] Ma M, Yi H 2011 Lightweight car body and application of high strength steels Advanced SteelsBerlinSpringer 187-98 doi: 10.1007/978-3-642-17665-4_20
    [2] Hoile S 2000 Processing and properties of mild interstitial free steels Mater. Sci. Technol. 16 1079-93 doi: 10.1179/026708300101506902
    [3] Tasan C C, Diehl M, Yan D, Bechtold M, Roters F, Schemmann L, Zheng C, Peranio N, Ponge D, Koyama M 2015 An overview of dual-phase steels: advances in microstructure-oriented processing and micromechanically guided design Annu. Rev. Mater. Res. 45 391-431 doi: 10.1146/annurev-matsci-070214-021103
    [4] Ghassemi-Armaki H, Maa R, Bhat S, Sriram S, Greer J, Kumar K 2014 Deformation response of ferrite and martensite in a dual-phase steel Acta Mater. 62 197-211 doi: 10.1016/j.actamat.2013.10.001
    [5] Scott C, Amirkhiz B S, Pushkareva I, Fazeli F, Allain S, Azizi H 2018 New insights into martensite strength and the damage behaviour of dual phase steels Acta Mater. 159 112-22 doi: 10.1016/j.actamat.2018.08.010
    [6] Dias E, Horimoto L, Dos Santos Pereira M 2014 Microstructural characterization of CP steel used in automotive industry Materials Science ForumZurichTrans Tech Publications 141-5 doi: 10.4028/www.scientific.net/MSF.775-776.141
    [7] Prez I, Arribas M, Aranguren I, Mangas , Rana R, Lahaije C, De Caro D 2019 Processing of new dual-phase (DP) and complex-phase (CP) steels for automotive applications by tailored hot forming routes AIP Conf. Proc. 2113 170008 doi: 10.1063/1.5112724
    [8] Graux A, Cazottes S, Castro D D, San-Martn D, Capdevila C, Cabrera J M, Molas S, Schreiber S, Mirkovi D, Danoix F 2020 Design and development of complex phase steels with improved combination of strength and stretch-flangeability Metals 10 824 doi: 10.3390/met10060824
    [9] Galindo-Nava E, Rivera-daz-del-castillo P 2016 Understanding the factors controlling the hardness in martensitic steels Scr. Mater. 110 96-100 doi: 10.1016/j.scriptamat.2015.08.010
    [10] Takaki S, Ngo-Huynh K-L, Nakada N, Tsuchiyama T 2012 Strengthening mechanism in ultra low carbon martensitic steel ISIJ Int. 52 710-6 doi: 10.2355/isijinternational.52.710
    [11] Maruyama K, Sawada K, Koike J I 2001 Strengthening mechanisms of creep resistant tempered martensitic steel ISIJ Int. 41 641-53 doi: 10.2355/isijinternational.41.641
    [12] Rashid M 1980 High-strength, low-alloy steels Science 208 862-9 doi: 10.1126/science.208.4446.862
    [13] Yan W, Zhu L, Sha W, Shan Y Y, Yang K 2009 Change of tensile behavior of a high-strength low-alloy steel with tempering temperature Mater. Sci. Eng. A 517 369-74 doi: 10.1016/j.msea.2009.03.085
    [14] Timokhina I, Hodgson P D, Ringer S, Zheng R, Pereloma E 2007 Precipitate characterisation of an advanced high-strength low-alloy (HSLA) steel using atom probe tomography Scr. Mater. 56 601-4 doi: 10.1016/j.scriptamat.2006.12.018
    [15] Jacques P 2004 Transformation-induced plasticity for high strength formable steels Curr. Opin. Solid State Mater. Sci. 8 259-65 doi: 10.1016/j.cossms.2004.09.006
    [16] Jacques P, Furnmont Q, Lani F, Pardoen T, Delannay F 2007 Multiscale mechanics of TRIP-assisted multiphase steels: I. Characterization and mechanical testing Acta Mater. 55 3681-93 doi: 10.1016/j.actamat.2007.02.029
    [17] Ma A, Hartmaier A 2015 A study of deformation and phase transformation coupling for TRIP-assisted steels Int. J. Plast. 64 40-55 doi: 10.1016/j.ijplas.2014.07.008
    [18] Bouaziz O, Allain S, Scott C, Cugy P, Barbier D 2011 High manganese austenitic twinning induced plasticity steels: a review of the microstructure properties relationships Curr. Opin. Solid State Mater. Sci. 15 141-68 doi: 10.1016/j.cossms.2011.04.002
    [19] Liang Z, Wang X, Huang W, Huang M 2015 Strain rate sensitivity and evolution of dislocations and twins in a twinning-induced plasticity steel Acta Mater. 88 170-9 doi: 10.1016/j.actamat.2015.01.013
    [20] Zhou P, Liang Z, Liu R, Huang M 2016 Evolution of dislocations and twins in a strong and ductile nanotwinned steel Acta Mater. 111 96-107 doi: 10.1016/j.actamat.2016.03.057
    [21] Speer J, Matlock D K, De Cooman B C, Schroth J 2003 Carbon partitioning into austenite after martensite transformation Acta Mater. 51 2611-22 doi: 10.1016/S1359-6454(03)00059-4
    [22] Xiong X, Chen B, Huang M, Wang J, Wang L 2013 The effect of morphology on the stability of retained austenite in a quenched and partitioned steel Scr. Mater. 68 321-4 doi: 10.1016/j.scriptamat.2012.11.003
    [23] Wang Z, Huang M 2020 Optimising the strength-ductility-toughness combination in ultra-high strength quenching and partitioning steels by tailoring martensite matrix and retained austenite Int. J. Plast. 134 102851 doi: 10.1016/j.ijplas.2020.102851
    [24] Wang X, Wang L, Huang M 2017 Kinematic and thermal characteristics of Lders and Portevin-Le Chtelier bands in a medium Mn transformation-induced plasticity steel Acta Mater. 124 17-29 doi: 10.1016/j.actamat.2016.10.069
    [25] Nam J-H, Oh S-K, Park M H, Lee Y K 2021 The mechanism of dynamic strain aging for type A serrations in tensile curves of a medium-Mn steel Acta Mater. 206 116613 doi: 10.1016/j.actamat.2020.116613
    [26] Ma Y, Sun B, Schkel A, Song W, Ponge D, Raabe D, Bleck W 2020 Phase boundary segregation-induced strengthening and discontinuous yielding in ultrafine-grained duplex medium-Mn steels Acta Mater. 200 389-403 doi: 10.1016/j.actamat.2020.09.007
    [27] Garcia-Mateo C, Caballero F G, Bhadeshia H K D H 2003 Development of hard bainite ISIJ Int. 43 1238-43 doi: 10.2355/isijinternational.43.1238
    [28] Garca-Mateo C, Caballero F G 2005 The role of retained austenite on tensile properties of steels with bainitic microstructures Mater. Trans. 46 1839-46 doi: 10.2320/matertrans.46.1839
    [29] He S, He B, Zhu K, Huang M 2018 Evolution of dislocation density in bainitic steel: modeling and experiments Acta Mater. 149 46-56 doi: 10.1016/j.actamat.2018.02.023
    [30] Suh D-W, Kim S-J 2017 Medium Mn transformation-induced plasticity steels: recent progress and challenges Scr. Mater. 126 63-67 doi: 10.1016/j.scriptamat.2016.07.013
    [31] Song W, Bogdanovski D, Yildiz A B, Houston J E, Dronskowski R, Bleck W 2018 On the Mn-C short-range ordering in a high-strength high-ductility steel: small angle neutron scattering and ab initio investigation Metals 8 44 doi: 10.3390/met8010044
    [32] Mahieu J, De Cooman B, Maki J 2002 Phase transformation and mechanical properties of Si-free CMnAl transformation-induced plasticity-aided steel Metall. Mater. Trans. A 33 2573-80 doi: 10.1007/s11661-002-0378-9
    [33] Yoo J, Han K, Park Y, Lee C 2014 Correlation between microstructure and mechanical properties of heat affected zones in Fe-8Mn-0.06C steel welds Mater. Chem. Phys. 146 175-82 doi: 10.1016/j.matchemphys.2014.03.019
    [34] Qi X, Du L, Hu J, Misra R D K 2018 Enhanced impact toughness of heat affected zone in gas shield arc weld joint of lowC mediumMn high strength steel by postweld heat treatment Steel Res. Int. 89 1700422 doi: 10.1002/srin.201700422
    [35] Lun N, Saha D, Macwan A, Pan H, Wang L, Goodwin F, Zhou Y 2017 Microstructure and mechanical properties of fibre laser welded medium manganese TRIP steel Mater. Des. 131 450-9 doi: 10.1016/j.matdes.2017.06.037
    [36] Jia Q, Liu L, Guo W, Peng Y, Zou G, Tian Z, Zhou Y N 2018 Microstructure and tensile-shear properties of resistance spot-welded medium Mn steel Metals 8 48 doi: 10.3390/met8010048
    [37] Sarmast-Ghahfarokhi S, Zhang S, Midawi A R, Goodwin F, Zhou Y N 2022 The failure mechanism of resistance spot welded third-generation medium-Mn steel during shear-tension loading J. Manuf. Process. 79 520-31 doi: 10.1016/j.jmapro.2022.05.005
    [38] Lee S-J, Park T M, Nam J-H, Choi W S, Sun Y, Fujii H, Han J 2019 The unexpected stress-strain response of medium Mn steel after friction stir welding Mater. Sci. Eng. A 744 340-8 doi: 10.1016/j.msea.2018.12.041
    [39] Wang Y, Duan R, Hu J, Luo Z, Ma Z, Xie G 2022 Improvement in toughness and ductility of friction stir welded medium-Mn steel joint via post-welding annealing J. Mater. Process. Technol. 306 117621 doi: 10.1016/j.jmatprotec.2022.117621
    [40] Wan X, Liu G, Yang Z, Chen H 2021 Flash annealing yields a strong and ductile medium Mn steel with heterogeneous microstructure Scr. Mater. 198 113819 doi: 10.1016/j.scriptamat.2021.113819
    [41] Jeong M S, Park T M, Choi S, Lee S-J, Han J 2021 Recovering the ductility of medium-Mn steel by restoring the original microstructure Scr. Mater. 190 16-21 doi: 10.1016/j.scriptamat.2020.08.022
    [42] He B B, Liu L, Huang M X 2018 Room-temperature quenching and partitioning steel Metall. Mater. Trans. A 49 3167-72 doi: 10.1007/s11661-018-4718-9
    [43] He B B, Wang M, Huang M X 2019 Improving tensile properties of room-temperature quenching and partitioning steel by dislocation engineering Metall. Mater. Trans. A 50 4021-6 doi: 10.1007/s11661-019-05365-z
    [44] Pan S, He B 2020 On the variants of thermal process in developing strong and ductile medium Mn steel Front. Mater. 7 256 doi: 10.3389/fmats.2020.00256
    [45] Sun W, Wu Y, Yang S, Hutchinson C 2018 Advanced high strength steel (AHSS) development through chemical patterning of austenite Scr. Mater. 146 60-63 doi: 10.1016/j.scriptamat.2017.11.007
    [46] An X, Zhang R, Wu Y, Zou Y, Zhang L, Zhang K, Wang L, Li Y, Hutchinson C, Sun W 2022 The role of retained austenite on the stress-strain behaviour of chemically patterned steels Mater. Sci. Eng. A 831 142286 doi: 10.1016/j.msea.2021.142286
    [47] Liu G, Li T, Yang Z, Zhang C, Li J, Chen H 2020 On the role of chemical heterogeneity in phase transformations and mechanical behavior of flash annealed quenching & partitioning steels Acta Mater. 201 266-77 doi: 10.1016/j.actamat.2020.10.007
    [48] Zhang Y, Hui W, Wang J, Lei M, Zhao X 2019 Enhancing the resistance to hydrogen embrittlement of Al-containing medium-Mn steel through heavy warm rolling Scr. Mater. 165 15-19 doi: 10.1016/j.scriptamat.2019.02.009
    [49] He B, Wang M, Huang M 2019 Resetting the austenite stability in a medium Mn steel via dislocation engineering Metall. Mater. Trans. A 50 2971-7 doi: 10.1007/s11661-019-05222-z
    [50] Hu B, He B, Cheng G, Yen H, Huang M, Luo H 2019 Super-high-strength and formable medium Mn steel manufactured by warm rolling process Acta Mater. 174 131-41 doi: 10.1016/j.actamat.2019.05.043
    [51] Hu B, Tu X, Luo H, Mao X 2020 Effect of warm rolling process on microstructures and tensile properties of 10 Mn steel J. Mater. Sci. Technol. 47 131-41 doi: 10.1016/j.jmst.2019.12.026
    [52] Huang C, Huang M 2021 Effect of processing parameters on mechanical properties of deformed and partitioned (D&P) medium Mn steels Metals 11 356 doi: 10.3390/met11020356
    [53] Hui W, Shao C, Zhang Y, Zhao X, Weng Y 2017 Microstructure and mechanical properties of medium Mn steel containing 3% Al processed by warm rolling Mater. Sci. Eng. A 707 501-10 doi: 10.1016/j.msea.2017.09.090
    [54] Xu J, Wang Z, Yan Y, Li J, Wu M 2020 Effect of hot/warm rolling on the microstructures and mechanical properties of medium-Mn steels Mater. Charact. 170 110682 doi: 10.1016/j.matchar.2020.110682
    [55] Zou Y, Ding H, Zhang Y, Tang Z 2022 Microstructural evolution and strain hardening behavior of a novel two-stage warm rolled ultra-high strength medium Mn steel with heterogeneous structures Int. J. Plast. 151 103212 doi: 10.1016/j.ijplas.2022.103212
    [56] Merklein M, Wieland M, Lechner M, Bruschi S, Ghiotti A 2016 Hot stamping of boron steel sheets with tailored properties: a review J. Mater. Process. Technol. 228 11-24 doi: 10.1016/j.jmatprotec.2015.09.023
    [57] Li S S, Luo H W 2021 Medium-Mn steels for hot forming application in the automotive industry Int. J. Miner. Metall. Mater. 28 741-53 doi: 10.1007/s12613-020-2179-9
    [58] Chang Y, Wang C, Zhao K, Dong H, Yan J 2016 An introduction to medium-Mn steel: metallurgy, mechanical properties and warm stamping process Mater. Des. 94 424-32 doi: 10.1016/j.matdes.2016.01.048
    [59] Li X, Chang Y, Wang C, Hu P, Dong H 2017 Comparison of the hot-stamped boron-alloyed steel and the warm-stamped medium-Mn steel on microstructure and mechanical properties Mater. Sci. Eng. A 679 240-8 doi: 10.1016/j.msea.2016.10.045
    [60] Li S, Wen P, Li S, Song W, Wang Y, Luo H 2021 A novel medium-Mn steel with superior mechanical properties and marginal oxidization after press hardening Acta Mater. 205 116567 doi: 10.1016/j.actamat.2020.116567
    [61] Lu Q, Eizadjou M, Wang J, Ceguerra A, Ringer S, Zhan H, Wang L, Lai Q 2019 Medium-Mn martensitic steel ductilized by baking Metall. Mater. Trans. A 50 4067-74 doi: 10.1007/s11661-019-05335-5
    [62] He B, Hu B, Yen H, Cheng G, Wang Z, Luo H, Huang M 2017 High dislocation density-induced large ductility in deformed and partitioned steels Science 357 1029-32 doi: 10.1126/science.aan0177
    [63] Liu L, Yu Q, Wang Z, Ell J, Huang M, Ritchie R O 2020 Making ultrastrong steel tough by grain-boundary delamination Science 368 1347-52 doi: 10.1126/science.aba9413
    [64] Huang M, He B 2018 Alloy design by dislocation engineering J. Mater. Sci. Technol. 34 417-20 doi: 10.1016/j.jmst.2017.11.045
    [65] Liu L, He B, Huang M 2019 Processing-microstructure relation of deformed and partitioned (D&P) steels Metals 9 695 doi: 10.3390/met9060695
    [66] Li H, Thomas S, Hutchinson C 2022 Delivering microstructural complexity to additively manufactured metals through controlled mesoscale chemical heterogeneity Acta Mater. 226 117637 doi: 10.1016/j.actamat.2022.117637
    [67] Zhang T, Huang Z, Yang T, Kong H, Luan J, Wang A, Wang D, Kuo W, Wang Y, Liu C-T 2021 In situ design of advanced titanium alloy with concentration modulations by additive manufacturing Science 374 478-82 doi: 10.1126/science.abj3770
    [68] Li H, Zong H, Li S, Jin S, Chen Y, Cabral M J, Chen B, Huang Q, Ren Y, Yu K 2022 Uniting tensile ductility with ultrahigh strength via composition undulation Nature 604 273-9 doi: 10.1038/s41586-022-04459-w
    [69] ASTM 2018 Standard test method for notched bar impact testing of metallic materials ASTM E23-18
    [70] ASTM 2020 Standard test method for measurement of fracture toughness ASTM E1820-20
    [71] Schindler H-J 2000 Relation between fracture toughness and Charpy fracture energy: an analytical approach Pendulum Impact Testing: A Century of Progressvol 1380Philadelphia, PAASTM Special Technical Publication 337-53 doi: 10.1520/STP1380-EB
    [72] Gioielli P C, Landes J D, Paris P C, Tada H, Loushin L 2000 Method for predicting JR curves from Charpy impact energy Fatigue and Fracture Mechanics vol 30 STP1360-EBPhiladelphia, PAASTM Special Technical Publication 61-68 doi: 10.1520/STP1360-EB
    [73] Tian L, Borchers C, Kubota M, Sofronis P, Kirchheim R, Volkert C A 2022 A study of crack initiation in a low alloy steel Acta Mater. 223 117474 doi: 10.1016/j.actamat.2021.117474
    [74] Sun B, Palanisamy D, Ponge D, Gault B, Fazeli F, Scott C, Yue S, Raabe D 2019 Revealing fracture mechanisms of medium manganese steels with and without delta-ferrite Acta Mater. 164 683-96 doi: 10.1016/j.actamat.2018.11.029
    [75] Bhadeshia H K D H, Honeycombe R W K 2017 Steels: Microstructure and Properties4th ednAmsterdamElsevier Ltd
    [76] Anderson T L 2017 Fracture Mechanics: Fundamentals and Applications4th ednBoca Raton, FLCRC Press
    [77] Song C, Wang H, Sun Z, Xu J, Chen H, Yin W 2022 A new hot-rolled lightweight steel with ultra-high strength and good ductility designed by dislocation character and transformation strain Scr. Mater. 212 114583 doi: 10.1016/j.scriptamat.2022.114583
    [78] Choi H, Lee S, Lee J, Barlat F, De Cooman B C 2017 Characterization of fracture in medium Mn steel Mater. Sci. Eng. A 687 200-10 doi: 10.1016/j.msea.2017.01.055
    [79] Maeda T, Okuhata S, Matsuda K, Masumura T, Tsuchiyama T, Shirahata H, Kawamoto Y, Fujioka M, Uemori R 2021 Toughening mechanism in 5% Mn and 10% Mn martensitic steels treated by thermo-mechanical control process Mater. Sci. Eng. A 812 141058 doi: 10.1016/j.msea.2021.141058
    [80] Luo S S, You Z S, Lu L 2017 Intrinsic fracture toughness of bulk nanostructured Cu with nanoscale deformation twins Scr. Mater. 133 1-4 doi: 10.1016/j.scriptamat.2017.01.032
    [81] Xiong Z, Jacques P J, Perlade A, Pardoen T 2018 Ductile and intergranular brittle fracture in a two-step quenching and partitioning steel Scr. Mater. 157 6-9 doi: 10.1016/j.scriptamat.2018.07.030
    [82] Ritchie R O 2011 The conflicts between strength and toughness Nat. Mater. 10 817-22 doi: 10.1038/nmat3115
    [83] Kimura Y, Inoue T, Yin F, Tsuzaki K 2008 Inverse temperature dependence of toughness in an ultrafine grain-structure steel Science 320 1057-60 doi: 10.1126/science.1156084
    [84] Li X, Lu L, Li J, Zhang X, Gao H 2020 Mechanical properties and deformation mechanisms of gradient nanostructured metals and alloys Nat. Rev. Mater. 5 706-23 doi: 10.1038/s41578-020-0212-2
    [85] Ritchie R O 2021 Toughening materials: enhancing resistance to fracture Phil. Trans. R. Soc. A 379 20200437 doi: 10.1098/rsta.2020.0437
    [86] Antolovich S D, Singh B 1971 On the toughness increment associated with the austenite to martensite phase transformation in TRIP steels Metall. Mater. Trans. B 2 2135-41 doi: 10.1007/BF02917542
    [87] Wang X, Liu C, Sun B, Ponge D, Jiang C, Raabe D 2022 The dual role of martensitic transformation in fatigue crack growth Proc. Natl Acad. Sci. 119 e2110139119 doi: 10.1073/pnas.2110139119
    [88] Jacques P, Furnmont Q, Pardoen T, Delannay F 2001 On the role of martensitic transformation on damage and cracking resistance in TRIP-assisted multiphase steels Acta Mater. 49 139-52 doi: 10.1016/S1359-6454(00)00215-9
    [89] Lacroix G, Pardoen T, Jacques P J 2008 The fracture toughness of TRIP-assisted multiphase steels Acta Mater. 56 3900-13 doi: 10.1016/j.actamat.2008.04.035
    [90] Wu R, Li W, Zhou S, Zhong Y, Wang L, Jin X 2013 Effect of retained austenite on the fracture toughness of quenching and partitioning (Q&P)-treated sheet steels Metall. Mater. Trans. A 45 1892-902 doi: 10.1007/s11661-013-2113-0
    [91] Zou Y, Xu Y, Hu Z, Chen S, Han D, Misra R, Wang G 2017 High strength-toughness combination of a low-carbon medium-manganese steel plate with laminated microstructure and retained austenite Mater. Sci. Eng. A 707 270-9 doi: 10.1016/j.msea.2017.09.059
    [92] Johnson W H, Thomson WII 1875 On some remarkable changes produced in iron and steel by the action of hydrogen and acids Proc. R. Soc. 23 168-79 doi: 10.1098/rspl.1874.0024
    [93] Wang D, Lu X 2021 Effect of hydrogen on deformation behavior of Alloy 725 revealed by in-situ bi-crystalline micropillar compression test J. Mater. Sci. Technol. 67 243-53 doi: 10.1016/j.jmst.2020.08.006
    [94] Martin M L, Dadfarnia M, Nagao A, Wang S, Sofronis P 2019 Enumeration of the hydrogen-enhanced localized plasticity mechanism for hydrogen embrittlement in structural materials Acta Mater. 165 734-50 doi: 10.1016/j.actamat.2018.12.014
    [95] Kim J, Hall D, Yan H X, Shi Y T, Joseph S, Fearn S, Chater R J, Dye D, Tasan C C 2021 Roughening improves hydrogen embrittlement resistance of Ti-6Al-4V Acta Mater. 220 117304 doi: 10.1016/j.actamat.2021.117304
    [96] Su H, Toda H, Shimizu K, Uesugi K, Takeuchi A, Watanabe Y 2019 Assessment of hydrogen embrittlement via image-based techniques in Al-Zn-Mg-Cu aluminum alloys Acta Mater. 176 96-108 doi: 10.1016/j.actamat.2019.06.056
    [97] Ryu J H 2012 Hydrogen Embrittlement in TRIP and TWIP SteelsPohangPohang University of Science and Technology
    [98] Wang Z, Huang M X 2020 Improving hydrogen embrittlement resistance of hot-stamped 1500 MPa steel parts that have undergone a Q&P treatment by the design of retained austenite and martensite matrix Metals 10 1585 doi: 10.3390/met10121585
    [99] Wang Z, Luo Z C, Huang M X 2018 Revealing hydrogen-induced delayed fracture in ferrite-containing quenching and partitioning steels Materialia 4 260-7 doi: 10.1016/j.mtla.2018.09.022
    [100] Dwivedi S K, Vishwakarma M 2019 Effect of hydrogen in advanced high strength steel materials Int. J. Hydrog. Energy 44 28007-30 doi: 10.1016/j.ijhydene.2019.08.149
    [101] Dwivedi S K, Vishwakarma M 2018 Hydrogen embrittlement in different materials: a review Int. J. Hydrog. Energy 43 21603-16 doi: 10.1016/j.ijhydene.2018.09.201
    [102] Cho L C, Kong Y R, Speer J G, Findley K O 2021 Hydrogen embrittlement of medium Mn steels Metals 11 358 doi: 10.3390/met11020358
    [103] Sun B, Wang D, Lu X, Wan D, Ponge D, Zhang X 2021 Current challenges and opportunities toward understanding hydrogen embrittlement mechanisms in advanced high-strength steels: a review Acta Metall. Sin. 34 741-54 doi: 10.1007/s40195-021-01233-1
    [104] Hu B, Luo H W, Yang F, Dong H 2017 Recent progress in medium-Mn steels made with new designing strategies, a review J. Mater. Sci. Technol. 33 1457-64 doi: 10.1016/j.jmst.2017.06.017
    [105] Lee Y K, Han J 2015 Current opinion in medium manganese steel Mater. Sci. Technol. 31 843-56 doi: 10.1179/1743284714Y.0000000722
    [106] Fielding L C D, Song E J, Han D K, Bhadeshia H K D H, Suh D-W 2014 Hydrogen diffusion and the percolation of austenite in nanostructured bainitic steel Proc. R. Soc. A 470 20140108 doi: 10.1098/rspa.2014.0108
    [107] Zhang Y, Hui W, Zhao X, Wang C, Cao W, Dong H 2019 Effect of reverted austenite fraction on hydrogen embrittlement of TRIP-aided medium Mn steel (0.1C-5Mn) Eng. Fail. Anal. 97 605-16 doi: 10.1016/j.engfailanal.2019.01.018
    [108] Jeong I, Ryu K M, Lee D G, Jung Y, Lee K, Lee J S, Suh D W 2019 Austenite morphology and resistance to hydrogen embrittlement in medium Mn transformation-induced plasticity steel Scr. Mater. 169 52-56 doi: 10.1016/j.scriptamat.2019.05.011
    [109] Du Y, Gao X H, Lan L Y, Qi X Y, Wu H Y, Du L X, Misra R D K 2019 Hydrogen embrittlement behavior of high strength low carbon medium manganese steel under different heat treatments Int. J. Hydrog. Energy 44 32292-306 doi: 10.1016/j.ijhydene.2019.10.103
    [110] Han J, Nam J H, Lee Y K 2016 The mechanism of hydrogen embrittlement in intercritically annealed medium Mn TRIP steel Acta Mater. 113 1-10 doi: 10.1016/j.actamat.2016.04.038
    [111] Troiano A R 2016 The role of hydrogen and other interstitials in the mechanical behavior of metals Metallogr. Microstruct. Anal. 5 557-69 doi: 10.1007/s13632-016-0319-4
    [112] Beachem C D 1972 A new model for hydrogen-assisted cracking (hydrogen embrittlement) Metall. Mater. Trans. B 3 441-55 doi: 10.1007/BF02642048
    [113] Nagumo M 2001 Function of hydrogen in embrittlement of high-strength steels ISIJ Int. 41 590-8 doi: 10.2355/isijinternational.41.590
    [114] Lynch S P 1988 Environmentally assisted crackingoverview of evidence for an adsorption-induced localized-slip process Acta Metall. 36 2639-61 doi: 10.1016/0001-6160(88)90113-7
    [115] Barrera O, et al 2018 Understanding and mitigating hydrogen embrittlement of steels: a review of experimental, modelling and design progress from atomistic to continuum J. Mater. Sci. 53 6251-90 doi: 10.1007/s10853-017-1978-5
    [116] Ryu J H, Chun Y S, Lee C S, Bhadeshia H K D H, Suh D W 2012 Effect of deformation on hydrogen trapping and effusion in TRIP-assisted steel Acta Mater. 60 4085-92 doi: 10.1016/j.actamat.2012.04.010
    [117] Sun B H, Krieger W, Rohwerder M, Ponge D, Raabe D 2020 Dependence of hydrogen embrittlement mechanisms on microstructure-driven hydrogen distribution in medium Mn steels Acta Mater. 183 313-28 doi: 10.1016/j.actamat.2019.11.029
    [118] Perng T P, Johnson M, Altstetter C J 1989 Influence of plastic deformation on hydrogen diffusion and permeation in stainless steels Acta Metall. 37 3393-7 doi: 10.1016/0001-6160(89)90211-3
    [119] Turk A, Pu S D, Bombac D, Rivera-diaz-del-castillo P E J, Galindo-Nava E I 2020 Quantification of hydrogen trapping in multiphase steels: part IIeffect of austenite morphology Acta Mater. 197 253-68 doi: 10.1016/j.actamat.2020.07.039
    [120] Seo H J, Jo J W, Kim J N, Kwon K, Lee J, Choi S, Lee T, Lee C S 2020 Effect of undissolved Nb carbides on mechanical properties of hydrogen-precharged tempered martensitic steel Sci. Rep. 10 11704 doi: 10.1038/s41598-020-68653-4
    [121] Seo H J, Heo Y U, Kim J N, Lee J, Choi S, Lee C S 2020 Effect of V/Mo ratio on the evolution of carbide precipitates and hydrogen embrittlement of tempered martensitic steel Corros. Sci. 176 108929 doi: 10.1016/j.corsci.2020.108929
    [122] Lee J, Lee T, Mun D J, Bae C M, Lee C S 2019 Comparative study on the effects of Cr, V, and Mo carbides for hydrogen-embrittlement resistance of tempered martensitic steel Sci. Rep. 9 5219 doi: 10.1038/s41598-019-41436-2
    [123] Park T M, Kim H-J, Um H Y, Goo N H, Han J 2020 The possibility of enhanced hydrogen embrittlement resistance of medium-Mn steels by addition of micro-alloying elements Mater. Charact. 165 110386 doi: 10.1016/j.matchar.2020.110386
    [124] Wang J J, Hui W J, Xie Z Q, Wang Z H, Zhang Y J, Zhao X L 2020 Hydrogen embrittlement of a cold-rolled Al-containing medium-Mn steel: effect of pre-strain Int. J. Hydrog. Energy 45 22080-93 doi: 10.1016/j.ijhydene.2020.05.239
    [125] Zhang Y J, Shao C W, Wang J J, Zhao X L, Hui W J 2019 Intercritical annealing temperature dependence of hydrogen embrittlement behavior of cold-rolled Al-containing medium-Mn steel Int. J. Hydrog. Energy 44 22355-67 doi: 10.1016/j.ijhydene.2019.06.204
    [126] Shao C, Hui W, Zhang Y, Zhao X, Weng Y 2018 Effect of intercritical annealing time on hydrogen embrittlement of warm-rolled medium Mn steel Mater. Sci. Eng. A 726 320-31 doi: 10.1016/j.msea.2018.04.100
    [127] Zhang J, et al 2021 Critical role of Luders banding in hydrogen embrittlement susceptibility of medium Mn steels Scr. Mater. 190 32-37 doi: 10.1016/j.scriptamat.2020.08.025
    [128] Sun B, Lu W, Gault B, Ding R, Makineni S K, Wan D, Wu C H, Chen H, Ponge D, Raabe D 2021 Chemical heterogeneity enhances hydrogen resistance in high-strength steels Nat. Mater. 20 1629-34 doi: 10.1038/s41563-021-01050-y
    [129] Hojo T, Koyama M, Kumai B, Shibayama Y, Shiro A, Shobu T, Saitoh H, Ajito S, Akiyama E 2022 Comparative study of stress and strain partitioning behaviors in medium manganese and transformation-induced plasticity-aided bainitic ferrite steels Scr. Mater. 210 114463 doi: 10.1016/j.scriptamat.2021.114463
    [130] Li Y, Li W, Min N, Liu H B, Jin X J 2020 Homogeneous elasto-plastic deformation and improved strain compatibility between austenite and ferrite in a co-precipitation hardened medium Mn steel with enhanced hydrogen embrittlement resistance Int. J. Plast. 133 102805 doi: 10.1016/j.ijplas.2020.102805
  • 加载中
图(24)
计量
  • 文章访问数:  1454
  • HTML全文浏览量:  613
  • PDF下载量:  278
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-05-20
  • 录用日期:  2022-07-08
  • 修回日期:  2022-06-27
  • 刊出日期:  2022-09-21

目录

    /

    返回文章
    返回