Taking advantage of glass: capturing and retaining the helium gas on the moon
doi: 10.1088/2752-5724/ac74af
-
Abstract: Helium-3 (3He) is a noble gas that has critical applications in scientific research and promising application potential as clean fusion energy. It is thought that the lunar regolith contains large amounts of helium, but it is challenging to extract because most helium atoms are reserved in defects of crystals or as solid solutions. Here, we find large amounts of helium bubbles in the glassy surface layer of ilmenite particles that were brought back by the Chang’E-5 mission. The special disordered atomic packing structure of glasses should be the critical factor for capturing the noble helium gas. The reserves in bubbles do not require heating to high temperatures to be extracted. Mechanical methods at ambient temperatures can easily break the bubbles. Our results provide insights into the mechanism of helium gathering on the moon and offer guidance on future in situ extraction.
-
Key words:
- glass /
- lunar regolith /
- disorder /
- helium bubble /
- ilmenite
-
Figure 2. TEM images and EELS curves. (a) The bright field TEM image of the ilmenite (FeTiO3) sample. It has a glassy surface layer of about 50 nm in thickness where abundant helium bubbles are observed. Below the glass layer is first a partial glass region and then the crystalline phase. On the right-hand side are high-resolution TEM images. (b) The zoomed-in image of the glass layer containing many helium gas bubbles. (c) A spherical helium bubble in the glass with clear interface. (d) The EELS curves acquired at different locations in (a); site 1 is a big bubble; site 2 is a small bubble; site 3 is in the glass layer; site 4 is in the crystalline phase. The helium signal at around 22 eV is detected in the glassy layer.
Figure 4. Schematic illustration of the capturing and retaining process of helium (He) on the surface of ilmenite. (a) Helium atoms in the solar wind implant into the lattice of crystalline ilmenite. (b) Surface amorphization caused by long-time irradiation of the solar wind. (c) Helium atoms diffuse into the glassy surface layer and form bubbles.
-
[1] Eberhardt P, Geiss J, Graf H, Grgler N, Krhenbhl U, Schwaller H, Schwarzmller J, Stettler A 1970 Trapped solar wind noble gases, Kr81/Kr exposure ages and K/Ar ages in Apollo 11 lunar material Science 167 558-60 doi: 10.1126/science.167.3918.558 [2] Jordan J L 1990 Mapping pyroclastic deposits and other lunar features for solar wind implanted helium, lunar volcanic glasses: scientific and resource potential LPI Tech. Rep.Texas 43-45 [3] Wittenberg L J, Santarius J F, Kulcinski G L 1986 Lunar source of 3He for commercial fusion power Fusion Technol. 10 167-78 doi: 10.13182/FST86-A24972 [4] Kulcinski G L, Schmitt H H 1988 The moon: an abundant source of clean and safe fusion fuel for the 21st century Lunar Helium-3 and Fusion Power NASA Conf. Publication 10018Washington 35-63 [5] Harris-Kuhlman K R 1998 Trapping and diffusion of helium in lunar minerals The University of Wisconsin-Madison [6] Johnson J R, Swindle T D, Lucey P G 1999 Estimated solar wind-implanted helium-3 distribution on the Moon Geophys. Res. Lett. 26 385-8 doi: 10.1029/1998GL900305 [7] Taylor L A 1994 Helium-3 on the Moon: Model Assumptions and Abundances, Engineering, Construction, and Operations in Space IVNew YorkAmerican Society of Civil Engineers 678-86 [8] Fa W, Jin Y-Q 2007 Quantitative estimation of helium-3 spatial distribution in the lunar regolith layer Icarus 190 15-23 doi: 10.1016/j.icarus.2007.03.014 [9] Keller L P, Mckay D S 1993 Discovery of vapor deposits in the lunar regolith Science 261 1305-7 doi: 10.1126/science.261.5126.1305 [10] Burgess K D, Stroud R M 2018 Phase-dependent space weathering effects and spectroscopic identification of retained helium in a lunar soil grain Geochim. Cosmochim. Acta 224 64-79 doi: 10.1016/j.gca.2017.12.023 [11] Signer P, Baur H, Derksen U, Etique P, Funk H, Horn P, Wieler R 1977 Helium, neon, and argon records of lunar soil evolution Proc. 7th Lunar Science Conf.New York(Pergamon Press) 3657-83 [12] Christoffersen R, Keller L P, Mckay D S 1996 Microstructure, chemistry, and origin of grain rims on ilmenite from the lunar soil finest fraction Meteorit. Planet. Sci. 31 835-48 doi: 10.1111/j.1945-5100.1996.tb02117.x [13] Keller L P, McKay D S 1997 The nature and origin of rims on lunar soil grains Geochim. Cosmochim. Acta 61 2331-41 doi: 10.1016/S0016-7037(97)00085-9 [14] Futagami T, Ozima M, Nagal S, Aoki Y 1993 Experiments on thermal release of implanted noble gases from minerals and their implications for noble gases in lunar soil grains Geochem. Cosmochim. Acta 57 3177-94 doi: 10.1016/0016-7037(93)90302-D [15] Srinivasan B, Hennecke E W, Sinclair D E, Manuel O K 1972 A comparison of noble gases released from lunar fines (15601.64) with noble gases in meteorites and in the earth Proc. 3rd Lunar Science Conf.(MIT Press) 1927-45 [16] Heiken G, Vaniman D, French B 1991 Lunar SourcebookNew YorkCambridge University Press [17] Zhang L, Wu K, Chen Z, Yu X, Li J, Yang S, Hui G, Yang M 2021 Gas storage and transport in porous media: from shale gas to helium-3 Planet. Space Sci. 204 105283 doi: 10.1016/j.pss.2021.105283 [18] Ducati H, Kalbitzer S, Kiko J, Kirsten T, Mller H W 1973 Rare gas diffusion studies in individual lunar soil particles and in artificially implanted glasses Moon 8 210-27 doi: 10.1007/BF00562758 [19] Mueller H W, Jordan J, Kalbitzer S, Kiko J, Kirsten T 1976 Rare gas ion probe analysis of helium profiles in individual lunar soil particles Proc. Lunar Science Conf. 7thvol 1 937-5110.1016/0360-3016(76)90119-x [20] Kiko J, Kirsten T, Ries D 1978 Distribution properties of implanted rare gases in individual olivine crystals from the lunar regolith Proc. Lunar Planet. Science Conf. 9thvol 9 1655-65 [21] Hu S, et al 2021 A dry lunar mantle reservoir for young mare basalts of Chang’e-5 Nature 600 49-53 doi: 10.1038/s41586-021-04107-9 [22] Tian H C, et al 2021 Non-KREEP origin for Chang’e-5 basalts in the Procellarum KREEP Terrane Nature 600 59-63 doi: 10.1038/s41586-021-04119-5 [23] Li Q L, et al 2021 Two-billion-year-old volcanism on the Moon from Chang’e-5 basalts Nature 600 54-58 doi: 10.1038/s41586-021-04100-2 [24] Zhang H, et al 2021 Size, morphology, and composition of lunar samples returned by Chang’E-5 mission Sci. China-Phys. Mech. Astron. 65 229511 doi: 10.1007/s11433-021-1818-1 [25] Weber W J 2000 Models and mechanisms of irradiation-induced amorphization in ceramics Nucl. Instrum. Methods Phys. Res. B 166-167 98-106 doi: 10.1016/S0168-583X(99)00643-6 [26] Snead L L, Zinkle S J, Hay J C, Osborne M C 1998 Amorphization of SiC under ion and neutron irradiation Nucl. Instrum. Methods Phys. Res. B 141 123-32 doi: 10.1016/S0168-583X(98)00085-8 [27] Okubo N, Ishikawa N, Sataka M, Jitsukawa S 2013 Surface amorphization in Al2O3 induced by swift heavy ion irradiation Nucl. Instrum. Methods Phys. Res. B 314 208-10 doi: 10.1016/j.nimb.2013.05.051 [28] Evin B, Leroy E, Segard M, Paul-Boncour V, Challet S, Fabre A, Latroche M 2021 Investigation by STEM-EELS of helium density in nanobubbles formed in aged palladium tritides J. Alloys Compd. 878 160267 doi: 10.1016/j.jallcom.2021.160267 [29] Cao C R, Lu Y M, Bai H Y, Wang W H 2015 High surface mobility and fast surface enhanced crystallization of metallic glass Appl. Phys. Lett. 107 141606 doi: 10.1063/1.4933036 [30] Zhu L, Brian C W, Swallen S F, Straus P T, Ediger M D, Yu L 2011 Surface self-diffusion of an organic glass Phys. Rev. Lett. 106 256103 doi: 10.1103/PhysRevLett.106.256103 [31] Malshe R, Ediger M D, Yu L, de Pablo J J 2011 Evolution of glassy gratings with variable aspect ratios under surface diffusion J. Chem. Phys. 134 194704 doi: 10.1063/1.3573903 [32] Walsh C A, Yuan J, Brown L M 2000 A procedure for measuring the helium density and pressure in nanometre-sized bubbles in irradiated materials using electron-energy-loss spectroscopy Phil. Mag. A 80 1507-43 doi: 10.1080/01418610008212134 [33] Trinkaus H 2006 Energetics and formation kinetics of helium bubbles in metals Radiat. Eff. 78 189-211 doi: 10.1080/00337578308207371 [34] David M L, Alix K, Pailloux F, Mauchamp V, Couillard M, Botton G A, Pizzagalli L 2014 In situ controlled modification of the helium density in single helium-filled nanobubbles J. Appl. Phys. 115 123508 doi: 10.1063/1.4869213 [35] Ivanov A V 2014 Volatiles in lunar regolith samples: a survey Sol. Syst. Res. 48 113-29 doi: 10.1134/S0038094614020038 [36] Song H, Zhang J, Sun Y, Li Y, Zhang X, Ma D, Kou J 2021 Theoretical study on thermal release of helium-3 in lunar ilmenite Minerals 11 319 doi: 10.3390/min11030319 [37] Mueller H, Jordan J, Kalbitzer S, Kiko J, Kirsten T 1976 Rare gas ion probe analysis of helium profiles in individual lunar soil particles Proc. 7th Lunar Science Conf.New York(Pergamon Press) 937-51 [38] Cho K, Allen W R, Finstad T G, Chu W K, Liu J, Wortman J J 1985 Channeling effect for low energy ion implantation in Si Nucl. Instrum. Methods Phys. Res. B 7-8 265-72 doi: 10.1016/0168-583X(85)90564-6 [39] Nie X, Wang J, Duan W, Zhao Z, Li L, Zhang Z 2021 Effects of different crystallization methods on photocatalytic performance of TiO2 nanotubes Appl. Phys. A 127 879 doi: 10.1007/s00339-021-05041-3 [40] Fromknecht R, Auer R, Khubeis I, Meyer O 1996 Lattice location and electrical conductivity in ion implanted TiO2 single crystals Nucl. Instrum. Methods Phys. Res. B 120 252-6 doi: 10.1016/S0168-583X(96)00520-4 [41] Zhang H, Chen B, Banfield J F, Waychunas G A 2008 Atomic structure of nanometer-sized amorphous TiO2 Phys. Rev. B 78 214106 doi: 10.1103/PhysRevB.78.214106 -
mfac74afsupp1.docx