留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Field-free approaches for deterministic spin-orbit torque switching of the perpendicular magnet

Hao Wu Jing Zhang Baoshan Cui Seyed Armin Razavi Xiaoyu Che Quanjun Pan Di Wu Guoqiang Yu Xiufeng Han Kang L Wang

Hao Wu, Jing Zhang, Baoshan Cui, Seyed Armin Razavi, Xiaoyu Che, Quanjun Pan, Di Wu, Guoqiang Yu, Xiufeng Han, Kang L Wang. Field-free approaches for deterministic spin-orbit torque switching of the perpendicular magnet[J]. Materials Futures, 2022, 1(2): 022201. doi: 10.1088/2752-5724/ac6577
Citation: Hao Wu, Jing Zhang, Baoshan Cui, Seyed Armin Razavi, Xiaoyu Che, Quanjun Pan, Di Wu, Guoqiang Yu, Xiufeng Han, Kang L Wang. Field-free approaches for deterministic spin-orbit torque switching of the perpendicular magnet[J]. Materials Futures, 2022, 1(2): 022201. doi: 10.1088/2752-5724/ac6577
Topical Review •
OPEN ACCESS

Field-free approaches for deterministic spin-orbit torque switching of the perpendicular magnet

doi: 10.1088/2752-5724/ac6577
More Information
  • Figure  1.  Lateral structural symmetry breaking for field-free deterministic SOT switching. (a) Broken mirror symmetry in the lateral direction allows for the creation of effective perpendicular magnetic fields HzFL [31]. (b) Measurement configuration: current is applied along the x direction, and structural symmetry is broken along the y direction, i.e. current and wedge directions are perpendicular to one another [31]. (c) Close correlation observed between HzFL and the magnetic anisotropy gradient dHk/dy. (a)-(c) Reproduced from [31], with permission from Springer Nature. (d) Similar results are obtained using a wedge-shaped ferromagnet, CoFeB in this case. A correlation between the anisotropy gradient and HzFL is also found in this work. Reprinted from [32], with the permission of AIP Publishing. (e) Current-induced effective perpendicular magnetic fields created using a wedge-shaped SOC layer Mo. Reprinted figure with permission from [33], Copyright (2018) by the American Physical Society. (f) Creation of effective perpendicular fields using a thin asymmetric light-metal insertion. Reprinted with permission from [34]. Copyright (2020) American Chemical Society.

    Figure  2.  Chiral symmetry breaking determined SOT switching for the lateral magnetization gradient. (a) DMI and SOT in the heavy/metal/ferromagnet system. (b) For the lateral magnetization gradient, the SOT exerts the non-collinear spin textures, where the chirality of the spin textures is performed by the DMI, leading to the deterministic switching. (c) The composition gradient of GdFeCo can generate a saturation magnetization gradient along the y direction (yMs). (d) Chiral symmetry breaking determined field-free SOT switching in Ta/GdFeCo structures with a yMs. (e) Under 20 mA currents, the anomalous Hall loops are shifted to the opposite directions, indicating the z-component effective field Hzeff from chiral symmetry breaking. Reprinted with permission from [49]. Copyright (2021) American Chemical Society.

    Figure  3.  (a) For the vertical magnetization gradient in Ta/GdFeCo, the chiral symmetry of the SOT-induced spin textures along the thickness direction can be broken by the DMI, and thus contributes to the deterministic switching. (b) Even for the CoFeB/CoFe bilayer structure with a small Ms gradient, the chiral symmetry breaking determined SOT switching is still robust. Reprinted with permission from [49]. Copyright (2021) American Chemical Society.

    Figure  4.  Exchange-bias and field-free magnetization switching in FM/AFM structures. (a) Schematic illustration of an exchange-biased system comprised of Co/Ni and PtMn. While the Co/Ni layer shows PMA, the magnetization is canted by the exchange coupling from the AFM PtMn layer that breaks mirror symmetry [57]. (b) Magnetic hysteresis loops of the Co/Ni/PtMn structure along x, y and z directions after field annealing in x-direction [57]. An in-plane exchange-bias is established as indicated by the green curve (c) SOT switching of the Co/Ni/PtMn structure under different external magnetic fields and at zero field. (a)-(c) Reproduced from [57], with permission from Springer Nature. (d) Schematic illustration of a CoFeB/IrMn/CoFeB system. (e) Field-free SOT switching of the CoFeB/IrMn/CoFeB structure after field annealing. (d), (e) Reproduced from [58], with permission from Springer Nature.

    Figure  5.  Partial switching and Joule heating effect in IrMn-based FM/AFM structures. (a) Magnetization switching loops of a Pt/Co/IrMn structure under different in-plane external magnetic fields. The magnetization switching is not complete at zero field [62]. (b) Sketches of grains within the antiferromagnetic layer after field annealing. (a), (b) Reproduced from [62]. CC BY 4.0. (c) Schematic illustration of a Pt/CoFe/IrMn structure [63]. (d) Comparison of the SOT switching loops between the first switching test and after multiple SOT switching loops. The anomalous Hall resistance change after switching significantly decreases from 0.2 to 0.05 after 12 SOT switching loops [63]. (e) Decreasing in-plane exchange-bias after multiple SOT switching loops. (c)-(e) Reprinted figure with permission from [63], Copyright (2017) by the American Physical Society.

    Figure  6.  Field-free magnetization switching through interlayer exchange-coupling. (a) Exchange-coupled CoFe layers with a Ru spacer. The top CoFe layer with in-plane magnetic anisotropy exchange-biased by IrMn serves as the fixed layer and couples with the bottom CoFe layer with PMA. SOT originates from the Pt layer via SHE [64]. (b) Shifted magnetic hysteresis loop in the x-direction as a result of the interlayer exchange-coupling [64]. (c) SOT switching under different external magnetic fields and at zero field. (a)-(c) Reproduced from [64], with permission from Springer Nature. (d) CoFeB/W/CoFeB structure with the two CoFeB layers coupled with each other. The W spacer here also contributes to SOT in this system [65]. (e) Field-free SOT switching investigated by both transport and MOKE measurements. (d), (e) Reprinted figure with permission from [65], Copyright (2019) by the American Physical Society.

    Figure  7.  Emerging studies in SOTs with unconventional symmetry. (a) Schematic of the HM/FM-based structures for generating spin currents with OOP components [87]. (b), (c) Experimental results shown in (c) qualitatively agree with micromagnetic simulation results for the cases of spin currents with non-zero OOP spin components δ0, labelled by purple and blue squares in (b) these non-zero OOP spin components facilitate field-free SOT switching. (a)-(c) Reproduced from [87], with permission from Springer Nature. (d), (e) The analytical estimation of coefficients χ (which parameterize spin density induced by an electric field) in a magnetic TI for (d) field-like spin torques and (e) damping-like spin torques. Inset in (d) depicts the band structure of a magnetic TI when high-order momentum contributions are involved at energy level away from the Dirac point. (d), (e) Reprinted figure with permission from [88], Copyright (2019) by the American Physical Society. (f)-(h) Schematics of the pure spin current generated by the planar Hall effect. Reproduced from [89], with permission from Springer Nature. (i) Schematics of SOTs with spin rotation symmetry (labelled by QσˆR) in comparison with those with conventional symmetry (labelled by Qσˆ). Reproduced from [90]. CC BY 4.0. (j) Schematic of the bilayer WTe2/Permalloy structures where field-free switching is realized due to the reduced symmetry of the WTe2 surface. Reproduced from [50], with permission from Springer Nature.

    Figure  8.  (a) Lateral cross-section transmission electron microscope (TEM) view of the SOT-MRAM cell with 50 nm thick Co magnetic hard mask (inset is the top view after etching) [96]. (b) Writing error rate and endurance measured on 60 nm MTJ devices with Co hard mask. (a), (b) © [2019] IEEE. Reprinted, with permission, from [96]. (c) Sketch of canted SOT-MRAM cell structure [101]. (d) Switching probability at different write pulse width for canted MTJ. (c), (d) © [2019] IEEE. Reprinted, with permission, from [101].

  • [1] Wolf S A, Awschalom D D, Buhrman R A, Daughton J M, von Molnar S, Roukes M L, Chtchelkanova A Y, Treger D M 2001 Spintronics: a spin-based electronics vision for the future Science 294 1488-95 doi: 10.1126/science.1065389
    [2] Baibich M N, Broto J M, Fert A, Van Dau F N, Petroff F, Etienne P, Creuzet G, Friederich A, Chazelas J 1988 Giant magnetoresistance of (001)Fe/(001)Cr magnetic superlattices Phys. Rev. Lett. 61 2472-5 doi: 10.1103/PhysRevLett.61.2472
    [3] Binasch G, Grunberg P, Saurenbach F, Zinn W 1989 Enhanced magnetoresistance in layered magnetic structures with antiferromagnetic interlayer exchange Phys. Rev. B 39 4828-30 doi: 10.1103/PhysRevB.39.4828
    [4] Parkin S, Xin J, Kaiser C, Panchula A, Roche K, Samant M 2003 Magnetically engineered spintronic sensors and memory Proc. IEEE 91 661-80 doi: 10.1109/JPROC.2003.811807
    [5] Julliere M 1975 Tunneling between ferromagnetic films Phys. Lett. A 54 225-6 doi: 10.1016/0375-9601(75)90174-7
    [6] Miyazaki T, Tezuka N 1995 Giant magnetic tunneling effect in Fe/Al2O3/Fe junction J. Magn. Magn. Mater. 139 L231-4 doi: 10.1016/0304-8853(95)90001-2
    [7] Moodera J S, Kinder L R, Wong T M, Meservey R 1995 Large magnetoresistance at room temperature in ferromagnetic thin film tunnel junctions Phys. Rev. Lett. 74 3273-6 doi: 10.1103/PhysRevLett.74.3273
    [8] Parkin S S P, Kaiser C, Panchula A, Rice P M, Hughes B, Samant M, Yang S-H 2004 Giant tunnelling magnetoresistance at room temperature with MgO (100) tunnel barriers Nat. Mater. 3 862 doi: 10.1038/nmat1256
    [9] Yuasa S, Nagahama T, Fukushima A, Suzuki Y, Ando K 2004 Giant room-temperature magnetoresistance in single-crystal Fe/MgO/Fe magnetic tunnel junctions Nat. Mater. 3 868 doi: 10.1038/nmat1257
    [10] Butler W H, Zhang X G, Schulthess T C, MacLaren J M 2001 Spin-dependent tunneling conductance of Fe|MgO|Fe sandwiches Phys. Rev. B 63 054416 doi: 10.1103/PhysRevB.63.054416
    [11] Berger L 1996 Emission of spin waves by a magnetic multilayer traversed by a current Phys. Rev. B 54 9353-8 doi: 10.1103/PhysRevB.54.9353
    [12] Slonczewski J C 1996 Current-driven excitation of magnetic multilayers J. Magn. Magn. Mater. 159 L1-L7 doi: 10.1016/0304-8853(96)00062-5
    [13] Martinez E, Emori S, Perez N, Torres L, Beach G S D 2014 Current-driven dynamics of Dzyaloshinskii domain walls in the presence of in-plane fields: full micromagnetic and one-dimensional analysis J. Appl. Phys. 115 213909 doi: 10.1063/1.4881778
    [14] Zeinali B, Madsen J K, Raghavan P, Moradi F 2017 Ultra-fast SOT-MRAM cell with STT current for deterministic switching 2017 IEEE Int. Conf. on Computer Design (ICCD) 463-810.1109/ICCD.2017.81
    [15] Perel M I D V I 1971 Possibility of orienting electron spins with current JETP Lett. 13 467-9www.jetpletters.ru/ps/1587/article_24366.shtml
    [16] Dyakonov V I P M I 1971 Current-induced spin orientation of electrons in semiconductors Phys. Lett. A 35 459 doi: 10.1016/0375-9601(71)90196-4
    [17] Hirsch J E 1999 Spin Hall effect Phys. Rev. Lett. 83 1834-7 doi: 10.1103/PhysRevLett.83.1834
    [18] Zhang S F 2000 Spin Hall effect in the presence of spin diffusion Phys. Rev. Lett. 85 393-6 doi: 10.1103/PhysRevLett.85.393
    [19] Edelstein V M 1990 Spin polarization of conduction electrons induced by electric current in two-dimensional asymmetric electron systems Solid State Commun. 73 233-5 doi: 10.1016/0038-1098(90)90963-C
    [20] Dresselhaus G 1955 Spin-orbit coupling effects in zinc blende structures Phys. Rev. 100 580-6 doi: 10.1103/PhysRev.100.580
    [21] Rashba R E, Bychkov Y A 1984 Properties of a 2D electron-gas with lifted spectral degeneracy JETP Lett. 39 78-81
    [22] Kim K-W, Seo S-M, Ryu J, Lee K-J, Lee H-W 2012 Magnetization dynamics induced by in-plane currents in ultrathin magnetic nanostructures with Rashba spin-orbit coupling Phys. Rev. B 85 180404 doi: 10.1103/PhysRevB.85.180404
    [23] Wang X, Manchon A 2012 Diffusive spin dynamics in ferromagnetic thin films with a Rashba interaction Phys. Rev. Lett. 108 117201 doi: 10.1103/PhysRevLett.108.117201
    [24] Haney P M, Lee H-W, Lee K-J, Manchon A, Stiles M D 2013 Current induced torques and interfacial spin-orbit coupling: semiclassical modeling Phys. Rev. B 87 174411 doi: 10.1103/PhysRevB.87.174411
    [25] Miron I M, Garello K, Gaudin G, Zermatten P J, Costache M V, Auffret S, Bandiera S, Rodmacq B, Schuhl A, Gambardella P 2011 Perpendicular switching of a single ferromagnetic layer induced by in-plane current injection Nature 476 189 doi: 10.1038/nature10309
    [26] Liu L, Pai C F, Li Y, Tseng H W, Ralph D C, Buhrman R A 2012 Spin-torque switching with the giant spin Hall effect of tantalum Science 336 555-8 doi: 10.1126/science.1218197
    [27] Liu L, Pai C F, Ralph D C, Buhrman R A 2012 Magnetic oscillations driven by the spin Hall effect in 3-terminal magnetic tunnel junction devices Phys. Rev. Lett. 109 186602 doi: 10.1103/PhysRevLett.109.186602
    [28] Lee K-S, Lee S-W, Min B-C, Lee K-J 2013 Threshold current for switching of a perpendicular magnetic layer induced by spin Hall effect Appl. Phys. Lett. 102 112410 doi: 10.1063/1.4798288
    [29] Yan S, Bazaliy Y B 2015 Phase diagram and optimal switching induced by spin Hall effect in a perpendicular magnetic layer Phys. Rev. B 91 214424 doi: 10.1103/PhysRevB.91.214424
    [30] Peng S, Zhu D, Zhou J, Zhang B, Cao A, Wang M, Cai W, Cao K, Zhao W 2019 Modulation of heavy metal/ferromagnetic metal interface for highperformance spintronic devices Adv. Electron. Mater. 5 1900134 doi: 10.1002/aelm.201900134
    [31] Yu G, et al 2014 Switching of perpendicular magnetization by spin-orbit torques in the absence of external magnetic fields Nat. Nanotechnol. 9 548-54 doi: 10.1038/nnano.2014.94
    [32] Yu G, Chang L-T, Akyol M, Upadhyaya P, He C, Li X, Wong K L, Amiri P K, Wang K L 2014 Current-driven perpendicular magnetization switching in Ta/CoFeB/[TaOx or MgO/TaOx] films with lateral structural asymmetry Appl. Phys. Lett. 105 102411 doi: 10.1063/1.4895735
    [33] Chen T-Y, Chan H-I, Liao W-B, Pai C-F 2018 Current-induced spin-orbit torque and field-free switching in Mo-based magnetic heterostructures Phys. Rev. Appl. 10 044038 doi: 10.1103/PhysRevApplied.10.044038
    [34] Razavi A, Wu H, Shao Q, Fang C, Dai B, Wong K, Han X, Yu G, Wang K L 2020 Deterministic spin-orbit torque switching by a light-metal insertion Nano Lett. 20 3703-9 doi: 10.1021/acs.nanolett.0c00647
    [35] Akyol M, Yu G, Alzate J G, Upadhyaya P, Li X, Wong K L, Ekicibil A, Amiri P K, Wang K L 2015 Current-induced spin-orbit torque switching of perpendicularly magnetized Hf|CoFeB|MgO and Hf|CoFeB|TaOx structures Appl. Phys. Lett. 106 162409 doi: 10.1063/1.4919108
    [36] Pai C-F, Mann M, Tan A J, Beach G S D 2016 Determination of spin torque efficiencies in heterostructures with perpendicular magnetic anisotropy Phys. Rev. B 93 144409 doi: 10.1103/PhysRevB.93.144409
    [37] Razavi A, Wu H, Dai B, He H, Wu D, Wong K, Yu G, Wang K 2020 Spin-orbit torques in structures with asymmetric dusting layers Appl. Phys. Lett. 117 182403 doi: 10.1063/5.0029347
    [38] Cui B, et al 2019 Field-free spin-orbit torque switching of perpendicular magnetization by the Rashba interface ACS Appl. Mater. Interfaces 11 39369-75 doi: 10.1021/acsami.9b13622
    [39] Yu G, et al 2016 Competing effect of spin-orbit torque terms on perpendicular magnetization switching in structures with multiple inversion asymmetries Sci. Rep. 6 23956 doi: 10.1038/srep23956
    [40] Torrejon J, Garcia-Sanchez F, Taniguchi T, Sinha J, Mitani S, Kim J-V, Hayashi M 2015 Current-driven asymmetric magnetization switching in perpendicularly magnetized CoFeB/MgO heterostructures Phys. Rev. B 91 214434 doi: 10.1103/PhysRevB.91.214434
    [41] Chuang T C, Pai C F, Huang S Y 2019 Cr-induced perpendicular magnetic anisotropy and field-free spin-orbit-torque switching Phys. Rev. Appl. 11 061005 doi: 10.1103/PhysRevApplied.11.061005
    [42] You L, Lee O, Bhowmik D, Labanowski D, Hong J, Bokor J, Salahuddin S 2015 Switching of perpendicularly polarized nanomagnets with spin orbit torque without an external magnetic field by engineering a tilted anisotropy Proc. Natl Acad. Sci. 112 10310 doi: 10.1073/pnas.1507474112
    [43] Dzyaloshinsky I 1958 A thermodynamic theory of weak’ ferromagnetism of antiferromagnetics J. Phys. Chem. Solids 4 241-55 doi: 10.1016/0022-3697(58)90076-3
    [44] Moriya T 1960 Anisotropic superexchange interaction and weak ferromagnetism Phys. Rev. 120 91-98 doi: 10.1103/PhysRev.120.91
    [45] Je S-G, Kim D-H, Yoo S-C, Min B-C, Lee K-J, Choe S-B 2013 Asymmetric magnetic domain-wall motion by the Dzyaloshinskii-Moriya interaction Phys. Rev. B 88 214401 doi: 10.1103/PhysRevB.88.214401
    [46] Chen B, Lourembam J, Goolaup S, Lim S T 2019 Field-free spin-orbit torque switching of a perpendicular ferromagnet with Dzyaloshinskii-Moriya interaction Appl. Phys. Lett. 114 022401 doi: 10.1063/1.5052194
    [47] Fert A, Reyren N, Cros V 2017 Magnetic skyrmions: advances in physics and potential applications Nat. Rev. Mater. 2 17031 doi: 10.1038/natrevmats.2017.31
    [48] Chen G, et al 2013 Novel chiral magnetic domain wall structure in Fe/Ni/Cu(001) films Phys. Rev. Lett. 110 177204 doi: 10.1103/PhysRevLett.110.177204
    [49] Wu H, et al 2021 Chiral symmetry breaking for deterministic switching of perpendicular magnetization by spin-orbit torque Nano Lett. 21 515-21 doi: 10.1021/acs.nanolett.0c03972
    [50] MacNeill D, Stiehl G M, Guimaraes M H D, Buhrman R A, Park J, Ralph D C 2016 Control of spin-orbit torques through crystal symmetry in WTe2/ferromagnet bilayers Nat. Phys. 13 300-5 doi: 10.1038/nphys3933
    [51] Han D-S, et al 2019 Long-range chiral exchange interaction in synthetic antiferromagnets Nat. Mater. 18 703-8 doi: 10.1038/s41563-019-0370-z
    [52] Fernndez-Pacheco A, Vedmedenko E, Ummelen F, Mansell R, Petit D, Cowburn R P 2019 Symmetry-breaking interlayer Dzyaloshinskii-Moriya interactions in synthetic antiferromagnets Nat. Mater. 18 679-84 doi: 10.1038/s41563-019-0386-4
    [53] Legrand W, Chauleau J-Y, Maccariello D, Reyren N, Collin S, Bouzehouane K, Jaouen N, Cros V, Fert A 2018 Hybrid chiral domain walls and skyrmions in magnetic multilayers Sci. Adv. 4 eaat0415 doi: 10.1126/sciadv.aat0415
    [54] Li W, et al 2019 Anatomy of Skyrmionic textures in magnetic multilayers Adv. Mater. 31 1807683 doi: 10.1002/adma.201807683
    [55] Zheng Z, et al 2021 Field-free spin-orbit torque-induced switching of perpendicular magnetization in a ferrimagnetic layer with a vertical composition gradient Nat. Commun. 12 4555 doi: 10.1038/s41467-021-24854-7
    [56] Zhang K, et al 2022 Efficient and controllable magnetization switching induced by intermixing-enhanced bulk spin-orbit torque in ferromagnetic multilayers Appl. Phys. Rev. 9 011407 doi: 10.1063/5.0067348
    [57] Fukami S, Zhang C, DuttaGupta S, Kurenkov A, Ohno H 2016 Magnetization switching by spin-orbit torque in an antiferromagnet-ferromagnet bilayer system Nat. Mater. 15 535-41 doi: 10.1038/nmat4566
    [58] Oh Y W, et al 2016 Field-free switching of perpendicular magnetization through spin-orbit torque in antiferromagnet/ferromagnet/oxide structures Nat. Nanotechnol. 11 878-84 doi: 10.1038/nnano.2016.109
    [59] Li W, Peng S, Lu J, Wu H, Li X, Xiong D, Zhang Y, Zhang Y, Wang K L, Zhao W 2021 Experimental demonstration of voltage-gated spin-orbit torque switching in an antiferromagnet/ferromagnet structure Phys. Rev. B 103 094436 doi: 10.1103/PhysRevB.103.094436
    [60] Peng S, et al 2020 Exchange bias switching in an antiferromagnet/ferromagnet bilayer driven by spin-orbit torque Nat. Electron. 3 757-64 doi: 10.1038/s41928-020-00504-6
    [61] Peng S Z, Lu J Q, Li W X, Wang L Z, Zhang H, Li X, Wang K L, Zhao W S 2019 Field-free switching of perpendicular magnetization through voltage-gated spin-orbit torque IEEE Int. Electron Devices Meeting 28.26.21-24
    [62] van den Brink A, Vermijs G, Solignac A, Koo J, Kohlhepp J T, Swagten H J M, Koopmans B 2016 Field-free magnetization reversal by spin-Hall effect and exchange bias Nat. Commun. 7 10854 doi: 10.1038/ncomms10854
    [63] Razavi S A, et al 2017 Joule heating effect on field-free magnetization switching by spin-orbit torque in exchange-biased systems Phys. Rev. Appl. 7 024023 doi: 10.1103/PhysRevApplied.7.024023
    [64] Lau Y C, Betto D, Rode K, Coey J M, Stamenov P 2016 Spin-orbit torque switching without an external field using interlayer exchange coupling Nat. Nanotechnol. 11 758-62 doi: 10.1038/nnano.2016.84
    [65] Murray N, Liao W-B, Wang T-C, Chang L-J, Tsai L-Z, Tsai T-Y, Lee S-F, Pai C-F 2019 Field-free spin-orbit torque switching through domain wall motion Phys. Rev. B 100 104441 doi: 10.1103/PhysRevB.100.104441
    [66] Garello K, Miron I M, Avci C O, Freimuth F, Mokrousov Y, Blgel S, Auffret S, Boulle O, Gaudin G, Gambardella P 2013 Symmetry and magnitude of spin-orbit torques in ferromagnetic heterostructures Nat. Nanotechnol. 8 587-93 doi: 10.1038/nnano.2013.145
    [67] Wang Z, Zhang L, Wang M, Wang Z, Zhu D, Zhang Y, Zhao W 2018 High-density NAND-like spin transfer torque memory with spin orbit torque erase operation IEEE Electron Device Lett. 39 343-6 doi: 10.1109/LED.2018.2795039
    [68] Cai W, et al 2021 Sub-ns field-free switching in perpendicular magnetic tunnel junctions by the interplay of spin transfer and orbit torques IEEE Electron Device Lett. 42 704-7 doi: 10.1109/LED.2021.3069391
    [69] Kimata M, et al 2019 Magnetic and magnetic inverse spin Hall effects in a non-collinear antiferromagnet Nature 565 627-30 doi: 10.1038/s41586-018-0853-0
    [70] Wang W, et al 2019 Anomalous spin-orbit torques in magnetic single-layer films Nat. Nanotechnol. 14 819-24 doi: 10.1038/s41565-019-0504-0
    [71] Bose A, Lam D D, Bhuktare S, Dutta S, Singh H, Jibiki Y, Goto M, Miwa S, Tulapurkar A A 2018 Observation of anomalous spin torque generated by a ferromagnet Phys. Rev. Appl. 9 064026 doi: 10.1103/PhysRevApplied.9.064026
    [72] Gibbons J D, MacNeill D, Buhrman R A, Ralph D C 2018 Reorientable spin direction for spin current produced by the anomalous Hall effect Phys. Rev. Appl. 9 064033 doi: 10.1103/PhysRevApplied.9.064033
    [73] Hnemann A, Herschbach C, Fedorov D V, Gradhand M, Mertig I 2019 Spin and charge currents induced by the spin Hall and anomalous Hall effects upon crossing ferromagnetic/nonmagnetic interfaces Phys. Rev. B 99 024420 doi: 10.1103/PhysRevB.99.024420
    [74] Luo Z, Zhang Q, Xu Y, Yang Y, Zhang X, Wu Y 2019 Spin-orbit torque in a single ferromagnetic layer induced by surface spin rotation Phys. Rev. Appl. 11 064021 doi: 10.1103/PhysRevApplied.11.064021
    [75] Yu J, et al 2019 Long spin coherence length and bulk-like spin-orbit torque in ferrimagnetic multilayers Nat. Mater. 18 29-34 doi: 10.1038/s41563-018-0236-9
    [76] Zhou J, et al 2019 Large spin-orbit torque efficiency enhanced by magnetic structure of collinear antiferromagnet IrMn Sci. Adv. 5 eaau6696 doi: 10.1126/sciadv.aau6696
    [77] Okuno T, et al 2019 Spin-transfer torques for domain wall motion in antiferromagnetically coupled ferrimagnets Nat. Electron. 2 389-93 doi: 10.1038/s41928-019-0303-5
    [78] You Y, et al 2021 Cluster magnetic octupole induced out-of-plane spin polarization in antiperovskite antiferromagnet Nat. Commun. 12 6524 doi: 10.1038/s41467-021-26893-6
    [79] Kondou K, Chen H, Tomita T, Ikhlas M, Higo T, MacDonald A H, Nakatsuji S, Otani Y 2021 Giant field-like torque by the out-of-plane magnetic spin Hall effect in a topological antiferromagnet Nat. Commun. 12 6491 doi: 10.1038/s41467-021-26453-y
    [80] Amin V P, Li J, Stiles M D, Haney P M 2019 Intrinsic spin currents in ferromagnets Phys. Rev. B 99 220405 doi: 10.1103/PhysRevB.99.220405
    [81] Sun C, Deng J, Rafi-Ul-Islam S M, Liang G, Yang H, Jalil M B A 2019 Field-free switching of perpendicular magnetization through spin hall and anomalous hall effects in ferromagnet-heavy-metal-ferromagnet structures Phys. Rev. Appl. 12 034022 doi: 10.1103/PhysRevApplied.12.034022
    [82] Seki T, Iihama S, Taniguchi T, Takanashi K 2019 Large spin anomalous Hall effect in L10-FePt: symmetry and magnetization switching Phys. Rev. B 100 144427 doi: 10.1103/PhysRevB.100.144427
    [83] Li J-Y, Wang R-Q, Deng M-X, Yang M 2019 In-plane magnetization effect on current-induced spin-orbit torque in a ferromagnet/topological insulator bilayer with hexagonal warping Phys. Rev. B 99 155139 doi: 10.1103/PhysRevB.99.155139
    [84] Sokolewicz R J, Ado I A, Katsnelson M I, Ostrovsky P M, Titov M 2019 Spin-torque resonance due to diffusive dynamics at the surface of a topological insulator Phys. Rev. B 99 214444 doi: 10.1103/PhysRevB.99.214444
    [85] Ghosh S, Manchon A 2019 Nonequilibrium spin density and spin-orbit torque in a three-dimensional topological insulator/antiferromagnet heterostructure Phys. Rev. B 100 014412 doi: 10.1103/PhysRevB.100.014412
    [86] Gweon H K, Lee K-J, Lim S H 2019 Influence of MgO sputtering power and post annealing on strength and angular dependence of spin-orbit torques in Pt/Co/MgO trilayers Phys. Rev. Appl. 11 014034 doi: 10.1103/PhysRevApplied.11.014034
    [87] Baek S H C, Amin V P, Oh Y W, Go G, Lee S J, Lee G H, Kim K-J, Stiles M D, Park B-G, Lee K-J 2018 Spin currents and spin-orbit torques in ferromagnetic trilayers Nat. Mater. 17 509-13 doi: 10.1038/s41563-018-0041-5
    [88] Kurebayashi D, Nagaosa N 2019 Theory of current-driven dynamics of spin textures on the surface of a topological insulator Phys. Rev. B 100 134407 doi: 10.1103/PhysRevB.100.134407
    [89] Safranski C, Montoya E A, Krivorotov I N 2019 Spin-orbit torque driven by a planar Hall current Nat. Nanotechnol. 14 27-30 doi: 10.1038/s41565-018-0282-0
    [90] Humphries A M, Wang T, Edwards E R J, Allen S R, Shaw J M, Nembach H T, Xiao J Q, Silva T J, Fan X 2017 Observation of spin-orbit effects with spin rotation symmetry Nat. Commun. 8 911 doi: 10.1038/s41467-017-00967-w
    [91] Liu L, et al 2021 Symmetry-dependent field-free switching of perpendicular magnetization Nat. Nanotechnol. 16 277-82 doi: 10.1038/s41565-020-00826-8
    [92] Liu L, et al 2019 Current-induced magnetization switching in all-oxide heterostructures Nat. Nanotechnol. 14 939-44 doi: 10.1038/s41565-019-0534-7
    [93] Kong W J, Wan C H, Wang X, Tao B S, Huang L, Fang C, Guo C Y, Guang Y, Irfan M, Han X F 2019 Spin-orbit torque switching in a T-type magnetic configuration with current orthogonal to easy axes Nat. Commun. 10 233 doi: 10.1038/s41467-018-08181-y
    [94] Mishra R, Mahfouzi F, Kumar D, Cai K, Chen M, Qiu X, Kioussis N, Yang H 2019 Electric-field control of spin accumulation direction for spin-orbit torques Nat. Commun. 10 248 doi: 10.1038/s41467-018-08274-8
    [95] Wang X K K L, Upadhyaya P, Fan Y, Shao Q, Yu G, Amiri P K 2016 Electric-field control of spin-orbit interaction for low-power spintronics Proc. IEEE 104 1974-2008 doi: 10.1109/JPROC.2016.2573836
    [96] Garello F Y K, et al 2019 Manufacturable 300 mm platform solution for field-free switching SOT-MRAM Symp. on VLSI Circuits T194-5
    [97] Wu O G H, et al 2018 Parasitic resistance reduction strategies for advanced CMOS FinFETs beyond 7 nm IEEE Int. Electron Devices Meeting (IEDM) 35.34.31-34
    [98] Wang Z, Li Z, Wang M, Wu B, Zhu D, Zhao W 2019 Field-free spin-orbit-torque switching of perpendicular magnetization aided by uniaxial shape anisotropy Nanotechnology 30 375202 doi: 10.1088/1361-6528/ab2831
    [99] Wang Z, Wu B, Li Z, Lin X, Yang J, Zhang Y, Zhao W 2018 Evaluation of ultrahigh-speed magnetic memories using field-free spin-orbit torque IEEE Trans. Magn. 54 1-5
    [100] Luo Y T Z, Dong Y, Lu C, Liu C W 2018 Field-free spin-orbit torque switching of perpendicular magnetic tunnel junction utilizing voltage-controlled magnetic anisotropy pulse width optimization Non-Volatile Memory Technology Symp. (NVMTS) 1-5
    [101] Honjo H, et al 2019 First demonstration of field-free SOT-MRAM with 0.35 ns write speed and 70 thermal stability under 400 C thermal tolerance by canted SOT structure and its advanced patterning/SOT channel technology IEEE Int. Electron Devices Meeting (IEDM) 28.25.21-24
    [102] Wang M, et al 2018 Field-free switching of a perpendicular magnetic tunnel junction through the interplay of spin-orbit and spin-transfer torques Nat. Electron. 1 582-8 doi: 10.1038/s41928-018-0160-7
    [103] Fukami S, Anekawa T, Zhang C, Ohno H 2016 A spin-orbit torque switching scheme with collinear magnetic easy axis and current configuration Nat. Nanotechnol. 11 621-5 doi: 10.1038/nnano.2016.29
    [104] Alexander Makaro V S, Selberherr S 2018 Field-free fast reliable deterministic switching in perpendicular spin-orbit torque MRAM cells Int. Conf. on Simulation of Semiconductor Processes and Devices (SISPAD)
    [105] Cai K, et al 2017 Electric field control of deterministic current-induced magnetization switching in a hybrid ferromagnetic/ferroelectric structure Nat. Mater. 16 712-6 doi: 10.1038/nmat4886
  • 加载中
图(9)
计量
  • 文章访问数:  1226
  • HTML全文浏览量:  498
  • PDF下载量:  201
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-02-02
  • 录用日期:  2022-04-06
  • 修回日期:  2022-03-27
  • 刊出日期:  2022-04-22

目录

    /

    返回文章
    返回