• 中文核心期刊要目总览
  • 中国科技核心期刊
  • 中国科学引文数据库(CSCD)
  • 中国科技论文与引文数据库(CSTPCD)
  • 中国学术期刊文摘数据库(CSAD)
  • 中国学术期刊(网络版)(CNKI)
  • 中文科技期刊数据库
  • 万方数据知识服务平台
  • 中国超星期刊域出版平台
  • 国家科技学术期刊开放平台
  • 荷兰文摘与引文数据库(SCOPUS)
  • 日本科学技术振兴机构数据库(JST)

Field-free approaches for deterministic spin-orbit torque switching of the perpendicular magnet

  • Abstract: All-electrical driven magnetization switching attracts much attention in next-generation spintronic memory and logic devices, particularly in magnetic random-access memory (MRAM) based on the spin-orbit torque (SOT), i.e. SOT-MRAM, due to its advantages of low power consumption, fast write/read speed, and improved endurance, etc. For conventional SOT-driven switching of the magnet with perpendicular magnetic anisotropy, an external assisted magnetic field is necessary to break the inversion symmetry of the magnet, which not only induces the additional power consumption but also makes the circuit more complicated. Over the last decade, significant effort has been devoted to field-free magnetization manipulation by using SOT. In this review, we introduce the basic concepts of SOT. After that, we mainly focus on several approaches to realize the field-free deterministic SOT switching of the perpendicular magnet. The mechanisms mainly include mirror symmetry breaking, chiral symmetry breaking, exchange bias, and interlayer exchange coupling. Furthermore, we show the recent progress in the study of SOT with unconventional origin and symmetry. The final section is devoted to the industrial-level approach for potential applications of field-free SOT switching in SOT-MRAM technology.

     

/

返回文章
返回