Properties and processing technologies of high-entropy alloys
doi: 10.1088/2752-5724/ac5e0c
-
Abstract: High-entropy alloys (HEAs) are emerging materials that are developed based on entropy, and draw significant attention for the potential to design their chemical disorder to bring out different structural and physical characteristics. Over the past two decades, significant salient efforts have been conducted to explore many unique and useful properties of HEAs, such as overcoming the strength-ductility trade-off, outstanding thermal stability, and excellent low temperature plasticity. Here, we review the key research topic of HEAs in the following three aspects: (a) performance advantages and composition design, (b) performance-driven HEAs and (c) fabrication process-driven HEAs. Towards their industrial applications, our article reviews a large range of methods to synthesise, fabricate and process HEAs. We also discuss the current challenges and future opportunities, mainly focusing on performance breakthroughs in HEAs.
-
Key words:
- high-entropy alloys /
- review /
- order and disorder /
- properties /
- processing
-
Figure 2. The advantages and mechanisms of HEAs. Reproduced and adapted with permission from [36]. Copyright 2020 Acta Materialia Inc. Published by Elsevier Ltd.
Figure 5. Map of yield strength versus tensile strain of reported HEAs with different structure at room temperature (AM: amorphous materials). Reproduced and adapted with permission from [31]. Copyright 2021 Published by Elsevier Ltd on behalf of Chinese Society for Metals.
Figure 9. Macroscopic views and mechanical properties of the Al0.3CoCrFeNi fibers. (a) Macroscopic views of Al0.3CoCrFeNi fibers. Fiber diameters range from 1.00 to 3.15 mm. (b) Engineering stress-strain curves with different diameters at room temperature, respectively. (c) Engineering stress-strain curves at 77 K. Reproduced and adapted with permission from [19]. Copyright 2016 Acta Materialia Inc. Published by Elsevier Ltd.
Figure 10. Micrograph of eutectic HEAs. (a) An LSCM image showing the eutectic microstructure of the AlCoCrFeNi2.1 alloy. (b) The lamellar dual-phase structure seen under SEM. (c) The enlarged view showing the precipitates in one phase. Reproduced and adapted with permission from [72]. © The Author(s) 2014. Published by CC BY-NC-ND 4.0.
Figure 11. Schematic diagram of electrodeposition synthesis of HEA and its thermal stability. Reproduced and adapted with permission from [77]. Copyright 2021 Elsevier.
-
[1] Zhang Y, Zuo T T, Zhi T, Gao M C, Dahmen K A, Liaw P K, Zhao P L 2014 Prog. Mater. Sci. 61 1-93 doi: 10.1016/j.pmatsci.2013.10.001 [2] Li Z, Zhao S, Ritchie R O, Meyers M A 2019 Prog. Mater. Sci. 102 296-345 doi: 10.1016/j.pmatsci.2018.12.003 [3] George E P, Raabe D, Ritchie R O 2019 Nat. Rev. Mater. 4 515-34 doi: 10.1038/s41578-019-0121-4 [4] Zhang W, Liaw P K, Zhang Y 2018 Sci. China Mater. 61 2-22 doi: 10.1007/s40843-017-9195-8 [5] Yeh J W, Chen S K, Lin S J, Gan J Y, Chin T S, Shun T T, Tsau C H, Chang S Y 2004 Adv. Eng. Mater. 6 299-303 doi: 10.1002/adem.200300567 [6] Yang X, Zhang Y 2012 Mater. Chem. Phys. 132 233-8 doi: 10.1016/j.matchemphys.2011.11.021 [7] Zhang Y, Lu Z P, Ma S G, Liaw P K, Tang Z, Cheng Y Q, Gao M C 2014 MRS Commun. 4 57-62 doi: 10.1557/mrc.2014.11 [8] Tsai M H, Yeh J W 2014 Mater. Res. Lett. 2 107-23 doi: 10.1080/21663831.2014.912690 [9] Zhang Y 2019 High-Entropy Materials: A Brief IntroductionBerlinSpringer [10] Yan X H, Liaw P K, Zhang Y 2021 Metall. Mater. Trans. A 52 2111-22 doi: 10.1007/s11661-021-06250-4 [11] Li R, Ren Z, Wu Y, He Z, Zhang Y 2021 Mater. Sci. Eng. A 802 140637 doi: 10.1016/j.msea.2020.140637 [12] Senkov O N, Wilks G B, Miracle D B, Chuang C P, Liaw P K 2010 Intermetallics 18 1758-65 doi: 10.1016/j.intermet.2010.05.014 [13] Senkov O N, Semiatin S L 2015 J. Alloys Compd. 649 1110-23 doi: 10.1016/j.jallcom.2015.07.209 [14] Zhang W, Liaw P, Zhang Y 2018 Entropy 20 951 doi: 10.3390/e20120951 [15] Sheng W J, Yang X, Zhu J, Wang C, Zhang Y 2018 Rare Met. 37 682-9 doi: 10.1007/s12598-016-0840-2 [16] Liu L, Zhu J B, Hou C, Li J C, Jiang Q 2013 Mater. Des. 46 675-9 doi: 10.1016/j.matdes.2012.11.001 [17] Yoo Y K, Xue Q, Chu Y S, Xu S, Hangen U, Lee H C, Stein W, Xiang X-D 2006 Intermetallics 14 241-7 doi: 10.1016/j.intermet.2005.05.013 [18] Oses C, Toher C, Curtarolo S 2020 Nat. Rev. Mater. 5 295-309 doi: 10.1038/s41578-019-0170-8 [19] Li D, Li C, Feng T, Zhang Y, Sha G, Lewandowski J J, Liaw P K, Zhang Y 2017 Acta Mater. 123 285-94 doi: 10.1016/j.actamat.2016.10.038 [20] Chen J X, Chen Y, Liu J P, Liu T W, Dai L H 2021 Scr. Mater. 199 113897 doi: 10.1016/j.scriptamat.2021.113897 [21] Liu J P, Chen J X, Liu T W, Li C, Dai L H 2020 Scr. Mater. 181 19-24 doi: 10.1016/j.scriptamat.2020.02.002 [22] Yan X H, Li J S, Zhang W R, Zhang Y 2018 Mater. Chem. Phys. 210 12-19 doi: 10.1016/j.matchemphys.2017.07.078 [23] Zhang Y, Yan X H, Ma J, Lu Z P, Zhao Y H 2018 J. Mater. Res. 33 3330-8 doi: 10.1557/jmr.2018.284 [24] Zhang Y, Yan X H, Liao W B, Zhao K 2018 Entropy 20 624 doi: 10.3390/e20090624 [25] Feng X, Tang G, Gu L, Ma X, Sun M, Wang L 2012 Appl. Surf. Sci. 261 447-53 doi: 10.1016/j.apsusc.2012.08.030 [26] Zuo T, Gao M C, Ouyang L, Yang X, Cheng Y, Feng R, Chen S, Liaw P K, Hawk J A, Zhang Y 2017 Acta Mater. 130 10-18 doi: 10.1016/j.actamat.2017.03.013 [27] Wu G, et al 2021 Mater. Today 51 6-14 doi: 10.1016/j.mattod.2021.10.025 [28] Yao Y, et al 2018 Science 359 1489-94 doi: 10.1126/science.aan5412 [29] Lei Z, et al 2018 Nature 563 546-50 doi: 10.1038/s41586-018-0685-y [30] Li Z, Tasan C C, Pradeep K G, Raabe D 2017 Acta Mater. 131 323-35 doi: 10.1016/j.actamat.2017.03.069 [31] Yan X, Liaw P K, Zhang Y 2022 J. Mater. Sci. Technol. 110 109-16 doi: 10.1016/j.jmst.2021.08.034 [32] Zou Y, Wheeler J M, Ma H, Okle P, Spolenak R 2017 Nano Lett. 17 1569-74 doi: 10.1021/acs.nanolett.6b04716 [33] Zou Y, Ma H, Spolenak R 2015 Nat. Commun. 6 7748 doi: 10.1038/ncomms8748 [34] Yang T, Guo W, Poplawsky J D, Li D, Wang L, Li Y, Hu W, Crespillo M L, Yan Z, Zhang Y 2020 Acta Mater. 188 1-15 doi: 10.1016/j.actamat.2020.01.060 [35] Pogrebnjak A D, Yakushchenko I V, Bondar O V, Beresnev V M, Kozak C 2016 J. Alloys Compd. 679 155-63 doi: 10.1016/j.jallcom.2016.04.064 [36] Yan X, Zhang Y 2020 Scr. Mater. 187 188-93 doi: 10.1016/j.scriptamat.2020.06.017 [37] Shi Y, Collins L, Feng R, Zhang C, Balke N, Liaw P K, Yang B 2018 Corros. Sci. 133 120-31 doi: 10.1016/j.corsci.2018.01.030 [38] Hiromoto S, Tsai A P, Sumita M, Hanawa T 2000 Corros. Sci. 42 2167-85 doi: 10.1016/S0010-938X(00)00043-3 [39] Liu J, Guo X, Lin Q, He Z, An X, Li L, Liaw P K, Liao X, Yu L, Lin J 2019 Sci. China Mater. 62 853-63 doi: 10.1007/s40843-018-9373-y [40] Brif Y, Thomas M, Todd I 2015 Scr. Mater. 99 93-96 doi: 10.1016/j.scriptamat.2014.11.037 [41] Mao A, Xiang H Z, Zhang Z G, Kuramoto K, Yu H, Ran S 2019 J. Magn. Magn. Mater. 484 245-52 doi: 10.1016/j.jmmm.2019.04.023 [42] Naeem M, et al 2020 Scr. Mater. 188 21-25 doi: 10.1016/j.scriptamat.2020.07.004 [43] Lu C, et al 2016 Nat. Commun. 7 13564 doi: 10.1038/ncomms13564 [44] Egami T, Ojha M, Khorgolkhuu O, Nicholson D M, Stocks G M 2015 JOM 67 2345-9 doi: 10.1007/s11837-015-1579-1 [45] Zhang Y, et al 2015 Nat. Commun. 6 8736 doi: 10.1038/ncomms9736 [46] Steingrimsson B, Fan X, Yang X, Gao M C, Zhang Y, Liaw P K 2021 npj Comput. Mater. 7 152 doi: 10.1038/s41524-021-00623-4 [47] Gorsse S, Senkov O N 2018 Entropy 20 899 doi: 10.3390/e20120899 [48] Li R, Xie L, Wang W Y, Liaw P K, Zhang Y 2020 Front. Mater. 7 290 doi: 10.3389/fmats.2020.00290 [49] Ye B, Wen T, Nguyen M C, Hao L, Wang C Z, Chu Y 2019 Acta Mater. 170 15-23 doi: 10.1016/j.actamat.2019.03.021 [50] Zhang Y, Yan X, Ma J, Lu Z, Zhao Y 2018 J. Mater. Res. 33 3330-8 doi: 10.1557/jmr.2018.284 [51] Xing Q, Ma J, Wang C, Zhang Y 2018 ACS Comb. Sci. 20 602-10 doi: 10.1021/acscombsci.8b00055 [52] Yan X-H, Ma J, Zhang Y 2019 Sci. China Phys. Mech. Astron. 62 996111 doi: 10.1007/s11433-019-9387-7 [53] Yan X, Zhang Y 2020 Scr. Mater. 178 329-33 doi: 10.1016/j.scriptamat.2019.11.059 [54] Li R, Wang Z, Guo Z, Liaw P K, Zhang T, Li L, Zhang Y 2019 Sci. China Mater. 62 736-44 doi: 10.1007/s40843-018-9365-8 [55] Yang T, et al 2018 Science 362 933-7 doi: 10.1126/science.aas8815 [56] Du Y, Lu Y, Wang T, Li T, Zhang G 2012 Proc. Eng. 27 1129-34 doi: 10.1016/j.proeng.2011.12.562 [57] Wang Z G, Zhou W, Fu L M, Wang J F, Luo R C, Han X C, Chen B, Wang X D 2017 Mater. Sci. Eng. A 696 503-10 doi: 10.1016/j.msea.2017.04.111 [58] Hou J, Zhang M, Yang H, Qiao J 2017 Metals 7 111 doi: 10.3390/met7040111 [59] He J Y, Wang H, Huang H L, Xu X D, Chen M W, Wu Y, Liu X J, Nieh T G, An K, Lu Z P 2016 Acta Mater. 102 187-96 doi: 10.1016/j.actamat.2015.08.076 [60] Wu Z, Bei H, Pharr G M, George E P 2014 Acta Mater. 81 428-41 doi: 10.1016/j.actamat.2014.08.026 [61] Ming K, Bi X, Wang J 2017 Scr. Mater. 137 88-93 doi: 10.1016/j.scriptamat.2017.05.019 [62] Wu Y D, Cai Y H, Wang T, Si J J, Zhu J, Wang Y D, Hui X D 2014 Mater. Lett. 130 277-80 doi: 10.1016/j.matlet.2014.05.134 [63] Huang H, Wu Y, He J, Wang H, Liu X, An K, Wu W, Lu Z 2017 Adv. Mater. 29 1701678 doi: 10.1002/adma.201701678 [64] Dirras G, Lilensten L, Djemia P, Laurent-Brocq M, Tingaud D, Couzini J P, Perrire L, Chauveau T, Guillot I 2016 Mater. Sci. Eng. A 654 30-38 doi: 10.1016/j.msea.2015.12.017 [65] Kuznetsov A V, Shaysultanov D G, Stepanov N D, Salishchev G A, Senkov O N 2012 Mater. Sci. Eng. A 533 107-18 doi: 10.1016/j.msea.2011.11.045 [66] Niu S, Kou H, Guo T, Zhang Y, Wang J, Li J 2016 Mater. Sci. Eng. A 671 82-86 doi: 10.1016/j.msea.2016.06.040 [67] Rao J C, et al 2017 Acta Mater. 131 206-20 doi: 10.1016/j.actamat.2017.03.066 [68] Lu Y, et al 2017 Acta Mater. 124 143-50 doi: 10.1016/j.actamat.2016.11.016 [69] Varalakshmi S, Kamaraj M, Murty B S 2010 Mater. Sci. Eng. A 527 1027-30 doi: 10.1016/j.msea.2009.09.019 [70] Senkov O N, Wilks G B, Scott J M, Miracle D B 2011 Intermetallics 19 698-706 doi: 10.1016/j.intermet.2011.01.004 [71] Koelj P, Vrtnik S, Jelen A, Jazbec S, Jaglii Z, Maiti S, Feuerbacher M, Steurer W, Dolinek J 2014 Phys. Rev. Lett. 113 107001 doi: 10.1103/PhysRevLett.113.107001 [72] Lu Y, Dong Y, Guo S, Jiang L, Kang H, Wang T, Wen B, Wang Z, Jie J, Cao Z 2014 Sci. Rep. 4 6200 doi: 10.1038/srep06200 [73] Wani I S, Bhattacharjee T, Sheikh S, Lu Y P, Chatterjee S, Bhattacharjee P P, Guo S, Tsuji N 2016 Mater. Res. Lett. 4 174-9 doi: 10.1080/21663831.2016.1160451 [74] Zhou K X, Wanga Z J, He F, Liu S F, Li J J, Kai J J, Wang J C 2020 Addit. Manuf. 35 101410 doi: 10.1016/j.addma.2020.101410 [75] Chew Y, Bi G J, Zhu Z G, Ng F L, Weng F, Liu S B, Nai S M L, Lee B Y 2019 Mater. Sci. Eng. A 744 137-44 doi: 10.1016/j.msea.2018.12.005 [76] Moghaddama A O, Shaburovaa N A, Samodurovab M N, Abdollahzadehc A, Trofimova E A 2021 J. Mater. Sci. Technol. 77 131-62 doi: 10.1016/j.jmst.2020.11.029 [77] Hach M J R, Tam J, Erb U, Zou Y 2022 J. Alloys Compd. 899 163233 doi: 10.1016/j.jallcom.2021.163233 [78] Zhuang H 2021 Sudoku-inspired high-Shannon-entropy alloys arXiv:2110.03797