留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Interface and surface engineering of black phosphorus: a review for optoelectronic and photonic applications

Haoran Mu Wenzhi Yu Jian Yuan Shenghuang Lin Guangyu Zhang

Haoran Mu, Wenzhi Yu, Jian Yuan, Shenghuang Lin, Guangyu Zhang. Interface and surface engineering of black phosphorus: a review for optoelectronic and photonic applications[J]. Materials Futures, 2022, 1(1): 012301. doi: 10.1088/2752-5724/ac49e3
Citation: Haoran Mu, Wenzhi Yu, Jian Yuan, Shenghuang Lin, Guangyu Zhang. Interface and surface engineering of black phosphorus: a review for optoelectronic and photonic applications[J]. Materials Futures, 2022, 1(1): 012301. doi: 10.1088/2752-5724/ac49e3
Topical Review •
OPEN ACCESS

Interface and surface engineering of black phosphorus: a review for optoelectronic and photonic applications

doi: 10.1088/2752-5724/ac49e3
More Information
  • Figure  1.  Lattice and electronic band structures of BP. (a) Schematic illustration of the puckered lattice structure of BP. Reprinted from [20] by permission from Springer Nature Customer Service Centre GmbH. (b) Brillouin zone of the primitive cell of BP.(c) Electronic band structure for BP by the mBJ potential (dashed blue line) and the HSE06 functional (solid red line) calculations, respectively. The zoom-in plot in the right of the figure shows the bandgap of BP at z point. (b) and (c) are reprinted from [16] by permission from Springer Nature Customer Service Centre GmbH. (d), (e) Band structures of monolayer (d) and bilayer BP (e), which are calculated by the tight-binding parametrization. Reprinted with permission from [68], copyright (2014) by the American Physical Society.

    Figure  2.  Optical properties of BP. (a) The tunable optical energy gap of multilayer BP with different thicknesses. Reprinted with permission from [18], copyright (2014) by the American Physical Society. (b), (c) Optical absorption spectra for the incident light with the polarization direction along armchair (b) and zigzag (c) directions. The thicknesses of BP vary from one layer to five layers. Reprinted from [16] by permission from Springer Nature Customer Service Centre GmbH. (d)-(g) Exciton effects as well as exciton binding energies in BP. (d) Optical transitions between two quantized sub-bands of BP, based on the quasi-one-dimensional tight-binding model. (e) The model of optical absorption of few-layer BP when considering the exciton resonances, including exciton ground (1s), excited (2s) states, and continuum (step-like) states. Reprinted from [22] by permission from Springer Nature Customer Service Centre GmbH. (f) Real part of the optical conductivity of 6L BP on a quartz substrate with incident light polarizations from 15 to 90. (g) Theoretical values of exciton binding energies of free-standing BP (black dots) and BP (red dots) on the PDMS substrate, respectively. (f) and (g) are reproduced from [77], CC BY 4.0. (h)-(j) Plasmons in BP. (h) Calculated energy loss dispersion for electron doping in BP of 1 1013 cm-2 and momentum q paralleled with x (right) and y (left) directions, respectively. (i) Scaling of plasmon frequency with electron concentration of monolayer and 20 nm thick BP, where graphene is for comparison. (j) Distribution of anisotropic plasmons in k surface. (h) and (i) are reprinted with permission from [78], copyright (2014) by the American Physical Society. (j) is reprinted with permission from [68], copyright (2014) by the American Physical Society.

    Figure  3.  Nonlinear optics in BP. (a), (b) Third-harmonic generation (THG) in a multilayer BP flake. Reprinted with permission from [89], copyright (2017) American Chemical Society. (a) Optical image of the BP flake. (b) THG mapping image excited by a 1557 nm pump laser. (c) Nonlinear refractive index n2() of BP along the armchair direction by the numerical simulation, demonstrating the Kerr nonlinearity. Reproduced from [92]. © IOP Publishing Ltd. All rights reserved. (d)-(e) Nonlinear optical absorption of BP. Reprinted with permission from [93], copyright (2016) American Chemical Society. (d) Normalized differential absorptivity of BP, graphene and MoS2 nanosheets under different incident light fluence. (e) The values of the imaginary part of the third-order nonlinear optical susceptibility Im (3) of BP and graphene measured at different light wavelengths. (f) Transient absorption curve of the BP dispersion at 1550 nm, where the inset illustrates the dynamic carrier process. Reproduced with permission from [48], John Wiley & Sons [© 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim].

    Figure  4.  Degradation of BP. (a), (b) AFM image of BP immediately exfoliated on the SiO2 substrate (a) and placed under ambient conditions after a few days (b). Reprinted from [104] by permission from Springer Nature Customer Service Centre GmbH. (c) Schematic illustration of the light-induced ambient degradation mechanism of BP. Reproduced with permission from [102], John Wiley & Sons [© 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim]. (d)-(f) Degradation-induced changes in optical absorption spectra as well as electronic band structures of BP. (d), (e) Blueshift of exciton resonances of 3 L (d) and 8 L (e) BP. (f) Changes of E11 and E22 peak energies as function with exposure time at the ambiance of 8 L BP. Reprinted with permission from [105], copyright (2019) by the American Physical Society.

    Figure  5.  (a)-(c) Schematic diagrams of Homojunctions based on BP. (a) A vertical BP p-n homo-structure based on a typical ionic gel gating configuration. Reprinted from [30] by permission from Springer Nature Customer Service Centre GmbH. (b) A lateral BP p-n structure by chemical doping methods, where Al2O3 is the surface hole dopant and BV is the surface electron dopant. Reprinted from [58], copyright (2016), with permission from Elsevier. (c) A trilayer homo-structure based on three BP flakes with orthogonally crystal directions. Reprinted from [109] by permission from Springer Nature Customer Service Centre GmbH. (d)-(i) Schematic diagrams of three different BP-semiconductor heterojunctions and the corresponding energy structures. (d), (g) BP-WSe2 Type-I heterojunction. Reproduced from [113]. CC BY 4.0. (e), (h) BP-MoS2 Type-II heterojunction. Reprinted from [29] by permission from Springer Nature Customer Service Centre GmbH. (f), (i) BP-ReS2 Type-III heterojunction. Reprinted with permission from [114], copyright (2019) American Chemical Society.

    Figure  6.  Exciton generation, dissociation, and harvesting mechanisms in BP-semiconductor heterostructures. (a)-(c) Exciton dissociation at the interface of BP/P3HT and the enhancement of photocurrent generation. Reprinted with permission from [115], copyright (2019) American Chemical Society. (a) Schematic diagram of the transfer of electrons and holes at the BP/P3HT interface. (b) Migration of electrons and holes adjacent to the p-n heterojunction. (c) I-V characteristics of BP (left) and BP/P3HT heterostructure (right) under dark and 650 nm light illumination conditions reflect the enhancement of photocurrent in the heterostructure. (d)-(f) Multiple exciton generation and harvesting in BP-MoS2 heterostructure. Reprinted with permission from [116], copyright (2020) American Chemical Society. (d) Theoretically calculated band alignment indicates the generation of multiple excitons from 4 L BP and the exciton dissociation by interfacial electron transfer to MoS2. (e) Transient optical absorption spectra of heterostructure under 1.36 eV excitation. (f) Transient absorption kinetics of MoS2 A exciton within 1.5 ps time scale under 1.36 and 2.25 eV excitation energies, respectively.

    Figure  7.  Interface engineering between BP and metals. (a), (b) Ni/Au and Pd/Au contacts depositing on BP flakes. Reprinted with permission from [122], copyright (2014) American Chemical Society. (a) Schematic illustration. (b) Contact resistance characteristics with different back-gate voltage. (c), (d) Graphene as electrodes for BP functional layer. Reprinted with permission from [46], copyright (2020) American Chemical Society. (c) Schematic illustration of a BP flake sandwiched by two graphite films. (d) Typical I-V characteristics of the graphite-BP-graphite device. (e), (f) Metals on BP for light-matter interaction enhancement. Reprinted with permission from [126], copyright (2021) American Chemical Society. (e) T-shaped Au nano-antennas with polarization-tailoring alignments on BP. (f) Enhanced optical absorption of BP for x- and y-polarized light incidence.

    Figure  8.  Interface engineering between BP and dielectric materials. (a) and (b) BP between oxide and air layers as natural quantum wells for electro-optical effects [33, 133]. (a) Schematic diagram of a BP flake on SiO2 substrate as a gate-tunable device for electro-optical effects. Reprinted with permission from [133], copyright (2017) American Chemical Society. (b) Energy band structure illustrating the change of bandgap of BP natural quantum wells under intrinsic, QCFK, and BMS regimes, respectively. Reprinted with permission from [33], copyright (2016) American Chemical Society. (c) Schematic diagram of BP sandwiched by two hBN layers. Reprinted from [135] by permission from Springer Nature Customer Service Centre GmbH. (d) Exciton characteristics including quasi-particle gaps, optical gaps, and binding energy in 1-4 L BP with and without dielectric encapsulation. Reprinted with permission from [60], copyright (2017) American Chemical Society.

    Figure  9.  Surface engineering of BP. (a), (b) Al-doped BP as n-doped functional layers for transistor characterizations. Reproduced with permission from [42], John Wiley & Sons. [© 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim]. (a) Schematic diagram that shows Al atoms as electron dopants for the BP host lattice. (b) Transfer characteristics of BP transistors, which indicate the transform from p-type to n-type of BP when doping Al atoms. The inset is the same plotted data but using a logarithmic scale. (c) Energy band alignment of BP and BV, which exhibits the n-type chemical doping effect of few-layer BP. Reprinted from [58], copyright (2016), with permission from Elsevier. (d)-(f) Oxidation and surface coating for ambiently stable BP. Reproduced from [146]. CC BY 4.0. (d) O2 plasma etching and Al2O3 coating on a BP flake. (e) Optical images of fresh exfoliated (left) and O2 plasma etched (middle) BP, as well as the PL mapping image. (f) Visual images of an O2 plasma etched BP flake before and after three days and a PxOy + Al2O3 coated BP flake before and after 30 days.

    Figure  10.  Interface and surface engineering of BP for optoelectronic applications. (a), (b) BP vertical p-n junction-based photodetector with polarization sensitivity. Reprinted from [30] by permission from Springer Nature Customer Service Centre GmbH. (a) Optical microscope image of the device that a ring-shaped Ti/Au electrode is applied to avoid the extra polarization originating from the straight edge of the metal. (b) Photocurrent mapping images of the BP inside the ring electrode under a linear-polarized light with the polarization direction from 0 to 90. (c)-(e) A concept of proof of a BP-based MIR spectrometer. Reprinted from [162] by permission from Springer Nature Customer Service Centre GmbH. (c) Schematic illustration of the hBN/BP/hBN heterostructure-based spectrometer. (d) An array of source-drain current with different values of the top-gate (Vtg) and back-gate (Vbg) voltages. (e) The optical absorption spectrum of CO2 which is captured and reconstructed by the BP spectrometer. (f) Optical extinction spectra of a BP-based electro-optical modulator, indicating an up to 6% modulation depth with the gate bias from -150 to 150 V. Reprinted with permission from [163], copyright (2017) American Chemical Society. (g), (h) Waveguide-integrated MIR LEDs based on the BP functional layer. Reprinted with permission from [46], copyright (2020) American Chemical Society. (g) SEM image of BP LED integrated on a waveguide. The stacked van der Waals layers including BP functional layer, two graphite electrodes, and an hBN encapsulation layer. (h) The spatially resolved electroluminescence mapping image of the LED, where the white dash lines draw two electrodes and the dark dash line draws the silicon waveguide.

    Figure  11.  Interface and surface engineering of BP for photonic applications. (a) Electro-spun BP-PVP membrane for ultrafast pulse generations. Reproduced with permission from [48], John Wiley & Sons. [© 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim]. (b)-(d) Ink-printed BP as saturable absorbers for mode-locked fiber lasers. Reproduced from [50]. CC BY 4.0. (b) Schematic illustration that shows two fiber end-facets sandwich the ink-printed BP membrane for fiber integration. (c) Autocorrelation trace of the obtained mode-locking pulses. (d) Wavelength spectra of long-term stable operation across 30 d. (e), (f) Four-wave mixing devices based on BP-deposited nonlinear fibers for all-optical modulation. Reproduced from [52]. CC BY 4.0. (e) Optical spectra of the generated signals by the four-wave mixing effects with the modulation frequency from 0.13 to 20 GHz. (f) Optical spectra of the signals evolving by tuning the channel distance from 0.1 to 1.3 nm. (g), (h) Ultrafast optical switch based on interface polaritons in the SiO2/BP/SiO2 heterostructure. Reprinted from [51] by permission from Springer Nature Customer Service Centre GmbH. (g) Schematic diagram of the setup and the device where two SiO2 layers sandwich BP. (h) Scattered near-field intensity images in which the excitation and decay process of a hybrid phonon-plasmon-polariton mode are observed within a ten ps time scale.

    Table  1.   Passivation techniques for improving air stability of BP. The monitored time only refers to the duration it is monitored using characterization techniques, which is not the maximum survival time of BP.

    Passivation techniqueTypeMonitored timeCharacterization methodReferences
    ALD of AlOx overlayersPhysical coating14 daysAFM and charge transport measurements[27]
    Al2O3/Teflon-AF encapsulation4 monthsCharge transport measurements[147]
    PMMA coating19 daysRaman measurement[148]
    Organic monolayers PTCDA via vdW epitaxyClassical molecular dynamics (MD) simulations[149]
    hBN-BP-hBN sandwiched configuration150 hCharge transport measurements[150]
    Noncovalent functionalization with 7,7,8,8-tetracyano-p-quinodimethane (TCNQ)Chemical functionalization2 daysRaman, AFM, FTIR, STEM-EELS[151]
    Noncovalent functionalization with 1-methyl-2-pyrrolidone (NMP)8 daysAFM, Raman, DFT calculations[152]
    Covalent functionalization with 4-nitrobenzene-diazonium (4-NBD)10 daysAFM, XPS, Raman, charge transport, DFT calculations[64]
    Covalent functionalization with Titanium sulfonate ligand (TiL4)3 daysNMR, Raman, XPS, AFM[65]
    Self-assembled octadecyltrichlorosilane (OTS)28 daysXPS. Raman, charge transport[144]
    O2 plasma etching + Al2O3 coatingCombined passivation2 monthsPhase-shifting interferometry, PL, Raman[146]
    O2 plasma etching + hBN covering + rapid thermal annealing7 monthsSTEM, PL, Raman[153]
    下载: 导出CSV
  • [1] Bridgman P W 1914 Two new modifications of phosphorus J. Am. Chem. Soc. 36 1344-63 doi: 10.1021/ja02184a002
    [2] Geim A K, Novoselov K S 2007 The rise of graphene Nat. Mater. 6 183-91 doi: 10.1038/nmat1849
    [3] Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Electric field effect in atomically thin carbon films Science 306 666-9 doi: 10.1126/science.1102896
    [4] Geim A K 2009 Graphene: status and prospects Science 324 1530-4 doi: 10.1126/science.1158877
    [5] Xu M S, Liang T, Shi M M, Chen H Z 2013 Graphene-like two-dimensional materials Chem. Rev. 113 3766-98 doi: 10.1021/cr300263a
    [6] Mak K F, Lee C, Hone J, Shan J, Heinz T F 2010 Atomically thin MoS2: a new direct-gap semiconductor Phys. Rev. Lett. 105 136805 doi: 10.1103/PhysRevLett.105.136805
    [7] Wang Q H, Kalantar-Zadeh K, Kis A, Coleman J N, Strano M S 2012 Electronics and optoelectronics of two-dimensional transition metal dichalcogenides Nat. Nanotechnol. 7 699-712 doi: 10.1038/nnano.2012.193
    [8] Butler S Z, et al 2013 Progress, challenges, and opportunities in two-dimensional materials beyond graphene ACS Nano 7 2898-926 doi: 10.1021/nn400280c
    [9] Novoselov K S, Mishchenko A, Carvalho A, Neto A H C 2016 2D materials and van der Waals heterostructures Science 353 9439 doi: 10.1126/science.aac9439
    [10] Li L, Yu Y, Ye G J, Ge Q, Ou X, Wu H, Feng D, Chen X H, Zhang Y 2014 Black phosphorus field-effect transistors Nat. Nanotechnol. 9 372-7 doi: 10.1038/nnano.2014.35
    [11] Gusmao R, Sofer Z, Pumera M 2017 Black phosphorus rediscovered: from bulk material to monolayers Angew. Chem., Int. Ed. 56 8052-72 doi: 10.1002/anie.201610512
    [12] Deng B C, Frisenda R, Li C, Chen X L, Castellanos-Gomez A, Xia F N 2018 Progress on black phosphorus photonics Adv. Opt. Mater. 6 1800365 doi: 10.1002/adom.201800365
    [13] Han R Y, Feng S, Sun D M, Cheng H M 2021 Properties and photodetector applications of two-dimensional black arsenic phosphorus and black phosphorus Sci. China Inf. Sci. 64 140402 doi: 10.1007/s11432-020-3172-1
    [14] Liu H, Neal A T, Zhu Z, Luo Z, Xu X, Tomnek D, Ye P D 2014 Phosphorene: an unexplored 2D semiconductor with a high hole mobility ACS Nano 8 4033-41 doi: 10.1021/nn501226z
    [15] Xia F, Wang H, Jia Y 2014 Rediscovering black phosphorus as an anisotropic layered material for optoelectronics and electronics Nat. Commun. 5 1-6 doi: 10.1038/ncomms5458
    [16] Qiao J, Kong X, Hu Z-X, Yang F, Ji W 2014 High-mobility transport anisotropy and linear dichroism in few-layer black phosphorus Nat. Commun. 5 1-7 doi: 10.1038/ncomms5475
    [17] Chen C, Chen F, Chen X, Deng B, Eng B, Jung D, Guo Q, Yuan S, Watanabe K, Taniguchi T 2019 Bright mid-infrared photoluminescence from thin-film black phosphorus Nano Lett. 19 1488-93 doi: 10.1021/acs.nanolett.8b04041
    [18] Low T, Rodin A, Carvalho A, Jiang Y, Wang H, Xia F, Neto A C 2014 Tunable optical properties of multilayer black phosphorus thin films Phys. Rev. B 90 075434 doi: 10.1103/PhysRevB.90.075434
    [19] Kim J, Baik S S, Ryu S H, Sohn Y, Park S, Park B-G, Denlinger J, Yi Y, Choi H J, Kim K S 2015 Observation of tunable band gap and anisotropic Dirac semimetal state in black phosphorus Science 349 723-6 doi: 10.1126/science.aaa6486
    [20] Li L, Kim J, Jin C, Ye G J, Qiu D Y, Felipe H, Shi Z, Chen L, Zhang Z, Yang F 2017 Direct observation of the layer-dependent electronic structure in phosphorene Nat. Nanotechnol. 12 21-25 doi: 10.1038/nnano.2016.171
    [21] Tran V, Soklaski R, Liang Y, Yang L 2014 Layer-controlled band gap and anisotropic excitons in few-layer black phosphorus Phys. Rev. B 89 235319 doi: 10.1103/PhysRevB.89.235319
    [22] Wang X, Jones A M, Seyler K L, Tran V, Jia Y, Zhao H, Wang H, Yang L, Xu X, Xia F 2015 Highly anisotropic and robust excitons in monolayer black phosphorus Nat. Nanotechnol. 10 517-21 doi: 10.1038/nnano.2015.71
    [23] Zhang G, Chaves A, Huang S, Wang F, Xing Q, Low T, Yan H 2018 Determination of layer-dependent exciton binding energies in few-layer black phosphorus Sci. Adv. 4 eaap9977 doi: 10.1126/sciadv.aap9977
    [24] Xu R, Yang J, Myint Y W, Pei J, Yan H, Wang F, Lu Y 2016 Exciton brightening in monolayer phosphorene via dimensionality modification Adv. Mater. 28 3493-8 doi: 10.1002/adma.201505998
    [25] Rudenko A, Yuan S, Katsnelson M 2015 Toward a realistic description of multilayer black phosphorus: from GW approximation to large-scale tight-binding simulations Phys. Rev. B 92 085419 doi: 10.1103/PhysRevB.92.085419
    [26] Buscema M, Groenendijk D J, Blanter S I, Steele G A, van der Zant H S J, Castellanos-Gomez A 2014 Fast and broadband photoresponse of few-layer black phosphorus field-effect transistors Nano Lett. 14 3347-52 doi: 10.1021/nl5008085
    [27] Wood J D, Wells S A, Jariwala D, Chen K S, Cho E, Sangwan V K, Liu X L, Lauhon L J, Marks T J, Hersam M C 2014 Effective passivation of exfoliated black phosphorus transistors against ambient degradation Nano Lett. 14 6964-70 doi: 10.1021/nl5032293
    [28] Ling X, Wang H, Huang S X, Xia F N, Dresselhaus M S 2015 The renaissance of black phosphorus Proc. Natl Acad. Sci. 112 4523-30 doi: 10.1073/pnas.1416581112
    [29] Huang M, Li S, Zhang Z, Xiong X, Li X, Wu Y 2017 Multifunctional high-performance van der Waals heterostructures Nat. Nanotechnol. 12 1148-54 doi: 10.1038/nnano.2017.208
    [30] Yuan H T, et al 2015 Polarization-sensitive broadband photodetector using a black phosphorus vertical p-n junction Nat. Nanotechnol. 10 707-13 doi: 10.1038/nnano.2015.112
    [31] Viti L, Hu J, Coquillat D, Knap W, Tredicucci A, Politano A, Vitiello M S 2015 Black phosphorus terahertz photodetectors Adv. Mater. 27 5567-72 doi: 10.1002/adma.201502052
    [32] Guo Q S, et al 2016 Black phosphorus mid-infrared photodetectors with high gain Nano Lett. 16 4648-55 doi: 10.1021/acs.nanolett.6b01977
    [33] Lin C, Grassi R, Low T, Helmy A S 2016 Multilayer black phosphorus as a versatile mid-infrared electro-optic material Nano Lett. 16 1683-9 doi: 10.1021/acs.nanolett.5b04594
    [34] Mao N, Tang J, Xie L, Wu J, Han B, Lin J, Deng S, Ji W, Xu H, Liu K 2016 Optical anisotropy of black phosphorus in the visible regime J. Am. Chem. Soc. 138 300-5 doi: 10.1021/jacs.5b10685
    [35] Jiang H, Shi H, Sun X, Gao B 2018 Optical anisotropy of few-layer black phosphorus visualized by scanning polarization modulation microscopy ACS Photonics 5 2509-15 doi: 10.1021/acsphotonics.8b00341
    [36] Li J 2020 Anisotropic interlayer exciton in black phosphorus van der Waals heterostructures Opt. Quant. Electron. 52 1-9 doi: 10.1007/s11082-020-02504-4
    [37] Engel M, Steiner M, Avouris P 2014 Black phosphorus photodetector for multispectral, high-resolution imaging Nano Lett. 14 6414-7 doi: 10.1021/nl502928y
    [38] Youngblood N, Chen C, Koester S J, Li M 2015 Waveguide-integrated black phosphorus photodetector with high responsivity and low dark current Nat. Photon. 9 247-52 doi: 10.1038/nphoton.2015.23
    [39] Huang M Q, Wang M L, Chen C, Ma Z W, Li X F, Han J B, Wu Y Q 2016 Broadband black-phosphorus photodetectors with high responsivity Adv. Mater. 28 3481-5 doi: 10.1002/adma.201506352
    [40] Buscema M, Groenendijk D J, Steele G A, Van Der Zant H S, Castellanos-Gomez A 2014 Photovoltaic effect in few-layer black phosphorus PN junctions defined by local electrostatic gating Nat. Commun. 5 1-6 doi: 10.1038/ncomms5651
    [41] Dai J, Zeng X C 2014 Bilayer phosphorene: effect of stacking order on bandgap and its potential applications in thin-film solar cells J. Phys. Chem. Lett. 5 1289-93 doi: 10.1021/jz500409m
    [42] Liu Y D, Cai Y Q, Zhang G, Zhang Y W, Ang K W 2017 Al-doped black phosphorus p-n homojunction diode for high performance photovoltaic Adv. Funct. Mater. 27 1604638
    [43] Lin S H, et al 2016 Solution-processable ultrathin black phosphorus as an effective electron transport layer in organic photovoltaics Adv. Funct. Mater. 26 864-71 doi: 10.1002/adfm.201503273
    [44] Fu N Q, et al 2018 Black phosphorus quantum dots as dual-functional electron-selective materials for efficient plastic perovskite solar cells J. Mater. Chem. A 6 8886-94 doi: 10.1039/C8TA01408F
    [45] Zhang S, Yang J, Xu R, Wang F, Li W, Ghufran M, Zhang Y-W, Yu Z, Zhang G, Qin Q 2014 Extraordinary photoluminescence and strong temperature/angle-dependent Raman responses in few-layer phosphorene ACS Nano 8 9590-6 doi: 10.1021/nn503893j
    [46] Chang T-Y, Chen Y, Luo D-I, Li J-X, Chen P-L, Lee S, Fang Z, Li W-Q, Zhang Y-Y, Li M 2020 Black phosphorus mid-infrared light-emitting diodes integrated with silicon photonic waveguides Nano Lett. 20 6824-30 doi: 10.1021/acs.nanolett.0c02818
    [47] Chen C, Lu X, Deng B, Chen X, Guo Q, Li C, Ma C, Yuan S, Sung E, Watanabe K 2020 Widely tunable mid-infrared light emission in thin-film black phosphorus Sci. Adv. 6 eaay6134 doi: 10.1126/sciadv.aay6134
    [48] Mu H, Lin S, Wang Z, Xiao S, Li P, Chen Y, Zhang H, Bao H, Lau S P, Pan C 2015 Black phosphorus-polymer composites for pulsed lasers Adv. Opt. Mater. 3 1447-53 doi: 10.1002/adom.201500336
    [49] Sotor J, Sobon G, Macherzynski W, Paletko P, Abramski K M 2015 Black phosphorus saturable absorber for ultrashort pulse generation Appl. Phys. Lett. 107 051108 doi: 10.1063/1.4927673
    [50] Hu G, Albrow-Owen T, Jin X, Ali A, Hu Y, Howe R C, Shehzad K, Yang Z, Zhu X, Woodward R I 2017 Black phosphorus ink formulation for inkjet printing of optoelectronics and photonics Nat. Commun. 8 1-10 doi: 10.1038/s41467-017-00358-1
    [51] Huber M A, et al 2017 Femtosecond photo-switching of interface polaritons in black phosphorus heterostructures Nat. Nanotechnol. 12 207 doi: 10.1038/nnano.2016.261
    [52] Uddin S, Debnath P C, Park K, Song Y-W 2017 Nonlinear black phosphorus for ultrafast optical switching Sci. Rep. 7 1-8 doi: 10.1038/srep43371
    [53] Hong H, Liu C, Cao T, Jin C, Wang S, Wang F, Liu K 2017 Interfacial engineering of van der Waals coupled 2D layered materials Adv. Mater. Interfaces 4 1601054 doi: 10.1002/admi.201601054
    [54] Jiang B, Yang Z, Liu X, Liu Y, Liao L 2019 Interface engineering for two-dimensional semiconductor transistors Nano Today 25 122-34 doi: 10.1016/j.nantod.2019.02.011
    [55] Hu Z H, Wu Z T, Han C, He J, Ni Z H, Chen W 2018 Two-dimensional transition metal dichalcogenides: interface and defect engineering Chem. Soc. Rev. 47 3100-28 doi: 10.1039/C8CS00024G
    [56] Zhang J L, Han C, Hu Z H, Wang L, Liu L, Wee A T S, Chen W 2018 2D phosphorene: epitaxial growth and interface engineering for electronic devices Adv. Mater. 30 1870359 doi: 10.1002/adma.201870359
    [57] Liu Y, Chen M, Yang S 2021 Chemical functionalization of 2D black phosphorus InfoMat 3 231-51 doi: 10.1002/inf2.12171
    [58] Yu X C, Zhang S L, Zeng H B, Wang Q J 2016 Lateral black phosphorene P-N junctions formed via chemical doping for high performance near-infrared photodetector Nano Energy 25 34-41 doi: 10.1016/j.nanoen.2016.04.030
    [59] Nie Z, Wang Y, Li Z, Sun Y, Qin S, Liu X, Turcu I, Shi Y, Zhang R, Ye Y 2019 Ultrafast free carrier dynamics in black phosphorus-molybdenum disulfide (BP/MoS 2) heterostructures Nanoscale Horiz. 4 1099-105 doi: 10.1039/C9NH00045C
    [60] Qiu D Y, Da Jornada F H, Louie S G 2017 Environmental screening effects in 2D materials: renormalization of the bandgap, electronic structure, and optical spectra of few-layer black phosphorus Nano Lett. 17 4706-12 doi: 10.1021/acs.nanolett.7b01365
    [61] Yuan J, Najmaei S, Zhang Z, Zhang J, Lei S, Ajayan P M, Yakobson B I, Lou J 2015 Photoluminescence quenching and charge transfer in artificial heterostacks of monolayer transition metal dichalcogenides and few-layer black phosphorus ACS Nano 9 555-63 doi: 10.1021/nn505809d
    [62] Yuan L, Zheng B, Kunstmann J, Brumme T, Kuc A B, Ma C, Deng S, Blach D, Pan A, Huang L 2020 Twist-angle-dependent interlayer exciton diffusion in WS2-WSe2 heterobilayers Nat. Mater. 19 617-23 doi: 10.1038/s41563-020-0670-3
    [63] Liu C, Xiong C, Li M, Ruan B, Zhang B, Wu K, Chang X, Xie W, Li H 2021 Rabi splitting obtained in exciton-plasmon polaritons coupling between monolayer black phosphorus with metal Appl. Phys. Express 14 086001 doi: 10.35848/1882-0786/abd3b7
    [64] Ryder C R, Wood J D, Wells S A, Yang Y, Jariwala D, Marks T J, Schatz G C, Hersam M C 2016 Covalent functionalization and passivation of exfoliated black phosphorus via aryl diazonium chemistry Nat. Chem. 8 597-602 doi: 10.1038/nchem.2505
    [65] Zhao Y, Wang H, Huang H, Xiao Q, Xu Y, Guo Z, Xie H, Shao J, Sun Z, Han W 2016 Surface coordination of black phosphorus for robust air and water stability Angew. Chem., Int. Ed. 128 5087-91 doi: 10.1002/ange.201512038
    [66] Wild S, Dinh X T, Maid H, Hauke F, Abelln G, Hirsch A 2020 Quantifying the covalent functionalization of black phosphorus Angew. Chem., Int. Ed. 59 20230-4 doi: 10.1002/anie.202008646
    [67] Li X-B, Guo P, Cao T-F, Liu H, Lau W-M, Liu L-M 2015 Structures, stabilities and electronic properties of defects in monolayer black phosphorus Sci. Rep. 5 1-11 doi: 10.1038/srep10848
    [68] Rudenko A N, Katsnelson M I 2014 Quasiparticle band structure and tight-binding model for single-and bilayer black phosphorus Phys. Rev. B 89 201408 doi: 10.1103/PhysRevB.89.201408
    [69] Keyes R W 1953 The electrical properties of black phosphorus Phys. Rev. 92 580 doi: 10.1103/PhysRev.92.580
    [70] Warschauer D 1963 Electrical and optical properties of crystalline black phosphorus J. Appl. Phys. 34 1853-60 doi: 10.1063/1.1729699
    [71] Guo Y, Robertson J 2015 Vacancy and doping states in monolayer and bulk black phosphorus Sci. Rep. 5 1-10 doi: 10.1038/srep14165
    [72] Ugeda M M, Bradley A J, Shi S-F, Felipe H, Zhang Y, Qiu D Y, Ruan W, Mo S-K, Hussain Z, Shen Z-X 2014 Giant bandgap renormalization and excitonic effects in a monolayer transition metal dichalcogenide semiconductor Nat. Mater. 13 1091-5 doi: 10.1038/nmat4061
    [73] Fang H, Bechtel H A, Plis E, Martin M C, Krishna S, Yablonovitch E, Javey A 2013 Quantum of optical absorption in two-dimensional semiconductors Proc. Natl Acad. Sci. 110 11688-91 doi: 10.1073/pnas.1309563110
    [74] Yang J, Xu R, Pei J, Myint Y W, Wang F, Wang Z, Zhang S, Yu Z, Lu Y 2015 Optical tuning of exciton and trion emissions in monolayer phosphorene Light Sci. Appl. 4 e312 doi: 10.1038/lsa.2015.85
    [75] Xu R, Zhang S, Wang F, Yang J, Wang Z, Pei J, Myint Y W, Xing B, Yu Z, Fu L 2016 Extraordinarily bound quasi-one-dimensional trions in two-dimensional phosphorene atomic semiconductors ACS Nano 10 2046-53 doi: 10.1021/acsnano.5b06193
    [76] Rodin A, Carvalho A, Neto A C 2014 Excitons in anisotropic two-dimensional semiconducting crystals Phys. Rev. B 90 075429 doi: 10.1103/PhysRevB.90.075429
    [77] Zhang G, Huang S, Chaves A, Song C, zelik V O, Low T, Yan H 2017 Infrared fingerprints of few-layer black phosphorus Nat. Commun. 8 1 doi: 10.1038/s41467-016-0009-6
    [78] Low T, Roldn R, Wang H, Xia F, Avouris P, Moreno L M, Guinea F 2014 Plasmons and screening in monolayer and multilayer black phosphorus Phys. Rev. Lett. 113 106802 doi: 10.1103/PhysRevLett.113.106802
    [79] Arra S, Babar R, Kabir M 2019 Exciton in phosphorene: strain, impurity, thickness, and heterostructure Phys. Rev. B 99 045432 doi: 10.1103/PhysRevB.99.045432
    [80] Nemilentsau A, Low T, Hanson G 2016 Anisotropic 2D materials for tunable hyperbolic plasmonics Phys. Rev. Lett. 116 066804 doi: 10.1103/PhysRevLett.116.066804
    [81] Correas-Serrano D, Gomez-Diaz J, Melcon A A, Al A 2016 Black phosphorus plasmonics: anisotropic elliptical propagation and nonlocality-induced canalization J. Opt. 18 104006 doi: 10.1088/2040-8978/18/10/104006
    [82] Yin X, Ye Z, Chenet D A, Ye Y, O’Brien K, Hone J C, Zhang X 2014 Edge nonlinear optics on a MoS2 atomic monolayer Science 344 488-90 doi: 10.1126/science.1250564
    [83] Malard L M, Alencar T V, Barboza A P M, Mak K F, De Paula A M 2013 Observation of intense second harmonic generation from MoS2 atomic crystals Phys. Rev. B 87 201401 doi: 10.1103/PhysRevB.87.201401
    [84] Wang G, Marie X, Gerber I, Amand T, Lagarde D, Bouet L, Vidal M, Balocchi A, Urbaszek B 2015 Giant enhancement of the optical second-harmonic emission of WSe2 monolayers by laser excitation at exciton resonances Phys. Rev. Lett. 114 097403 doi: 10.1103/PhysRevLett.114.097403
    [85] Seyler K L, Schaibley J R, Gong P, Rivera P, Jones A M, Wu S, Yan J, Mandrus D G, Yao W, Xu X 2015 Electrical control of second-harmonic generation in a WSe2 monolayer transistor Nat. Nanotechnol. 10 407-11 doi: 10.1038/nnano.2015.73
    [86] Li Y, Rao Y, Mak K F, You Y, Wang S, Dean C R, Heinz T F 2013 Probing symmetry properties of few-layer MoS2 and h-BN by optical second-harmonic generation Nano Lett. 13 3329-33 doi: 10.1021/nl401561r
    [87] Christensen T, Yan W, Jauho A-P, Wubs M, Mortensen N A 2015 Kerr nonlinearity and plasmonic bistability in graphene nanoribbons Phys. Rev. B 92 121407 doi: 10.1103/PhysRevB.92.121407
    [88] Vermeulen N, Castell-Lurbe D, Cheng J, Pasternak I, Krajewska A, Ciuk T, Strupinski W, Thienpont H, Van Erps J 2016 Negative Kerr nonlinearity of graphene as seen via chirped-pulse-pumped self-phase modulation Phys. Rev. Appl. 6 044006 doi: 10.1103/PhysRevApplied.6.044006
    [89] Youngblood N, Peng R, Nemilentsau A, Low T, Li M 2017 Layer-tunable third-harmonic generation in multilayer black phosphorus ACS Photonics 4 8-14 doi: 10.1021/acsphotonics.6b00639
    [90] Karvonen L, Syntjoki A, Mehravar S, Rodriguez R D, Hartmann S, Zahn D R, Honkanen S, Norwood R A, Peyghambarian N, Kieu K 2015 Investigation of second-and third-harmonic generation in few-layer gallium selenide by multiphoton microscopy Sci. Rep. 5 1-8 doi: 10.1038/srep10334
    [91] Lu S, Miao L, Guo Z, Qi X, Zhao C, Zhang H, Wen S, Tang D, Fan D 2015 Broadband nonlinear optical response in multi-layer black phosphorus: an emerging infrared and mid-infrared optical material Opt. Express 23 11183-94 doi: 10.1364/OE.23.011183
    [92] Margulis V A, Muryumin E, Gaiduk E 2018 Optical Kerr effect and two-photon absorption in monolayer black phosphorus J. Opt. 20 055503 doi: 10.1088/2040-8986/aab751
    [93] Wang K, Szydowska B M, Wang G, Zhang X, Wang J J, Magan J J, Zhang L, Coleman J N, Wang J, Blau W J 2016 Ultrafast nonlinear excitation dynamics of black phosphorus nanosheets from visible to mid-infrared ACS Nano 10 6923-32 doi: 10.1021/acsnano.6b02770
    [94] Zhang R, Zhang Y, Yu H, Zhang H, Yang R, Yang B, Liu Z, Wang J 2015 Broadband black phosphorus optical modulator in the spectral range from visible to midinfrared Adv. Opt. Mater. 3 1787-92 doi: 10.1002/adom.201500298
    [95] Wang Y, Liu S, Zeng B, Huang H, Xiao J, Li J, Long M, Xiao S, Yu X, Gao Y 2017 Ultraviolet saturable absorption and ultrafast carrier dynamics in ultrasmall black phosphorus quantum dots Nanoscale 9 4683-90 doi: 10.1039/C6NR09235G
    [96] Wang Y, Huang G, Mu H, Lin S, Chen J, Xiao S, Bao Q, He J 2015 Ultrafast recovery time and broadband saturable absorption properties of black phosphorus suspension Appl. Phys. Lett. 107 091905 doi: 10.1063/1.4930077
    [97] Yau S-L, Moffat T P, Bard A J, Zhang Z, Lerner M M 1992 STM of the (010) surface of orthorhombic phosphorus Chem. Phys. Lett. 198 383-8 doi: 10.1016/0009-2614(92)85069-M
    [98] Brunner J, Thler M, Veprek S, Wild R 1979 X-ray photoelectron study of amorphous phosphorus preparedbyplasmachemical transport. Comparison with crystalline polymorphs J. Phys. Chem. Solids 40 967-71 doi: 10.1016/0022-3697(79)90126-4
    [99] Island J O, Steele G A, van der Zant H S, Castellanos-Gomez A 2015 Environmental instability of few-layer black phosphorus 2D Mater. 2 011002 doi: 10.1088/2053-1583/2/1/011002
    [100] Huang Y, Qiao J, He K, Bliznakov S, Sutter E, Chen X, Luo D, Meng F, Su D, Decker J 2016 Interaction of black phosphorus with oxygen and water Chem. Mater. 28 8330-9 doi: 10.1021/acs.chemmater.6b03592
    [101] Walia S, Sabri Y, Ahmed T, Field M R, Ramanathan R, Arash A, Bhargava S K, Sriram S, Bhaskaran M, Bansal V 2016 Defining the role of humidity in the ambient degradation of few-layer black phosphorus 2D Mater. 4 015025 doi: 10.1088/2053-1583/4/1/015025
    [102] Zhou Q, Chen Q, Tong Y, Wang J 2016 Lightinduced ambient degradation of fewlayer black phosphorus: mechanism and protection Angew. Chem., Int. Ed. 55 11437-41 doi: 10.1002/anie.201605168
    [103] Han C, Hu Z, Carvalho A, Guo N, Zhang J, Hu F, Xiang D, Wu J, Lei B, Wang L 2017 Oxygen induced strong mobility modulation in few-layer black phosphorus 2D Mater. 4 021007 doi: 10.1088/2053-1583/aa59ce
    [104] Favron A, Gaufrs E, Fossard F, Phaneuf-L’Heureux A-L, Tang N Y, Lvesque P L, Loiseau A, Leonelli R, Francoeur S, Martel R 2015 Photooxidation and quantum confinement effects in exfoliated black phosphorus Nat. Mater. 14 826-32 doi: 10.1038/nmat4299
    [105] Wang F, Zhang G, Huang S, Song C, Wang C, Xing Q, Lei Y, Yan H 2019 Electronic structures of air-exposed few-layer black phosphorus by optical spectroscopy Phys. Rev. B 99 075427 doi: 10.1103/PhysRevB.99.075427
    [106] Wang F K, Pei K, Li Y, Li H Q, Zhai T Y 2021 2D homojunctions for electronics and optoelectronics Adv. Mater. 33 2005303
    [107] Cao T, Li Z L, Qiu D Y, Louie S G 2016 Gate switchable transport and optical anisotropy in 90 degrees twisted bilayer black phosphorus Nano Lett. 16 5542-6 doi: 10.1021/acs.nanolett.6b02084
    [108] Liu N S, Zhang J F, Zhou S, Zhao J J 2020 Tuning the electronic properties of bilayer black phosphorene with the twist angle J. Mater. Chem. C 8 6264-72 doi: 10.1039/D0TC00062K
    [109] Srivastava P K, Hassan Y, de Sousa D J, Gebredingle Y, Joe M, Ali F, Zheng Y, Yoo W J, Ghosh S, Teherani J T 2021 Resonant tunnelling diodes based on twisted black phosphorus homostructures Nat. Electron 4 269-76 doi: 10.1038/s41928-021-00549-1
    [110] Deng Y, Luo Z, Conrad N J, Liu H, Gong Y, Najmaei S, Ajayan P M, Lou J, Xu X, Ye P D 2014 Black phosphorus-monolayer MoS2 van der Waals heterojunction p-n diode ACS Nano 8 8292-9 doi: 10.1021/nn5027388
    [111] Liu B, Long M, Cai M-Q, Yang J 2018 Interface engineering of CsPbI3-black phosphorus van der Waals heterostructure Appl. Phys. Lett. 112 043901 doi: 10.1063/1.5016868
    [112] Cao Y, Mishchenko A, Yu G, Khestanova E, Rooney A, Prestat E, Kretinin A, Blake P, Shalom M B, Woods C 2015 Quality heterostructures from two-dimensional crystals unstable in air by their assembly in inert atmosphere Nano Lett. 15 4914-21 doi: 10.1021/acs.nanolett.5b00648
    [113] Zong X R, et al 2020 Black phosphorus-based van der Waals heterostructures for mid-infrared light-emission applications Light Sci. Appl. 9 114 doi: 10.1038/s41377-020-00356-x
    [114] Srivastava P K, Hassan Y, Gebredingle Y, Jung J, Kang B, Yoo W J, Singh B, Lee C 2019 Van der Waals broken-gap p-n heterojunction tunnel diode based on black phosphorus and rhenium disulfide ACS Appl. Mater. Interfaces 11 8266-75 doi: 10.1021/acsami.8b22103
    [115] Shao W, Wang L, Wang H, Zhao Z, Zhang X, Jiang S, Chen S, Sun X, Zhang Q, Xie Y 2019 Efficient exciton dissociation in heterojunction interfaces realizing enhanced photoresponsive performance J. Phys. Chem. Lett. 10 2904-10 doi: 10.1021/acs.jpclett.9b01020
    [116] Zhou Q, Zhou H, Tao W, Zheng Y, Chen Y, Zhu H 2020 Highly efficient multiple exciton generation and harvesting in few-layer black phosphorus and heterostructure Nano Lett. 20 8212-9 doi: 10.1021/acs.nanolett.0c03328
    [117] Bayer M, Timofeev V, Faller F, Gutbrod T, Forchel A 1996 Direct and indirect excitons in coupled GaAs/Al0.30Ga0.70As double quantum wells separated by AlAs barriers Phys. Rev. B 54 8799 doi: 10.1103/PhysRevB.54.8799
    [118] Rivera P, Schaibley J R, Jones A M, Ross J S, Wu S, Aivazian G, Klement P, Seyler K, Clark G, Ghimire N J 2015 Observation of long-lived interlayer excitons in monolayer MoSe2-WSe2 heterostructures Nat. Commun. 6 1-6 doi: 10.1038/ncomms7242
    [119] Liu X, Watanabe K, Taniguchi T, Halperin B I, Kim P 2017 Quantum Hall drag of exciton condensate in graphene Nat. Phys. 13 746-50 doi: 10.1038/nphys4116
    [120] Kogar A, Rak M S, Vig S, Husain A A, Flicker F, Joe Y I, Venema L, MacDougall G J, Chiang T C, Fradkin E 2017 Signatures of exciton condensation in a transition metal dichalcogenide Science 358 1314-7 doi: 10.1126/science.aam6432
    [121] Chen Y, Quek S Y 2018 Tunable bright interlayer excitons in few-layer black phosphorus based van der Waals heterostructures 2D Mater. 5 045031 doi: 10.1088/2053-1583/aadf40
    [122] Du Y, Liu H, Deng Y, Ye P D 2014 Device perspective for black phosphorus field-effect transistors: contact resistance, ambipolar behavior, and scaling ACS Nano 8 10035-42 doi: 10.1021/nn502553m
    [123] Liu H, Neal A T, Ye P D D 2012 Channel length scaling of MoS2 MOSFETs ACS Nano 6 8563-9 doi: 10.1021/nn303513c
    [124] Das S, Chen H Y, Penumatcha A V, Appenzeller J 2013 High performance multilayer MoS2 transistors with scandium contacts Nano Lett. 13 100-5 doi: 10.1021/nl303583v
    [125] Shen P-C, Su C, Lin Y, Chou A-S, Cheng C-C, Park J-H, Chiu M-H, Lu A-Y, Tang H-L, Tavakoli M M 2021 Ultralow contact resistance between semimetal and monolayer semiconductors Nature 593 211-7 doi: 10.1038/s41586-021-03472-9
    [126] Azar N S, Bullock J, Balendhran S, Kim H, Javey A, Crozier K B 2021 Light-matter interaction enhancement in anisotropic 2D black phosphorus via polarization-tailoring nano-optics ACS Photonics 8 1120-8 doi: 10.1021/acsphotonics.0c01888
    [127] Kockum A F, Miranowicz A, De Liberato S, Savasta S, Nori F 2019 Ultrastrong coupling between light and matter Nat. Rev. Phys. 1 19-40 doi: 10.1038/s42254-018-0006-2
    [128] Dai X, Song C, Qiu C, Wu L, Xiang Y 2019 Theoretical investigation of multilayer Ti3C2Tx MXene as the plasmonic material for surface plasmon resonance sensors in near infrared region IEEE Sens. J. 19 11834-8 doi: 10.1109/JSEN.2019.2937843
    [129] Li M, Li H, Xu H, Xiong C, Zhao M, Liu C, Ruan B, Zhang B, Wu K 2020 Dual-frequency on-off modulation and slow light analysis based on dual plasmon-induced transparency in terahertz patterned graphene metamaterial New J. Phys. 22 103030 doi: 10.1088/1367-2630/abbaea
    [130] Kuo Y-H, Lee Y K, Ge Y, Ren S, Roth J E, Kamins T I, Miller D A, Harris J S 2005 Strong quantum-confined Stark effect in germanium quantum-well structures on silicon Nature 437 1334-6 doi: 10.1038/nature04204
    [131] Liu J, Beals M, Pomerene A, Bernardis S, Sun R, Cheng J, Kimerling L C, Michel J 2008 Waveguide-integrated, ultralow-energy GeSi electro-absorption modulators Nat. Photon. 2 433-7 doi: 10.1038/nphoton.2008.99
    [132] Miller D A, Chemla D, Damen T, Gossard A, Wiegmann W, Wood T, Burrus C 1984 Band-edge electroabsorption in quantum well structures: the quantum-confined Stark effect Phys. Rev. Lett. 53 2173 doi: 10.1103/PhysRevLett.53.2173
    [133] Liu Y, Qiu Z, Carvalho A, Bao Y, Xu H, Tan S J, Liu W, Castro Neto A, Loh K P, Lu J 2017 Gate-tunable giant stark effect in few-layer black phosphorus Nano Lett. 17 1970-7 doi: 10.1021/acs.nanolett.6b05381
    [134] Sherrott M C, Whitney W S, Jariwala D, Biswas S, Went C M, Wong J, Rossman G R, Atwater H A 2018 Anisotropic quantum well electro-optics in few-layer black phosphorus Nano Lett. 19 269-76 doi: 10.1021/acs.nanolett.8b03876
    [135] Li L, Yang F, Ye G J, Zhang Z, Zhu Z, Lou W, Zhou X, Li L, Watanabe K, Taniguchi T 2016 Quantum Hall effect in black phosphorus two-dimensional electron system Nat. Nanotechnol. 11 593-7 doi: 10.1038/nnano.2016.42
    [136] Xiang D, et al 2015 Surface transfer doping induced effective modulation on ambipolar characteristics of few-layer black phosphorus Nat. Commun. 6 6485 doi: 10.1038/ncomms7485
    [137] Deng B, Tran V, Xie Y, Jiang H, Li C, Guo Q, Wang X, Tian H, Koester S J, Wang H 2017 Efficient electrical control of thin-film black phosphorus bandgap Nat. Commun. 8 1-7 doi: 10.1038/ncomms14474
    [138] Koenig S P, Doganov R A, Seixas L, Carvalho A, Tan J Y, Watanabe K, Taniguchi T, Yakovlev N, Neto A H C, Ozyilmaz B 2016 Electron doping of ultrathin black phosphorus with Cu adatoms Nano Lett. 16 2145-51 doi: 10.1021/acs.nanolett.5b03278
    [139] Han C, Hu Z, Gomes L C, Bao Y, Carvalho A, Tan S J, Lei B, Xiang D, Wu J, Qi D 2017 Surface functionalization of black phosphorus via potassium toward high-performance complementary devices Nano Lett. 17 4122-9 doi: 10.1021/acs.nanolett.7b00903
    [140] Zheng Y, Hu Z, Han C, Guo R, Xiang D, Lei B, Wang Y, He J, Lai M, Chen W 2019 Black phosphorus inverter devices enabled by in-situ aluminum surface modification Nano Res. 12 531-6 doi: 10.1007/s12274-018-2246-y
    [141] Lee S W, Qiu L, Yoon J C, Kim Y, Li D, Oh I, Lee G-H, Yoo J-W, Shin H-J, Ding F 2021 Anisotropic angstrom-wide conductive channels in black phosphorus by top-down Cu intercalation Nano Lett. 21 6336-42 doi: 10.1021/acs.nanolett.1c00915
    [142] Wang Y, Zheng Y, Han C, Chen W 2021 Surface charge transfer doping for two-dimensional semiconductor-based electronic and optoelectronic devices Nano Res. 14 1682-97 doi: 10.1007/s12274-020-2919-1
    [143] Cai Y, Ke Q, Zhang G, Zhang Y-W 2015 Energetics, charge transfer, and magnetism of small molecules physisorbed on phosphorene J. Phys. Chem. C 119 3102-10 doi: 10.1021/jp510863p
    [144] Artel V, Guo Q, Cohen H, Gasper R, Ramasubramaniam A, Xia F, Naveh D 2017 Protective molecular passivation of black phosphorus npj 2D Mater. Appl. 1 1-5 doi: 10.1038/s41699-017-0004-8
    [145] Kang D-H, Jeon M H, Jang S K, Choi W-Y, Kim K N, Kim J, Lee S, Yeom G Y, Park J-H 2017 Self-assembled layer (SAL)-based doping on black phosphorus (BP) transistor and photodetector ACS Photonics 4 1822-30 doi: 10.1021/acsphotonics.7b00398
    [146] Pei J, Gai X, Yang J, Wang X, Yu Z, Choi D-Y, Luther-Davies B, Lu Y 2016 Producing air-stable monolayers of phosphorene and their defect engineering Nat. Commun. 7 1-8 doi: 10.1038/ncomms10450
    [147] Illarionov Y Y, Waltl M, Rzepa G, Kim J-S, Kim S, Dodabalapur A, Akinwande D, Grasser T 2016 Long-term stability and reliability of black phosphorus field-effect transistors ACS Nano 10 9543-9 doi: 10.1021/acsnano.6b04814
    [148] Alsaffar F, Alodan S, Alrasheed A, Alhussain A, Alrubaiq N, Abbas A, Amer M R 2017 Raman sensitive degradation and etching dynamics of exfoliated black phosphorus Sci. Rep. 7 1-9 doi: 10.1038/srep44540
    [149] Zhao Y, Zhou Q, Li Q, Yao X, Wang J 2017 Passivation of black phosphorus via selfassembled organic monolayers by van der Waals epitaxy Adv. Mater. 29 1603990 doi: 10.1002/adma.201603990
    [150] Chen X, Wu Y, Wu Z, Han Y, Xu S, Wang L, Ye W, Han T, He Y, Cai Y 2015 High-quality sandwiched black phosphorus heterostructure and its quantum oscillations Nat. Commun. 6 1-6 doi: 10.1038/ncomms8315
    [151] Abelln G, Lloret V, Mundloch U, Marcia M, Neiss C, Grling A, Varela M, Hauke F, Hirsch A 2016 Noncovalent functionalization of black phosphorus Angew. Chem. 128 14777-82 doi: 10.1002/ange.201604784
    [152] Abellan G, Wild S, Lloret V, Scheuschner N, Gillen R, Mundloch U, Maultzsch J, Varela M, Hauke F, Hirsch A 2017 Fundamental insights into the degradation and stabilization of thin layer black phosphorus J. Am. Chem. Soc. 139 10432-40 doi: 10.1021/jacs.7b04971
    [153] Li D, Yu Y, Ning C-Z 2021 Super-stable high-quality few-layer black phosphorus for photonic applications ACS Appl. Nano Mater. 4 4746-53 doi: 10.1021/acsanm.1c00351
    [154] Ye L, Li H, Chen Z, Xu J 2016 Near-infrared photodetector based on MoS2/black phosphorus heterojunction ACS Photonics 3 692-9 doi: 10.1021/acsphotonics.6b00079
    [155] Chen X, Lu X, Deng B, Sinai O, Shao Y, Li C, Yuan S, Tran V, Watanabe K, Taniguchi T 2017 Widely tunable black phosphorus mid-infrared photodetector Nat. Commun. 8 1-7 doi: 10.1038/s41467-017-01978-3
    [156] Zhu W, Xu H, Pan J, Zhang S, Zheng H, Zhong Y, Yu J, Chen Z 2020 Black phosphorus terahertz sensing based on photonic spin Hall effect Opt. Express 28 25869-78 doi: 10.1364/OE.399071
    [157] Hong T, Chamlagain B, Lin W, Chuang H-J, Pan M, Zhou Z, Xu Y-Q 2014 Polarized photocurrent response in black phosphorus field-effect transistors Nanoscale 6 8978-83 doi: 10.1039/C4NR02164A
    [158] Chen C, Youngblood N, Peng R, Yoo D, Mohr D A, Johnson T W, Oh S-H, Li M 2017 Three-dimensional integration of black phosphorus photodetector with silicon photonics and nanoplasmonics Nano Lett. 17 985-91 doi: 10.1021/acs.nanolett.6b04332
    [159] Bullock J, Amani M, Cho J, Chen Y-Z, Ahn G H, Adinolfi V, Shrestha V R, Gao Y, Crozier K B, Chueh Y-L 2018 Polarization-resolved black phosphorus/molybdenum disulfide mid-wave infrared photodiodes with high detectivity at room temperature Nat. Photon. 12 601-7 doi: 10.1038/s41566-018-0239-8
    [160] Huang L, Dong B, Guo X, Chang Y, Chen N, Huang X, Liao W, Zhu C, Wang H, Lee C 2018 Waveguide-integrated black phosphorus photodetector for mid-infrared applications ACS Nano 13 913-21 doi: 10.1021/acsnano.8b08758
    [161] Yin Y, Cao R, Guo J, Liu C, Li J, Feng X, Wang H, Du W, Qadir A, Zhang H 2019 Highspeed and highresponsivity hybrid silicon/blackphosphorus waveguide photodetectors at 2 m Laser Photon. Rev. 13 1900032 doi: 10.1002/lpor.201900032
    [162] Yuan S, Naveh D, Watanabe K, Taniguchi T, Xia F 2021 A wavelength-scale black phosphorus spectrometer Nat. Photon. 15 601-7
    [163] Peng R, Khaliji K, Youngblood N, Grassi R, Low T, Li M 2017 Midinfrared electro-optic modulation in few-layer black phosphorus Nano Lett. 17 6315-20 doi: 10.1021/acs.nanolett.7b03050
    [164] Wang J, Rousseau A, Yang M, Low T, Francoeur S, Kna-Cohen S 2020 Mid-infrared polarized emission from black phosphorus light-emitting diodes Nano Lett. 20 3651-5 doi: 10.1021/acs.nanolett.0c00581
    [165] Sun Z, Martinez A, Wang F 2016 Optical modulators with 2D layered materials Nat. Photon. 10 227-38 doi: 10.1038/nphoton.2016.15
    [166] Bao Q, Zhang H, Wang Y, Ni Z, Yan Y, Shen Z X, Loh K P, Tang D Y 2009 Atomiclayer graphene as a saturable absorber for ultrafast pulsed lasers Adv. Funct. Mater. 19 3077-83 doi: 10.1002/adfm.200901007
    [167] Mu H, Wang Z, Yuan J, Xiao S, Chen C, Chen Y, Chen Y, Song J, Wang Y, Xue Y 2015 Graphene-Bi2Te3 heterostructure as saturable absorber for short pulse generation ACS Photonics 2 832-41 doi: 10.1021/acsphotonics.5b00193
    [168] Mu H, Liu Y, Bongu S R, Bao X, Li L, Xiao S, Zhuang J, Liu C, Huang Y, Dong Y 2021 Germanium nanosheets with dirac characteristics as a saturable absorber for ultrafast pulse generation Adv. Mater. 33 2101042 doi: 10.1002/adma.202101042
    [169] Wu J, Yang Y, Qu Y, Xu X, Liang Y, Chu S T, Little B E, Morandotti R, Jia B, Moss D J 2019 Graphene oxide waveguide and microring resonator polarizers Laser Photonics Rev. 13 1900056 doi: 10.1002/lpor.201900056
    [170] Bao Q, Zhang H, Wang B, Ni Z, Lim C H Y X, Wang Y, Tang D Y, Loh K P 2011 Broadband graphene polarizer Nat. Photon. 5 411-5 doi: 10.1038/nphoton.2011.102
    [171] Hendry E, Hale P J, Moger J, Savchenko A, Mikhailov S A 2010 Coherent nonlinear optical response of graphene Phys. Rev. Lett. 105 097401 doi: 10.1103/PhysRevLett.105.097401
    [172] Wang J, Hernandez Y, Lotya M, Coleman J N, Blau W J 2009 Broadband nonlinear optical response of graphene dispersions Adv. Mater. 21 2430-5 doi: 10.1002/adma.200803616
    [173] Chen Y, Jiang G, Chen S, Guo Z, Yu X, Zhao C, Zhang H, Bao Q, Wen S, Tang D 2015 Mechanically exfoliated black phosphorus as a new saturable absorber for both Q-switching and mode-locking laser operation Opt. Express 23 12823-33 doi: 10.1364/OE.23.012823
    [174] Pawliszewska M, Ge Y, Li Z, Zhang H, Sotor J 2017 Fundamental and harmonic mode-locking at 2.1 m with black phosphorus saturable absorber Opt. Express 25 16916-21 doi: 10.1364/OE.25.016916
    [175] Wang T, Zhang W, Shi X, Wang J, Ding X, Zhang K, Peng J, Wu J, Zhou P 2019 Black phosphorus-enabled harmonic mode locking of dark pulses in a Yb-doped fiber laser Laser Phys. Lett. 16 085102 doi: 10.1088/1612-202X/ab232b
    [176] Jin X, Hu G, Zhang M, Hu Y, Albrow-Owen T, Howe R C, Wu T-C, Wu Q, Zheng Z, Hasan T 2018 102 fs pulse generation from a long-term stable, inkjet-printed black phosphorus-mode-locked fiber laser Opt. Express 26 12506-13 doi: 10.1364/OE.26.012506
    [177] Zheng J, Yang Z, Si C, Liang Z, Chen X, Cao R, Guo Z, Wang K, Zhang Y, Ji J 2017 Black phosphorus based all-optical-signal-processing: toward high performances and enhanced stability ACS Photonics 4 1466-76 doi: 10.1021/acsphotonics.7b00231
    [178] Li P, Yang X, Ma T W, Hanss J, Lewin M, Michel A-K U, Wuttig M, Taubner T 2016 Reversible optical switching of highly confined phonon-polaritons with an ultrathin phase-change material Nat. Mater. 15 870-5 doi: 10.1038/nmat4649
  • 加载中
图(12) / 表(1)
计量
  • 文章访问数:  1615
  • HTML全文浏览量:  743
  • PDF下载量:  283
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-10-13
  • 录用日期:  2022-01-05
  • 修回日期:  2022-01-05
  • 刊出日期:  2022-03-31

目录

    /

    返回文章
    返回