Multiscale understanding of high-energy cathodes in solid-state batteries: from atomic scale to macroscopic scale
doi: 10.1088/2752-5724/ac427c
-
Abstract: In the crucial area of sustainable energy storage, solid-state batteries (SSBs) with nonflammable solid electrolytes stand out due to their potential benefits of enhanced safety, energy density, and cycle life. However, the complexity within the composite cathode determines that fabricating an ideal electrode needs to link chemistry (atomic scale), materials (microscopic/mesoscopic scale), and electrode system (macroscopic scale). Therefore, understanding solid-state composite cathodes covering multiple scales is of vital importance for the development of practical SSBs. In this review, the challenges and basic knowledge of composite cathodes from the atomic scale to the macroscopic scale in SSBs are outlined with a special focus on the interfacial structure, charge transport, and mechanical degradation. Based on these dilemmas, emerging strategies to design a high-performance composite cathode and advanced characterization techniques are summarized. Moreover, future perspectives toward composite cathodes are discussed, aiming to facilitate the develop energy-dense SSBs.
-
Figure 1. Understanding the composite cathodes in solid-state batteries from the atomic scale to macroscopic scale. The properties of interfacial atoms and ions, such as ionic interdiffusion and vacancy, determine the interfacial chemical/electrochemical stability. Situated at a larger scale, the crystal structure of cathode materials involving surface structure and crystallographic orientations affect the interfacial charge transport kinetics and stability. A further step towards the macroscopic scale including cathode materials and electrode design requires extensive engineering aimed at establishing continuous electronic and ionic networks, tuning materials’ morphology, designing advanced electrode architecture, and avoiding mechanical issues like crack and delamination. Note that to design a high-performance composite cathode, considering these issues comprehensively is of particular importance.
Figure 4. Surface/interface structure evolutions in SSBs. (a) Theoretical calculations of the energy difference between bulk and antiphase boundary with/without considering oxygen vacancies at a high delithiation state. Reproduced with permission [64]. Copyright 2018, Springer Nature, CC BY 4.0. (b) The voltage profile of LGPS during the electrochemical process according to the first-principles calculation. Reproduced with permission [71]. John Wiley & Sons. [© 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim]. (c) Ionic interdiffusion at the heterogeneous AM-SE interface in an SSBs. Reproduced with permission [72]. Copyright (2019) American Chemical Society. (d) Interfacial structure evolution of NMC532 cathode at a high voltage in SSBs based on Li10GeP2S12 SEs. Reproduced with permission [42]. John Wiley & Sons. [© 2021 Wiley-VCH GmbH].
Figure 5. Multiscale charge transport in composite cathodes. (a) NMC (104)-Li3PO4 and NMC (001)-Li3PO4 interface with an antiphase inversion grain boundary. Red arrows represent Li-ion transfer pathways. Reproduced with permission [84]. Copyright 2020, American Chemical Society. (b) Schematic illustration of disconnected Li+ percolating network in unfavorable microstructure that leads to an electrochemically inaccessible PTO. Reproduced with permission [131]. Copyright 2021, Elsevier. (c) Schematic illustration of a pore hindering the ionic transport. Reproduced with permission [87]. © The Author(s) 2019. Published by ECS. CC BY 4.0.
Figure 6. Mechanical properties of composite cathodes. (a) Cross-sectional SEM images of NCA electrodes after first charge/discharge process. Reproduced with permission [102]. John Wiley & Sons. [© 2021 Wiley-VCH GmbH]. (b) The equivalent stress inside the NCM particles after delithiation of cathode. (c) Illustration of solid-solid interface models and kinetics. Reproduced with permission [48]. Copyright 2020, Springer Nature, CC BY 4.0. (d) Reconstructed 3D structures of composite cathode before cycling and after 50 cycles. Reproduced with permission [107]. Copyright 2020, Royal Society of Chemistry.
Figure 7. Reconstructing AM-SE interface structures. (a) Schematic illustrating the in situ formation of the LCTO coating layer at the surface of LCO core at high temperatures. Reproduced with permission [111]. Copyright 2021, Royal Society of Chemistry. (b) Embedding AM particles within the grains of SE to establish seamless solid-solid electrode-electrolyte interface. Reproduced with permission [116]. Copyright 2019, Elsevier.
Figure 8. Regulating the internal stress/strain of composite cathodes. (a) Schematic representation of the different microstructural and interfacial evolutions after structural manipulation in all-solid-state batteries. Reproduced with permission [33]. John Wiley & Sons. [© 2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim]. (b) Relative volume change in unit cell versus the molar ratio of Co/(Ni + Co) for different layered cathode active materials. (c) Relative volume changes in unit cell during the electrochemical process for different layered cathode active materials. Reproduced with permission [39]. Copyright 2019, American Chemical Society.
Figure 9. Tailoring composite cathode architectures from materials level. (a) Schematic illustration of the 3D interpenetrating structure of electrode with high mass loading of NCM811 cathode. Reproduced with permission [159]. Copyright 2020, Elsevier. (b) Cross sectional SEM images of single- (b1-b2) and poly-crystalline (b3-b4) NCM composite cathode before and after electrochemical cycling. Reproduced with permission [60]. John Wiley & Sons. [© 2021 Wiley-VCH GmbH]. (c) Comparative simulation results of the Li+ ion density in cathode structure with NCM 60% (top) and NCM 80 wt% (bottom). Reproduced with permission [124]. John Wiley & Sons. [© 2020 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim]. (d) Cathode utilization according to both particle size and CAM volume loading. First-cycle voltage curves of SSBs using different-sized SE particles in the composite cathode with fixed MCM size (5
m) and the ratio of CAMs (60 wt%). Reproduced with permission [91]. Copyright 2020, Wiley-VCH, CC BY 4.0. Figure 10. Tailoring composite cathode architectures from electrode level. (a) The cathodes prepared by two steps for dry- and solvent-mixed. (i) Mixing PTO AMs and Li6PS5Cl SEs in a dry or solvent-assisted methods. (ii) Powder compaction via uniaxial pressing. Reproduced with permission [131]. Copyright 2021, Elsevier. (b) Schematic of the infiltration of slurry-cast LCO cathode materials with LPGeSI-EtOH solutions and corresponding cross-sectional FESEM image and EDXS elemental maps. Reproduced with permission [132]. Copyright (2020) American Chemical Society. (c) The concept of all-electrochem-active’ (AEA) electrodes: conventional SSBs (80 wt% AMs, anode: Li metal) (left); the proposed SSBs based AEA cathode (100 wt% AEA cathode, anode: Li metal) (right). (d) Li-ion diffusion coefficients of AEA electrode detected by the potentiostatic intermittent titration technique method compared with the typical SEs and available traditional cathodes. Reproduced with permission [135]. John Wiley & Sons. [© 2021 Wiley-VCH GmbH].
Figure 11. Atomic and microscopic scale characterizatin techniques for cathodes in SSBs. (a) Configuration of the all-solid-state battery fabricated by FIB and the atomic structure of LNMO at four different zone axes. Reproduced with permission [64]. Copyright 2018, Springer Nature, CC BY 4.0. (b) The in situ TEM for the characterization of STEM and EELS. Reproduced with permission [146]. Copyright 2016, American Chemical Society. (c) Solid state NMR techniques in the research of interfacial morphology and charge transport evolution and corresponding 2D-Exchange spectroscopy. Reproduced with permission [150]. Copyright 2018, Springer Nature, CC BY 4.0.
Figure 12. Meso- and macroscopic scale characterizatin techniques for cathode in SSBs. (a) Three-dimensional reconstruction of the depth profile via time-of-flight secondary-ion mass spectrometry for the composite cathode. Reproduced with permission [153]. Copyright 2019, American Chemical Society. (b) 3D characterisation based on x-ray CT for the NMC cathode data: reconstructed volume of the cathode with different components represented by greyscale values (black: pore; dark grey: CBD; white: NMC AMs;); Simulated lithiation of the reconstructed composite cathode at 1.25 and 5 C. Reproduced with permission [156]. Copyright 2020, Springer Nature, CC BY 4.0.
-
[1] Goodenough J B, Park K S 2013 J. Am. Chem. Soc. 135 1167-76 doi: 10.1021/ja3091438 [2] Goodenough J B 2018 Nat. Electron. 1 204 doi: 10.1038/s41928-018-0048-6 [3] Jiang L L, Yan C, Yao Y X, Cai W, Huang J Q, Zhang Q 2021 Angew. Chem., Int. Ed. 133 3444-8 doi: 10.1002/ange.202009738 [4] Manthiram A, Yu X, Wang S 2017 Nat. Rev. Mater. 2 1-16 doi: 10.1038/natrevmats.2016.103 [5] Chen Y, et al 2020 Nature 578 251-5 doi: 10.1038/s41586-020-1972-y [6] Janek J, Zeier W G 2016 Nat. Energy 1 1-4 doi: 10.1038/nenergy.2016.141 [7] Zhao C-Z, Zhao B-C, Yan C, Zhang X-Q, Huang J-Q, Mo Y, Xu X, Li H, Zhang Q 2020 Energy Storage Mater. 24 75-84 doi: 10.1016/j.ensm.2019.07.026 [8] Lu Y, Zhao C Z, Yuan H, Cheng X B, Huang J Q, Zhang Q 2021 Adv. Funct. Mater. 31 2009925 doi: 10.1002/adfm.202009925 [9] Sun S, Liu B, Zhang H, Guo Q, Xia Q, Zhai T, Xia H 2021 Adv. Energy Mater. 11 2003599 doi: 10.1002/aenm.202003599 [10] Sun S, Rao D, Zhai T, Liu Q, Huang H, Liu B, Zhang H, Xue L, Xia H 2020 Adv. Mater. 32 2005344 doi: 10.1002/adma.202005344 [11] Cheng X-B, Zhao C-Z, Yao Y-X, Liu H, Zhang Q 2019 Chem 5 74-96 doi: 10.1016/j.chempr.2018.12.002 [12] Zhao Q, Stalin S, Zhao C-Z, Archer L A 2020 Nat. Rev. Mater. 5 229-52 [13] Lu Y, Huang X, Ruan Y, Wang Q, Kun R, Yang J, Wen Z 2018 J. Mater. Chem. A 6 18853-8 doi: 10.1039/C8TA07241H [14] Sun S, Zhai T, Liang C, Savilov S V, Xia H 2018 Nano Energy 45 390-7 doi: 10.1016/j.nanoen.2018.01.015 [15] Lu Y, Huang X, Song Z, Rui K, Wang Q, Gu S, Yang J, Xiu T, Badding M E, Wen Z 2018 Energy Storage Mater. 15 282-90 doi: 10.1016/j.ensm.2018.05.018 [16] Jin Y, Liu K, Lang J, Zhuo D, Huang Z, Wang C, Wu H, Cui Y 2018 Nat. Energy 3 732-8 doi: 10.1038/s41560-018-0198-9 [17] Fan X, Ji X, Han F, Yue J, Chen J, Chen L, Deng T, Jiang J, Wang C 2018 Sci. Adv. 4 eaau9245 doi: 10.1126/sciadv.aau9245 [18] Liu H, et al 2020 ACS Energy Lett. 5 833-43 doi: 10.1021/acsenergylett.9b02660 [19] Xia Q, et al 2021 Adv. Mater. 33 2003524 doi: 10.1002/adma.202003524 [20] Sun S, Xia Q, Liu J, Xu J, Zan F, Yue J, Savilov S V, Lunin V V, Xia H 2019 J. Materiomics 5 229-36 doi: 10.1016/j.jmat.2019.01.001 [21] Chen X, Bai Y-K, Shen X, Peng H-J, Zhang Q 2020 J. Energy Chem. 51 1-6 doi: 10.1016/j.jechem.2020.03.051 [22] Hou L P, Zhang X Q, Li B Q, Zhang Q 2020 Angew. Chem., Int. Ed. 132 15221-5 doi: 10.1002/ange.202002711 [23] Yao Y X, Chen X, Yan C, Zhang X Q, Cai W L, Huang J Q, Zhang Q 2021 Angew. Chem., Int. Ed. 133 4136-43 doi: 10.1002/ange.202011482 [24] Chen X, Bai Y K, Zhao C Z, Shen X, Zhang Q 2020 Angew. Chem., Int. Ed. 132 11288-91 doi: 10.1002/ange.201915623 [25] Liang J-Y, Zeng -X-X, Zhang X-D, Wang P-F, Ma J-Y, Yin Y-X, Wu X-W, Guo Y-G, Wan L-J 2018 J. Am. Chem., Soc. 140 6767-70 doi: 10.1021/jacs.8b03319 [26] He W, et al 2021 Adv. Mater. 33 2005937 doi: 10.1002/adma.202005937 [27] Nagao K, et al 2020 Sci. Adv. 6 eaax7236 doi: 10.1126/sciadv.aax7236 [28] Huang Q, Turcheniuk K, Ren X, Magasinski A, Song A-Y, Xiao Y, Kim D, Yushin G 2019 Nat. Mater. 18 1343-9 doi: 10.1038/s41563-019-0472-7 [29] Walther F, Randau S, Schneider Y, Sann J, Rohnke M, Richter F H, Zeier W G, Janek J 2020 Chem. Mater. 32 6123-36 doi: 10.1021/acs.chemmater.0c01825 [30] Banerjee A, Wang X, Fang C, Wu E A, Meng Y S 2020 Chem. Rev. 120 6878-933 doi: 10.1021/acs.chemrev.0c00101 [31] Xu L, Lu Y, Zhao C Z, Yuan H, Zhu G L, Hou L P, Zhang Q, Huang J Q 2021 Adv. Energy Mater. 11 2002360 doi: 10.1002/aenm.202002360 [32] Xiao Y, Wang Y, Bo S-H, Kim J C, Miara L J, Ceder G 2020 Nat. Rev. Mater. 5 105-26 doi: 10.1038/s41578-019-0157-5 [33] Jung S H, Kim U H, Kim J H, Jun S, Yoon C S, Jung Y S, Sun Y K 2020 Adv. Energy Mater. 10 1903360 doi: 10.1002/aenm.201903360 [34] Xie J, Song Y W, Li B Q, Peng H J, Huang J Q, Zhang Q 2020 Angew. Chem., Int. Ed. 132 22334-9 doi: 10.1002/ange.202008911 [35] Li L, Duan H, Li J, Zhang L, Deng Y, Chen G 2021 Adv. Energy Mater. 11 2003154 doi: 10.1002/aenm.202003154 [36] Chen R, Li Q, Yu X, Chen L, Li H 2019 Chem. Rev. 120 6820-77 doi: 10.1021/acs.chemrev.9b00268 [37] He Y, Lu C, Liu S, Zheng W, Luo J 2019 Adv. Energy Mater. 9 1901810 doi: 10.1002/aenm.201901810 [38] Ali M, Doh C-H, Lee Y-J, Kim B-G, Park J-W, Park J, Park G, Lee W-J, Lee S-M, Ha Y-C 2021 Energy Technol. 9 2001096 doi: 10.1002/ente.202001096 [39] Strauss F, de Biasi L, Kim A-Y, Hertle J, Schweidler S, Janek J R, Hartmann P, Brezesinski T 2019 ACS Mater. Lett. 2 84-88 doi: 10.1021/acsmaterialslett.9b00441 [40] Jie F A, Ysj A, Fdy A, Wang K A, Lfq A, Jgd B, Zbwa C 2021 J. Energy Chem. 53 364-71 doi: 10.1016/j.jechem.2020.05.032 [41] Zhang W, Richter F H, Culver S P, Leichtweiss T, Lozano J G, Dietrich C, Bruce P G, Zeier W G, Janek J 2018 ACS Appl. Mater. Interfaces 10 22226-36 doi: 10.1021/acsami.8b05132 [42] Wang C, et al 2021 Adv. Energy Mater. 11 2100210 doi: 10.1002/aenm.202100210 [43] Hikima K, Suzuki K, Taminato S, Hirayama M, Yasuno S, Kanno R 2019 Chem. Lett. 48 192-5 doi: 10.1246/cl.180773 [44] Liu J, Wang J, Ni Y, Zhang K, Cheng F, Chen J 2020 Mater. Today 43 132-65 doi: 10.1016/j.mattod.2020.10.028 [45] Wang L, Chen B, Ma J, Cui G, Chen L 2018 Chem. Soc. Rev. 47 6505-602 doi: 10.1039/c8cs00322j [46] Kannan A, Rabenberg L, Manthiram A 2002 Electrochem. Solid State Lett. 6 A16 doi: 10.1149/1.1526782 [47] Qiu J, et al 2020 Adv. Funct. Mater. 30 1909392 doi: 10.1002/adfm.201909392 [48] Lou S, Liu Q, Zhang F, Liu Q, Yu Z, Mu T, Zhao Y, Borovilas J, Chen Y, Ge M 2020 Nat. Commun. 11 5700 doi: 10.1038/s41467-020-19528-9 [49] Hikima K, Hinuma Y, Shimizu K, Suzuki K, Taminato S, Hirayama M, Masuda T, Tamura K, Kanno R 2021 ACS Appl. Mater. Interfaces 13 7650-63 doi: 10.1021/acsami.0c18030 [50] De Biasi L, Schwarz B, Brezesinski T, Hartmann P, Janek J, Ehrenberg H 2019 Adv. Mater. 31 1900985 doi: 10.1002/adma.201900985 [51] Xiao A W, Lee H J, Capone I, Robertson A, Wi T-U, Fawdon J, Wheeler S, Lee H-W, Grobert N, Pasta M 2020 Nat. Mater. 19 644-54 doi: 10.1038/s41563-020-0621-z [52] Lee W, Muhammad S, Sergey C, Lee H, Yoon J, Kang Y M, Yoon W S 2020 Angew. Chem., Int. Ed. 59 2578-605 doi: 10.1002/anie.201902359 [53] Hua X, et al 2021 Nat. Mater. 20 841-50 doi: 10.1038/s41563-020-00893-1 [54] Famprikis T, Canepa P, Dawson J A, Islam M S, Masquelier C 2019 Nat. Mater. 18 1278-91 doi: 10.1038/s41563-019-0431-3 [55] Chen Q, Sun S, Zhai T, Yang M, Zhao X, Xia H 2018 Adv. Energy Mater. 8 1800054 doi: 10.1002/aenm.201800054 [56] Zhai T, Sun S, Liu X, Liang C, Wang G, Xia H 2018 Adv. Mater. 30 1706640 doi: 10.1002/adma.201706640 [57] Walther F, Strauss F, Wu X, Mogwitz B, Hertle J, Sann J, Rohnke M, Brezesinski T, Janek J R 2021 Chem. Mater. 33 2110-25 doi: 10.1021/acs.chemmater.0c04660 [58] Zhang Q, Cao D, Ma Y, Natan A, Aurora P, Zhu H 2019 Adv. Mater. 31 1901131 doi: 10.1002/adma.201901131 [59] Culver S P, Koerver R, Zeier W G, Janek J 2019 Adv. Energy Mater. 9 1900626 doi: 10.1002/aenm.201900626 [60] Liu X, et al 2021 Adv. Energy Mater. 11 2003583 doi: 10.1002/aenm.202003583 [61] Wang L, et al 2021 Adv. Energy Mater. 11 2100881 doi: 10.1002/aenm.202100881 [62] Guo H-J, et al 2020 J. Am. Chem. Soc. 142 20752-62 doi: 10.1021/jacs.0c09602 [63] Lu Y, Gu S, Hong X, Rui K, Huang X, Jin J, Chen C, Yang J, Wen Z 2018 Energy Storage Mater. 11 16-23 doi: 10.1016/j.ensm.2017.09.007 [64] Gong Y, Chen Y, Zhang Q, Meng F, Shi J-A, Liu X, Liu X, Zhang J, Wang H, Wang J 2018 Nat. Commun. 9 1-8 doi: 10.1038/s41467-018-05833-x [65] Hu Y-S 2016 Nat. Energy 1 1-2 doi: 10.1038/nenergy.2016.42 [66] Tian Y, Shi T, Richards W D, Li J, Kim J C, Bo S-H, Ceder G 2017 Energy Environ. Sci. 10 1150-66 doi: 10.1039/C7EE00534B [67] Yan P, Zheng J, Liu J, Wang B, Cheng X, Zhang Y, Sun X, Wang C, Zhang J-G 2018 Nat. Energy 3 600-5 doi: 10.1038/s41560-018-0191-3 [68] Kim D H, Lee Y-H, Song Y B, Kwak H, Lee S-Y, Jung Y S 2020 ACS Energy Lett. 5 718-27 doi: 10.1021/acsenergylett.0c00251 [69] Xiao Y, Miara L J, Wang Y, Ceder G 2019 Joule 3 1252-75 doi: 10.1016/j.joule.2019.02.006 [70] Zhu G-L, et al 2020 Energy Storage Mater. 31 267-73 doi: 10.1016/j.ensm.2020.05.017 [71] Han F, Zhu Y, He X, Mo Y, Wang C 2016 Adv. Energy Mater. 6 1501590 doi: 10.1002/aenm.201501590 [72] Gao B, Jalem R, Ma Y, Tateyama Y 2019 Chem. Mater. 32 85-96 doi: 10.1021/acs.chemmater.9b02311 [73] Haruyama J, Sodeyama K, Han L, Takada K, Tateyama Y 2014 Chem. Mater. 26 4248-55 doi: 10.1021/cm5016959 [74] Zhang X, Ju Z, Zhu Y, Takeuchi K J, Takeuchi E S, Marschilok A C, Yu G 2021 Adv. Energy Mater. 11 2000808 doi: 10.1002/aenm.202000808 [75] Liu J, et al 2020 Joule 4 101-8 doi: 10.1016/j.joule.2019.10.001 [76] Hlushkou D, Reising A E, Kaiser N, Spannenberger S, Schlabach S, Kato Y, Roling B, Tallarek U 2018 J. Power Sources 396 363-70 doi: 10.1016/j.jpowsour.2018.06.041 [77] Minnmann P, Quillman L, Burkhardt S, Richter F H, Janek J 2021 J. Electrochem. Soc. 168 040537 doi: 10.1149/1945-7111/abf8d7 [78] Trask J, Anapolsky A, Cardozo B, Januar E, Kumar K, Miller M, Brown R, Bhardwaj R 2017 J. Power Sources 350 56-64 doi: 10.1016/j.jpowsour.2017.03.017 [79] Xu Z, Jiang Z, Kuai C, Xu R, Qin C, Zhang Y, Rahman M M, Wei C, Nordlund D, Sun C-J 2020 Nat. Commun. 11 1-9 doi: 10.1038/s41467-019-13884-x [80] Niu C, Luo W, Dai C, Yu C, Xu Y 2021 Angew. Chem., Int. Ed. 133 19750-5 doi: 10.1002/ange.202102882 [81] Zahiri B, Patra A, Kiggins C, Yong A X B, Ertekin E, Cook J B, Braun P V 2021 Nat. Mater. 20 1-9 doi: 10.1038/s41563-021-01016-0 [82] Hirayama M, et al 2007 J. Power Sources 168 493-500 doi: 10.1016/j.jpowsour.2007.03.034 [83] Hirayama M, Ido H, Kim K, Cho W, Tamura K, Mizuki J I, Kanno R 2010 J. Am. Chem. Soc. 132 15268-76 doi: 10.1021/ja105389t [84] Nishio K, Nakamura N, Horiba K, Kitamura M, Kumigashira H, Shimizu R, Hitosugi T 2020 ACS Appl. Energy Mater. 3 6416-21 doi: 10.1021/acsaem.0c00644 [85] Wang M J, Kazyak E, Dasgupta N P, Sakamoto J 2021 Joule 5 1371-90 doi: 10.1016/j.joule.2021.04.001 [86] Bielefeld A, Weber D A, Janek J R 2018 J. Phys. Chem. C 123 1626-34 doi: 10.1021/acs.jpcc.8b11043 [87] Froboese L, van der Sichel J F, Loellhoeffel T, Helmers L, Kwade A 2019 J. Electrochem. Soc. 166 A318 doi: 10.1149/2.0601902jes [88] Graebe H, Netz A, Baesch S, Haerdtner V, Kwade A 2017 ECS Trans. 77 393 doi: 10.1149/07711.0393ecst [89] Seki S, Kobayashi Y, Miyashiro H, Mita Y, Iwahori T 2005 Chem. Mater. 17 2041-5 doi: 10.1021/cm047846c [90] Thomas-Alyea K E, Jung C, Smith R B, Bazant M Z 2017 J. Electrochem. Soc. 164 E3063 doi: 10.1149/2.0061711jes [91] Shi T, Tu Q, Tian Y, Xiao Y, Miara L J, Kononova O, Ceder G 2020 Adv. Energy Mater. 10 1902881 doi: 10.1002/aenm.201902881 [92] Huang C, Leung C L A, Leung P, Grant P S 2021 Adv. Energy Mater. 11 2002387 doi: 10.1002/aenm.202002387 [93] Yamakawa S, Ohta S, Kobayashi T 2020 Solid State Ion. 344 115079 doi: 10.1016/j.ssi.2019.115079 [94] Lewis J A, Tippens J, Cortes F J Q, McDowell M T 2019 Trends Chem. 1 845-57 doi: 10.1016/j.trechm.2019.06.013 [95] Wang P, Qu W, Song W L, Chen H, Chen R, Fang D 2019 Adv. Funct. Mater. 29 1900950 doi: 10.1002/adfm.201900950 [96] Koerver R, Zhang W, de Biasi L, Schweidler S, Kondrakov A O, Kolling S, Brezesinski T, Hartmann P, Zeier W G, Janek J 2018 Energy Environ. Sci. 11 2142-58 doi: 10.1039/C8EE00907D [97] Fu Z-H, Chen X, Zhao C-Z, Yuan H, Zhang R, Shen X, Ma -X-X, Lu Y, Liu Q-B, Fan L-Z 2021 Energy Fuel 35 10210-8 doi: 10.1021/acs.energyfuels.1c00488 [98] Zhang W, Schrder D, Arlt T, Manke I, Koerver R, Pinedo R, Weber D A, Sann J, Zeier W G, Janek J 2017 J. Mater. Chem. A 5 9929-36 doi: 10.1039/C7TA02730C [99] Kondrakov A O, Schmidt A, Xu J, Gewein H, Mnig R, Hartmann P, Sommer H, Brezesinski T, Janek J R 2017 J. Phys. Chem. C 121 3286-94 doi: 10.1021/acs.jpcc.6b12885 [100] Xu X, Huo H, Jian J, Wang L, Zhu H, Xu S, He X, Yin G, Du C, Sun X 2019 Adv. Energy Mater. 9 1803963 doi: 10.1002/aenm.201803963 [101] Yoon M, Dong Y, Hwang J, Sung J, Cha H, Ahn K, Huang Y, Kang S J, Li J, Cho J 2021 Nat. Energy 6 362-71 doi: 10.1038/s41560-021-00782-0 [102] Han Y, Jung S H, Kwak H, Jun S, Kwak H H, Lee J H, Hong S T, Jung Y S 2021 Adv. Energy Mater. 11 2100126 doi: 10.1002/aenm.202100126 [103] Yang Y, Xu R, Zhang K, Lee S J, Mu L, Liu P, Waters C K, Spence S, Xu Z, Wei C 2019 Adv. Energy Mater. 9 1900674 doi: 10.1002/aenm.201900674 [104] Mao Y, et al 2019 Adv. Funct. Mater. 29 1900247 doi: 10.1002/adfm.201900247 [105] Hao F, et al 2019 Joule 3 1349-59 doi: 10.1016/j.joule.2019.03.017 [106] Ding J-F, Xu R, Yan C, Li B-Q, Yuan H, Huang J-Q 2020 J. Energy Chem. 59 306-19 doi: 10.1016/j.jechem.2020.11.016 [107] Shi T, Zhang Y-Q, Tu Q, Wang Y, Scott M, Ceder G 2020 J. Mater. Chem. A 8 17399-404 doi: 10.1039/D0TA06985J [108] Lewis J A, et al 2021 Nat. Mater. 20 503-10 doi: 10.1038/s41563-020-00903-2 [109] Koerver R, Aygn I, Leichtwei T, Dietrich C, Zhang W, Binder J O, Hartmann P, Zeier W G, Janek J R 2017 Chem. Mater. 29 5574-82 doi: 10.1021/acs.chemmater.7b00931 [110] Zhao Y, Stein P, Bai Y, Al-Siraj M, Yang Y, Xu B-X 2019 J. Power Sources 413 259-83 doi: 10.1016/j.jpowsour.2018.12.011 [111] Wang C-W, et al 2021 Energy Environ. Sci. 14 437-50 doi: 10.1039/D0EE03212C [112] Nomura Y, Yamamoto K, Hirayama T, Ouchi S, Igaki E, Saitoh K 2019 Angew. Chem., Int. Ed. 131 5346-50 doi: 10.1002/ange.201814669 [113] Fingerle M, Buchheit R, Sicolo S, Albe K, Hausbrand R 2017 Chem. Mater. 29 7675-85 doi: 10.1021/acs.chemmater.7b00890 [114] Wang L, Xie R, Chen B, Yu X, Ma J, Li C, Hu Z, Sun X, Xu C, Dong S 2020 Nat. Commun. 11 1-9 doi: 10.1038/s41467-020-19726-5 [115] Yada C, Ohmori A, Ide K, Yamasaki H, Kato T, Saito T, Sagane F, Iriyama Y 2014 Adv. Energy Mater. 4 1301416 doi: 10.1002/aenm.201301416 [116] Li F, Li J, Zhu F, Liu T, Xu B, Kim T-H, Kramer M J, Ma C, Zhou L, Nan C-W 2019 Matter 1 1001-16 doi: 10.1016/j.matt.2019.05.004 [117] Xia Q, Sun S, Xu J, Zan F, Yue J, Zhang Q, Gu L, Xia H 2018 Small 14 1804149 doi: 10.1002/smll.201804149 [118] Yi E, Shen H, Heywood S, Alvarado J, Parkinson D Y, Chen G, Sofie S W, Doeff M M 2020 ACS Appl. Energy Mater. 3 170-5 doi: 10.1021/acsaem.9b02101 [119] Trevisanello E, Ruess R, Conforto G, Richter F H, Janek J 2021 Adv. Energy Mater. 11 2003400 doi: 10.1002/aenm.202003400 [120] Philipp M, Gadermaier B, Posch P, Hanzu I, Ganschow S, Meven M, Rettenwander D, Redhammer G J, Wilkening H M R 2020 Adv. Mater. Interfaces 7 2000450 doi: 10.1002/admi.202000450 [121] Wang C, et al 2020 Energy Storage Mater. 30 98-103 doi: 10.1016/j.ensm.2020.05.007 [122] Kan W H, Chen D, Papp J K, Shukla A K, Huq A, Brown C M, McCloskey B D, Chen G 2018 Chem. Mater. 30 1655-66 doi: 10.1021/acs.chemmater.7b05036 [123] Sun Y, Ren D, Liu G, Mu D, Wang L, Wu B, Liu J, Wu N, He X 2021 Int. J. Energy Res. 45 20867-77 doi: 10.1002/er.7143 [124] Park J, Kim K T, Oh D Y, Jin D, Kim D, Jung Y S, Lee Y M 2020 Adv. Energy Mater. 10 2001563 doi: 10.1002/aenm.202001563 [125] Strauss F, Bartsch T, de Biasi L, Kim A-Y, Janek J R, Hartmann P, Brezesinski T 2018 ACS Energy Lett. 3 992-6 doi: 10.1021/acsenergylett.8b00275 [126] Calpa M, Rosero-navarro N C, Miura A, Tadanaga K 2019 Electrochim. Acta 296 473-80 doi: 10.1016/j.electacta.2018.11.035 [127] Wang C, et al 2020 Nano Energy 76 105015 doi: 10.1016/j.nanoen.2020.105015 [128] Park K H, Bai Q, Kim D H, Oh D Y, Zhu Y, Mo Y, Jung Y S 2018 Adv. Energy Mater. 8 1800035 doi: 10.1002/aenm.201800035 [129] Miura A, Rosero-navarro N C, Sakuda A, Tadanaga K, Phuc N H H, Matsuda A, Machida N, Hayashi A, Tatsumisago M 2019 Nat. Rev. Chem. 3 189-98 doi: 10.1038/s41570-019-0078-2 [130] Xiao Y, Turcheniuk K, Narla A, Song A-Y, Ren X, Magasinski A, Jain A, Huang S, Lee H, Yushin G 2021 Nat. Mater. 20 984-90 doi: 10.1038/s41563-021-00943-2 [131] Zhang J, Chen Z, Ai Q, Terlier T, Hao F, Liang Y, Guo H, Lou J, Yao Y 2021 Joule 5 1845-59 doi: 10.1016/j.joule.2021.05.017 [132] Song Y B, Kim D H, Kwak H, Han D, Kang S, Lee J H, Bak S-M, Nam K-W, Lee H-W, Jung Y S 2020 Nano Lett. 20 4337-45 doi: 10.1021/acs.nanolett.0c01028 [133] Xu R, Yue J, Liu S, Tu J, Han F, Liu P, Wang C 2019 ACS Energy Lett. 4 1073-9 doi: 10.1021/acsenergylett.9b00430 [134] Lee Y-G, et al 2020 Nat. Energy 5 299-308 doi: 10.1038/s41560-020-0575-z [135] Li M, Liu T, Shi Z, Xue W, Hu Y S, Li H, Huang X, Li J, Suo L, Chen L 2021 Adv. Mater. 33 2008723 doi: 10.1002/adma.202008723 [136] Zhang Z, Shao Y, Lotsch B, Hu Y, Li H 2018 Energy Environ. Sci. 11 1945-76 doi: 10.1039/C8EE01053F [137] Cui S, Wei Y, Liu T, Deng W, Hu Z, Su Y, Li H, Li M, Guo H, Duan Y 2016 Adv. Energy Mater. 6 1501309 doi: 10.1002/aenm.201501309 [138] Li W, Wang K, Cheng S, Jiang K 2019 Adv. Energy Mater. 9 1900993 doi: 10.1002/aenm.201900993 [139] Kim D H, Oh D Y, Park K H, Choi Y E, Nam Y J, Lee H A, Lee S-M, Jung Y S 2017 Nano Lett. 17 3013-20 doi: 10.1021/acs.nanolett.7b00330 [140] Hakari T, Deguchi M, Mitsuhara K, Ohta T, Saito K, Orikasa Y, Uchimoto Y, Kowada Y, Hayashi A, Tatsumisago M 2017 Chem. Mater. 29 4768-74 doi: 10.1021/acs.chemmater.7b00551 [141] Xiang Y, Li X, Cheng Y, Sun X, Yang Y 2020 Mater. Today 36 139-57 doi: 10.1016/j.mattod.2020.01.018 [142] Hope M A, Rinkel B L, Gunnarsdttir A B, Mrker K, Menkin S, Paul S, Sergeyev I V, Grey C P 2020 Nat. Commun. 11 1-8 doi: 10.1038/s41467-020-16114-x [143] Li X, et al 2019 ACS Energy Lett. 4 2480-8 doi: 10.1021/acsenergylett.9b01676 [144] Zhu X, et al 2021 Nat. Sustain. 4 392-401 doi: 10.1038/s41893-020-00660-9 [145] Fu Z, Wang N, Legut D, Si C, Zhang Q, Du S, Germann T C, Francisco J S, Zhang R 2019 Chem. Rev. 119 11980-2031 doi: 10.1021/acs.chemrev.9b00348 [146] Wang Z, Santhanagopalan D, Zhang W, Wang F, Xin H L, He K, Li J, Dudney N, Meng Y S 2016 Nano Lett. 16 3760-7 doi: 10.1021/acs.nanolett.6b01119 [147] Tang M, Sarou-Kanian V, Melin P, Leriche J-B, Mntrier M, Tarascon J-M, Deschamps M, Salager E 2016 Nat. Commun. 7 13284 doi: 10.1038/ncomms13284 [148] Chien P-H, Feng X, Tang M, Rosenberg J T, O’Neill S, Zheng J, Grant S C, Hu -Y-Y 2018 J. Phys. Chem. Lett. 9 1990-8 doi: 10.1021/acs.jpclett.8b00240 [149] Liu X, Liang Z, Xiang Y, Lin M, Li Q, Liu Z, Zhong G, Fu R, Yang Y 2021 Adv. Mater. 33 2005878 doi: 10.1002/adma.202005878 [150] Yu C, Ganapathy S, Van Eck E R, Wang H, Basak S, Li Z, Wagemaker M 2017 Nat. Commun. 8 1086 doi: 10.1038/s41467-016-0009-6 [151] Fang R, Xu H, Xu B, Li X, Li Y, Goodenough J B 2021 Adv. Funct. Mater. 31 2001812 doi: 10.1002/adfm.202001812 [152] Huo H, Chen Y, Li R, Zhao N, Luo J, Da Silva J G P, Mcke R, Kaghazchi P, Guo X, Sun X 2020 Energy Environ. Sci. 13 127-34 doi: 10.1039/C9EE01903K [153] Walther F, Koerver R, Fuchs T, Ohno S, Sann J, Rohnke M, Zeier W G, Janek J R 2019 Chem. Mater. 31 3745-55 doi: 10.1021/acs.chemmater.9b00770 [154] Lin C-H, et al 2020 Sci. Adv. 6 eaay7129 doi: 10.1126/sciadv.aay7129 [155] Zhao C, Wada T, De Andrade V, Grsoy D, Kato H, Chen-Wiegart Y-C K 2018 Nano Energy 52 381-90 doi: 10.1016/j.nanoen.2018.08.009 [156] Lu X, Bertei A, Finegan D P, Tan C, Daemi S R, Weaving J S, O’Regan K B, Heenan T M, Hinds G, Kendrick E 2020 Nat. Commun. 11 1-13 doi: 10.1038/s41467-019-13910-y [157] Sun N, et al 2019 Angew. Chem., Int. Ed. 131 18820-6 doi: 10.1002/ange.201910993 [158] Hao S, Daemi S R, Heenan T M, Du W, Tan C, Storm M, Rau C, Brett D J, Shearing P R 2021 Nano Energy 82 105744 doi: 10.1016/j.nanoen.2021.105744 [159] Zhang Z, Chen S, Yao X, Cui P, Duan J, Luo W, Huang Y, Xu X 2020 Energy Storage Mater. 24 714-8 doi: 10.1016/j.ensm.2019.06.006