Recent advances and future perspectives for aqueous zinc-ion capacitors
doi: 10.1088/2752-5724/ac4263
-
Abstract: Ion-hybrid capacitors are expected to combine the high specific energy of battery-type materials and the superior specific power of capacitor-type materials and are considered as a promising energy storage technique. In particular, aqueous zinc-ion capacitors (ZIC), possessing the merits of high safety, cost-efficiency and eco-friendliness, have been widely explored with various electrode materials and electrolytes to obtain excellent electrochemical performance. In this review, we first summarize the research progress on enhancing the specific capacitance of capacitor-type materials and review the research on improving the cycling capability of battery-type materials under high current densities. Then, we look back on the effects of electrolyte engineering on the electrochemical performance of ZIC. Finally, we propose research challenges and development directions for ZIC. This review provides guidance for the design and construction of high-performance ZIC.
-
Key words:
- zinc ion capacitor /
- supercapacitor /
- zinc ion battery /
- electrochemical capacitor /
- porous carbon
-
Figure 2. EDLC behaviors of carbonaceous materials. Typical (a) CV curves and (b) GCD profiles of EDLC behaviors. Reproduced from [18], Copyright (2018), with permission from Elsevier. Scanning electron microscope (SEM) images of carbonaceous materials with various morphologies including (c) porous carbon. [23] John Wiley & Sons. [© 2020 Wiley-VCH GmbH] (d) carbon quantum dots. Reprinted with permission from [24]. Copyright (2019) American Chemical Society; (e) carbon fibers. [25] John Wiley & Sons. [© 2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim]; (f) graphene. Reprinted from [26], Copyright (2021), with permission from Elsevier; (g) MOF-derived carbon. Reprinted from [27], Copyright (2021), with permission from Elsevier; (h) carbon hollow sphere. Reprinted from [20], Copyright (2020), with permission from Elsevier (i) bowl-like carbon. [22] John Wiley & Sons. [© 2020 Wiley-VCH GmbH].
Figure 3. Pseudocapacitance behaviors of carbonaceous materials. (a) and (b) The CV curves and GCD profiles comparison of Zn-PC and Zn-OPC. Reprinted from [40], Copyright (2020), with permission from Elsevier. (c) The schematic illustration of energy storage mechanism of carbonaceous materials with surface redox group during the charging and discharging process. [41] John Wiley & Sons. [© 2020 Wiley-VCH GmbH]. (d) The schematic of surface oxygen substituents enhanced EDLC and surface redox pseudocapacitance charge storage mechanism. [43] John Wiley & Sons. [© 2020 Wiley-VCH GmbH].
Figure 4. Exploration of two-dimensional cathode materials for ZIC. (a) The ex-situ Raman test of MXene during the electrochemical process and corresponding GCD curve. Reprinted from [47], Copyright (2020), with permission from Elsevier. (b) Schematic diagram of Zn-MXene-rGO ion hybrid capacitor. [49] John Wiley & Sons. [© 2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim]. (c) Schematic diagram of Zn-BP ion hybrid capacitor and (d) the anti-self-discharge ability comparison of Zn-BP capacitor and other ion hybrid capacitors. [59] John Wiley & Sons. [© 2020 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim]. (e) and (f) the CV curves and GCD profiles of Zn-siloxene ion hybrid capacitor, respectively. Reprinted with permission from [61]. Copyright (2021) American Chemical Society.
Figure 5. Other promising capacitor-type materials for ZIC. (a) Schematic illustration of the preparation of a TDP cathode and the configuration of a Zn-TDP ion hybrid capacitor and (b) the CV curves comparison of a TDP cathode, a bare AC coating cathode and a carbon fabric cathode. Reproduced from [66] with permission of The Royal Society of Chemistry. (c) Schematic illustration of the configuration and electrochemical behaviors of Zn-PA-COF ion hybrid capacitor and (d) the initial three CV curves of Zn-PA-COF. Reprinted with permission from [67]. Copyright (2020) American Chemical Society. (e) Schematics of the electrochemical process of a Zn-TiN ion hybrid capacitor. [68] John Wiley & Sons. [© 2020 Wiley-VCH GmbH].
Figure 6. Modification of zinc anode. (a) Schematic illustrations of the striping/plating process of bare zinc foil and zinc anode with CNTs paper coated and (b) the electrochemical performance of symmetric cells with and without CNTs paper coated. Reprinted from [93], Copyright (2020), with permission from Elsevier. (c) and (d) deposition process illustration of zinc anode with and without ZIF-8/CC interfacial structure respectively; (e) and (f) the CV curves and cycling stability comparison of ZIC, ZIC-CC and ZIC-CC/ZIF-8 respectively. (c-f) reproduced from [99] with permission of The Royal Society of Chemistry.
Figure 7. The exploration and modification of metal oxides electrode materials. (a) SEM image of MnO2 nanorods; (b) and (c) CV curves and GCD profiles of an AC-MnO2 ZIC respectively. Reprinted from [104], Copyright (2019), with permission from Elsevier. (d) Optical images of a MXene anode and a MnO2-CNTs cathode. (e) and (f) The CV curves and GCD profiles of a Ti3C2Tx-MnO2/CNTs ZIC respectively. (g) SEM image of V2O5 film. (h) and (i) The CV curves and GCD profiles of a MXene-V2O5 ZIC respectively. (g-h) reprinted from [54], Copyright (2021), with permission from Elsevier.
-
[1] Duffner F, Kronemeyer N, Tbke J, Leker J, Winter M, Schmuch R 2021 Nat. Energy 6 123 doi: 10.1038/s41560-020-00748-8 [2] Choi C, Ashby D S, Butts D M, DeBlock R H, Wei Q, Lau J, Dunn B 2020 Nat. Rev. Mater. 5 5 doi: 10.1038/s41578-019-0142-z [3] Yin J, Zhang W, Alhebshi N A, Salah N, Alshareef H N 2021 Adv. Energy Mater. 11 1 [4] Tang H, Yao J, Zhu Y 2021 Adv. Energy Mater. 11 2003994 doi: 10.1002/aenm.202003994 [5] Chao D, Zhou W, Xie F, Ye C, Li H, Jaroniec M, Qiao S Z 2020 Sci. Adv. 6 eaba4098 doi: 10.1126/sciadv.aba4098 [6] Parker J F, Chervin C N, Pala I R, Machler M, Burz M F, Long J W, Rolison D R 2017 Science 418 415 doi: 10.1126/science.aak9991 [7] Wang F, Borodin O, Gao T, Fan X, Sun W, Han F, Faraone A, Dura J A, Xu K, Wang C 2018 Nat. Mater. 17 543 doi: 10.1038/s41563-018-0063-z [8] Cao L, et al 2021 Nat. Nanotechnol. 16 902 doi: 10.1038/s41565-021-00905-4 [9] Augustyn V, Come J, Lowe M A, Kim J W, Taberna P L, Tolbert S H, Abrua H D, Simon P, Dunn B 2013 Nat. Mater. 12 518 doi: 10.1038/nmat3601 [10] Ock I W, Lee J, Kang J K 2020 Adv. Energy Mater. 10 2001851 doi: 10.1002/aenm.202001851 [11] Zou K, Cai P, Wang B, Liu C, Li J, Qiu T, Zou G, Hou H, Ji X 2020 Nano-Micro Lett. 12 121 doi: 10.1007/s40820-020-00458-6 [12] Wang X, Kajiyama S, Iinuma H, Hosono E, Oro S, Moriguchi I, Okubo M, Yamada A 2015 Nat. Commun. 6 6544 doi: 10.1038/ncomms7544 [13] Yang Q, Cui S, Ge Y, Tang Z, Liu Z, Li H, Li N, Zhang H, Liang J, Zhi C 2018 Nano Energy 50 623 doi: 10.1016/j.nanoen.2018.06.017 [14] Chen J, Yang B, Hou H, Li H, Liu L, Zhang L, Yan X 2019 Adv. Energy Mater. 9 1803894 doi: 10.1002/aenm.201803894 [15] Ming F, Liang H, Zhang W, Ming J, Lei Y, Emwas A H, Alshareef H N 2019 Nano Energy 62 853 doi: 10.1016/j.nanoen.2019.06.013 [16] Tian Z, Tong X, Sheng G, Shao Y, Yu L, Tung V, Sun J, Kaner R B, Liu Z 2019 Nat. Commun. 10 1 doi: 10.1038/s41467-018-07882-8 [17] Dong L, Ma X, Li Y, Zhao L, Liu W, Cheng J, Xu C, Li B, Yang Q H, Kang F 2018 Energy Storage Mater. 13 96 doi: 10.1016/j.ensm.2018.01.003 [18] Wang H, Wang M, Tang Y 2018 Energy Storage Mater. 13 1 doi: 10.1016/j.ensm.2017.12.022 [19] Zhang P, Li Y, Wang G, Wang F, Yang S, Zhu F, Zhuang X, Schmidt O G, Feng X 2019 Adv. Mater. 31 1806005 doi: 10.1002/adma.201806005 [20] Liu P, Liu W, Huang Y, Li P, Yan J, Liu K 2020 Energy Storage Mater. 25 858 doi: 10.1016/j.ensm.2019.09.004 [21] Chen S, Ma L, Zhang K, Kamruzzaman M, Zhi C, Zapien J A 2019 J. Mater. Chem. A 7 7784 doi: 10.1039/C9TA00733D [22] Fei R, Wang H, Wang Q, Qiu R, Tang S, Wang R, He B, Gong Y, Fan H J 2020 Adv. Energy Mater. 10 1903817 doi: 10.1002/smll.201903817 [23] Zhou Z, Zhou X, Zhang M, Mu S, Liu Q, Tang Y 2020 Small 16 2003174 doi: 10.1002/smll.202003174 [24] Pal A, Bhakat A, Chattopadhyay A 2019 J. Phys. Chem. C 123 19421 doi: 10.1021/acs.jpcc.9b05820 [25] Zhang X, Pei Z, Wang C, Yuan Z, Wei L, Pan Y, Mahmood A, Shao Q, Chen Y 2019 Small 15 1903817 doi: 10.1002/smll.201903817 [26] Zhang L, Wu D, Wang G, Xu Y, Li H, Yan X 2021 Chin. Chem. Lett. 32 926 doi: 10.1016/j.cclet.2020.06.037 [27] Li H, Wu J, Wang L, Liao Q, Niu X, Zhang D, Wang K 2022 Chem. Eng. J. 428 131071 doi: 10.1016/j.cej.2021.131071 [28] Ling T, Da P, Zheng X, Ge B, Hu Z, Wu M, Du X W, Bin Hu W, Jaroniec M, Qiao S Z 2018 Sci. Adv. 4 1 doi: 10.1126/sciadv.aau6261 [29] Yuksel R, et al 2020 Adv. Funct. Mater. 30 1 doi: 10.1002/adfm.201909725 [30] Ma L, Zhao Y, Ji X, Zeng J, Yang Q, Guo Y, Huang Z, Li X, Yu J, Zhi C 2019 Adv. Energy Mater. 9 1900509 doi: 10.1002/aenm.201900509 [31] Li Y, Chen M, Liu B, Zhang Y, Liang X, Xia X 2020 Adv. Energy Mater. 10 1904948 doi: 10.1002/adma.201904948 [32] Huang Z, Hou H, Zou G, Chen J, Zhang Y, Liao H, Li S, Ji X 2016 Electrochim. Acta 214 156 doi: 10.1016/j.electacta.2016.08.040 [33] Zhang H, Liu Q, Fang Y, Teng C, Liu X, Fang P, Tong Y, Lu X 2019 Adv. Mater. 31 1904948 doi: 10.1002/adma.201904948 [34] Liu P, Gao Y, Tan Y, Liu W, Huang Y, Yan J, Liu K 2019 Nano Res. 12 2835 doi: 10.1007/s12274-019-2521-6 [35] Li Y, Lu P, Shang P, Wu L, Wang X, Dong Y, He R, Wu Z S 2021 J. Energy Chem. 56 404 doi: 10.1016/j.jechem.2020.08.005 [36] Lu Y, Li Z, Bai Z, Mi H, Ji C, Pang H, Yu C, Qiu J 2019 Nano Energy 66 104132 doi: 10.1016/j.nanoen.2019.104132 [37] Lee Y G, An G H 2020 ACS Appl. Mater. Interfaces 12 41342 doi: 10.1021/acsami.0c10512 [38] Li J, Yun X, Hu Z, Xi L, Li N, Tang H, Lu P, Zhu Y 2019 J. Mater. Chem. A 7 26311 doi: 10.1039/C9TA08151H [39] Li J, Zhang J, Yu L, Gao J, He X, Liu H, Guo Y, Zhang G 2021 Energy Storage Mater. 42 705 doi: 10.1016/j.ensm.2021.08.018 [40] Zheng Y, Zhao W, Jia D, Liu Y, Cui L, Wei D, Zheng R, Liu J 2020 Chem. Eng. J. 387 124161 doi: 10.1016/j.cej.2020.124161 [41] Yin J, Zhang W, Wang W, Alhebshi N A, Salah N, Alshareef H N 2020 Adv. Energy Mater. 10 2100201 doi: 10.1002/aenm.202001705 [42] Fan X, Liu P, Ouyang B, Cai R, Chen X, Liu X, Liu W, Wang J, Liu K 2021 ChemElectroChem 8 3572 doi: 10.1002/celc.202100862 [43] Shao Y, et al 2021 Adv. Funct. Mater. 31 2007843 doi: 10.1002/adfm.202007843 [44] Li B, Wang Y, Jiang N, An L, Song J, Zuo Y, Ning F, Shang H, Xia D 2020 Nano Energy 72 104727 doi: 10.1016/j.nanoen.2020.104727 [45] Yang Q, et al 2019 ACS Nano 13 8275 doi: 10.1021/acsnano.9b03650 [46] Pang S Y, Wong Y T, Yuan S, Liu Y, Tsang M K, Yang Z, Huang H, Wong W T, Hao J 2019 J. Am. Chem. Soc. 141 9610 doi: 10.1021/jacs.9b02578 [47] Maughan P A, Tapia-Ruiz N, Bimbo N 2020 Electrochim. Acta 341 136061 doi: 10.1016/j.electacta.2020.136061 [48] Yang Q, Chen A, Li C, Zou G, Li H, Zhi C 2021 Matter 4 3146 doi: 10.1016/j.matt.2021.07.016 [49] Wang Q, Wang S, Guo X, Ruan L, Wei N, Ma Y, Li J, Wang M, Li W, Zeng W 2019 Adv. Electron. Mater. 5 1900537 doi: 10.1002/aelm.201900537 [50] Chen J, Chen H, Chen M, Zhou W, Tian Q, Wong C P 2022 Chem. Eng. J. 428 131380 doi: 10.1016/j.cej.2021.131380 [51] Wang S, Wang Q, Zeng W, Wang M, Ruan L, Ma Y 2019 Nano-Micro Lett. 11 1 doi: 10.1007/s40820-018-0235-z [52] Cheng W, Fu J, Hu H, Ho D 2021 Adv. Sci. 8 2100775 doi: 10.1002/advs.202100775 [53] Shi J, Wang S, Wang Q, Chen X, Du X, Wang M, Zhao Y, Dong C, Ruan L, Zeng W 2020 J. Power Sources 446 227345 doi: 10.1016/j.jpowsour.2019.227345 [54] Li X, Ma Y, Yue Y, Li G, Zhang C, Cao M, Xiong Y, Zou J, Zhou Y, Gao Y 2022 Chem. Eng. J. 428 130965 doi: 10.1016/j.cej.2021.130965 [55] Wu Z, Lyu Y, Zhang Y, Ding R, Zheng B, Yang Z, Lau S P, Chen X H, Hao J 2021 Nat. Mater. 20 1203 doi: 10.1038/s41563-021-01001-7 [56] Watts M C, Picco L, Russell-Pavier F S, Cullen P L, Miller T S, Bartu S P, Payton O D, Skipper N T, Tileli V, Howard C A 2019 Nature 568 216 doi: 10.1038/s41586-019-1074-x [57] Huang Z, Hou H, Zhang Y, Wang C, Qiu X, Ji X 2017 Adv. Mater. 29 1702372 doi: 10.1002/adma.201702372 [58] Jin H, et al 2020 Science 370 192 doi: 10.1126/science.aav5842 [59] Huang Z, et al 2020 Adv. Energy Mater. 10 2001024 doi: 10.1002/aenm.202001024 [60] Boruah B D, Mathieson A, Wen B, Jo C, Deschler F, De Volder M 2020 Nano Lett. 20 5967 doi: 10.1021/acs.nanolett.0c01958 [61] Guo Q, Han Y, Chen N, Qu L 2021 ACS Energy Lett. 6 1786 doi: 10.1021/acsenergylett.1c00285 [62] Nguyen T P, et al 2021 Nature 593 61 doi: 10.1038/s41586-021-03399-1 [63] Liang Y, Yao Y 2018 Joule 2 1690 doi: 10.1016/j.joule.2018.07.008 [64] Guo Z, Huang J, Dong X, Xia Y, Yan L, Wang Z, Wang Y 2020 Nat. Commun. 11 959 doi: 10.1038/s41467-020-14748-5 [65] Han J, Wang K, Liu W, Li C, Sun X, Zhang X, An Y, Yi S, Ma Y 2018 Nanoscale 10 13083 doi: 10.1039/C8NR03889A [66] Xin T, Wang Y, Wang N, Zhao Y, Li H, Zhang Z, Liu J 2019 J. Mater. Chem. A 7 23076 doi: 10.1039/C9TA08693E [67] Wang W, et al 2020 ACS Energy Lett. 5 2256 doi: 10.1021/acsenergylett.0c00903 [68] Huang Z, et al 2021 Angew. Chem., Int. Ed. 60 1011 doi: 10.1002/anie.202012202 [69] Dong L, Yang W, Yang W, Wang C, Li Y, Xu C, Wan S, He F, Kang F, Wang G 2019 Nano-Micro Lett. 11 1 doi: 10.1007/s40820-019-0328-3 [70] Mefford J T, Hardin W G, Dai S, Johnston K P, Stevenson K J 2014 Nat. Mater. 13 726 doi: 10.1038/nmat4000 [71] Liu Y, Dinh J, Tade M O, Shao Z 2016 ACS Appl. Mater. Interfaces 8 23774 doi: 10.1021/acsami.6b08634 [72] Li C, Islam M M, Moore J, Sleppy J, Morrison C, Konstantinov K, Dou S X, Renduchintala C, Thomas J 2016 Nat. Commun. 7 13319 doi: 10.1038/ncomms13319 [73] Mourad E, Coustan L, Lannelongue P, Zigah D, Mehdi A, Vioux A, Freunberger S A, Favier F, Fontaine O 2017 Nat. Mater. 16 446 doi: 10.1038/nmat4808 [74] Han L, Huang H, Li J, Zhang X, Yang Z, Xu M, Pan L 2020 J. Mater. Chem. A 8 15042 doi: 10.1039/D0TA03547E [75] Ma L, Schroeder M A, Borodin O, Pollard T P, Ding M S, Wang C, Xu K 2020 Nat. Energy 5 743 doi: 10.1038/s41560-020-0674-x [76] Huang Z, Li X, Yang Q, Ma L, Mo F, Liang G, Wang D, Liu Z, Li H, Zhi C 2019 J. Mater. Chem. A 7 18915 doi: 10.1039/C9TA06337D [77] Li Q, Zhao Y, Mo F, Wang D, Yang Q, Huang Z, Liang G, Chen A, Zhi C 2020 EcoMat 2 e12035 doi: 10.1002/eom2.12035 [78] Yang Q, Liang G, Guo Y, Liu Z, Yan B, Wang D, Huang Z, Li X, Fan J, Zhi C 2019 Adv. Mater. 31 1903778 doi: 10.1002/adma.201903778 [79] Li Q, Wang Y, Mo F, Wang D, Liang G, Zhao Y, Yang Q, Huang Z, Zhi C 2021 Adv. Energy Mater. 11 2003931 doi: 10.1002/aenm.202003931 [80] Yufit V, Tariq F, Eastwood D S, Biton M, Wu B, Lee P D, Brandon N P 2019 Joule 3 485 doi: 10.1016/j.joule.2018.11.002 [81] Wang Z, Huang J, Guo Z, Dong X, Liu Y, Wang Y, Xia Y 2019 Joule 3 1289 doi: 10.1016/j.joule.2019.02.012 [82] Qiu H, Du X, Zhao J, Wang Y, Ju J, Chen Z, Hu Z, Yan D, Zhou X, Cui G 2019 Nat. Commun. 10 5374 doi: 10.1038/s41467-019-13436-3 [83] Zhang Q, Luan J, Fu L, Wu S, Tang Y, Ji X, Wang H 2019 Angew. Chem., Int. Ed. 58 15841 doi: 10.1002/anie.201907830 [84] Fan Y, Tao T, Gao Y, Deng C, Yu B, Chen Y, Lu S, Huang S 2020 Adv. Mater. 32 2004798 doi: 10.1002/adma.202004798 [85] Zhang Q, Luan J, Huang X, Wang Q, Sun D, Tang Y, Ji X, Wang H 2020 Nat. Commun. 11 1 doi: 10.1038/s41467-019-13993-7 [86] Hou Z, Gao Y, Tan H, Zhang B 2021 Nat. Commun. 12 1 doi: 10.1038/s41467-020-20314-w [87] Zhao K, Wang C, Yu Y, Yan M, Wei Q, He P, Dong Y, Zhang Z, Wang X, Mai L 2018 Adv. Mater. Interfaces 5 1800848 doi: 10.1002/admi.201800848 [88] Kang L, Cui M, Jiang F, Gao Y, Luo H, Liu J, Liang W, Zhi C 2018 Adv. Energy Mater. 8 1801090 doi: 10.1002/aenm.201801090 [89] Ma L, Li Q, Ying Y, Ma F, Chen S, Li Y, Huang H, Zhi C 2021 Adv. Mater. 33 2007406 doi: 10.1002/adma.202007406 [90] Hao J, Li X, Zhang S, Yang F, Zeng X, Zhang S, Bo G, Wang C, Guo Z 2020 Adv. Funct. Mater. 30 1 doi: 10.1002/adfm.202001263 [91] Zhao Z, Zhao J, Hu Z, Li J, Li J, Zhang Y, Wang C, Cui G 2019 Energy Environ. Sci. 12 1938 doi: 10.1039/C9EE00596J [92] Mitha A, Yazdi A Z, Ahmed M, Chen P 2018 ChemElectroChem 5 2409 doi: 10.1002/celc.201800572 [93] Dong L, Yang W, Yang W, Tian H, Huang Y, Wang X, Xu C, Wang C, Kang F, Wang G 2020 Chem. Eng. J. 384 123355 doi: 10.1016/j.cej.2019.123355 [94] Cao L, Li D, Hu E, Xu J, Deng T, Ma L, Wang Y, Yang X Q, Wang C 2020 J. Am. Chem. Soc. 142 21404 doi: 10.1021/jacs.0c09794 [95] Huang Z, et al 2021 Nat. Commun. 12 3106 doi: 10.1038/s41467-021-23369-5 [96] Zhang X, Sui Y, Wei F, Qi J, Meng Q, Ren Y, He Y 2019 J. Mater. Sci., Mater. Electron. 30 18101 doi: 10.1007/s10854-019-02163-6 [97] Zhang Q, Luan J, Tang Y, Ji X, Wang H 2020 Angew. Chem., Int. Ed. 59 13180 doi: 10.1002/anie.202000162 [98] Gao Y, et al 2020 Proc. Natl Acad. Sci. USA 117 30135 doi: 10.1073/pnas.2001837117 [99] Leng C, Zhao Z, Guo J, Li R, Wang X, Xiao J, Fedoseeva Y V, Bulusheva L G, Qiu J 2021 Chem. Commun. 57 8778 doi: 10.1039/D1CC03004C [100] An G H, Hong J, Pak S, Cho Y, Lee S, Hou B, Cha S N 2020 Adv. Energy Mater. 10 1902981 doi: 10.1002/aenm.201902981 [101] Tian H, et al 2021 Nat. Commun. 12 237 doi: 10.1038/s41467-020-20334-6 [102] Zhao Y, et al 2021 Mater. Today 51 87 doi: 10.1016/j.mattod.2021.09.023 [103] Zhao Y, et al 2021 Angew. Chem., Int. Ed. 134 e202111826 doi: 10.1002/ange.202111826 [104] Ma X, et al 2019 Energy Storage Mater. 20 335 doi: 10.1016/j.ensm.2018.10.020 [105] Ma X, Wang J, Wang X, Zhao L, Xu C 2019 J. Mater. Sci., Mater. Electron. 30 5478 doi: 10.1007/s10854-019-00841-z [106] Dong S, et al 2019 Chemistry 5 1537 doi: 10.1016/j.chempr.2019.03.009 [107] Chao D, Fan H J 2019 Chemistry 5 1359 doi: 10.1016/j.chempr.2019.05.020 [108] Suo L, Borodin O, Gao T, Olguin M, Ho J, Fan X, Luo C, Wang C, Xu K 2015 Science 350 938-43 doi: 10.1126/science.aab1595 [109] Li M, Wang C, Chen Z, Xu K, Lu J 2020 Chem. Rev. 120 6783 doi: 10.1021/acs.chemrev.9b00531 [110] Wang C, Pei Z, Meng Q, Zhang C, Sui X, Yuan Z, Wang S, Chen Y 2021 Angew. Chem., Int. Ed. 60 990 doi: 10.1002/anie.202012030 [111] Xie J, Liang Z, Lu Y C 2020 Nat. Mater. 19 1006 doi: 10.1038/s41563-020-0667-y [112] Bi H, et al 2020 Adv. Mater. 32 1 doi: 10.1002/adma.202000074 [113] Huang Z, et al 2021 Adv. Mater. 2106180 e2106180 doi: 10.1002/adma.202106180 [114] Wang P, Xie X, Xing Z, Chen X, Fang G, Lu B, Zhou J, Liang S, Fan H J 2021 Adv. Energy Mater. 11 2101158 doi: 10.1002/aenm.202101158 [115] Li Y, Yang W, Yang W, Wang Z, Rong J, Wang G, Xu C, Kang F, Dong L 2021 Nano-Micro Lett. 13 95 doi: 10.1007/s40820-021-00625-3 [116] Fan W, Ding J, Ding J, Zheng Y, Song W, Lin J, Xiao C, Zhong C, Wang H, Hu W 2021 Nano-Micro Lett. 13 1 doi: 10.1007/s40820-021-00588-5 [117] Sun Y, et al 2021 Adv. Funct. Mater. 31 2101277 doi: 10.1002/adfm.202101277