• 中文核心期刊要目总览
  • 中国科技核心期刊
  • 中国科学引文数据库(CSCD)
  • 中国科技论文与引文数据库(CSTPCD)
  • 中国学术期刊文摘数据库(CSAD)
  • 中国学术期刊(网络版)(CNKI)
  • 中文科技期刊数据库
  • 万方数据知识服务平台
  • 中国超星期刊域出版平台
  • 国家科技学术期刊开放平台
  • 荷兰文摘与引文数据库(SCOPUS)
  • 日本科学技术振兴机构数据库(JST)

The interplay between (electro)chemical and (chemo)mechanical effects in the cycling performance of thiophosphate-based solid-state batteries

  • Abstract: Solid-state batteries (SSBs) are a promising next step in electrochemical energy storage but are plagued by a number of problems. In this study, we demonstrate the recurring issue of mechanical degradation because of volume changes in layered Ni-rich oxide cathode materials in thiophosphate-based SSBs. Specifically, we explore superionic solid electrolytes (SEs) of different crystallinity, namely glassy 1.5Li2S-0.5P2S5-LiI and argyrodite Li6PS5Cl, with emphasis on how they affect the cyclability of slurry-cast cathodes with NCM622 (60% Ni) or NCM851005 (85% Ni). The application of a combination of ex situ and in situ analytical techniques helped to reveal the benefits of using a SE with a low Young’s modulus. Through a synergistic interplay of (electro)chemical and (chemo)mechanical effects, the glassy SE employed in this work was able to achieve robust and stable interfaces, enabling intimate contact with the cathode material while at the same time mitigating volume changes. Our results emphasize the importance of considering chemical, electrochemical, and mechanical properties to realize long-term cycling performance in high-loading SSBs.

     

/

返回文章
返回