The interplay between (electro)chemical and (chemo)mechanical effects in the cycling performance of thiophosphate-based solid-state batteries
doi: 10.1088/2752-5724/ac3897
-
Abstract: Solid-state batteries (SSBs) are a promising next step in electrochemical energy storage but are plagued by a number of problems. In this study, we demonstrate the recurring issue of mechanical degradation because of volume changes in layered Ni-rich oxide cathode materials in thiophosphate-based SSBs. Specifically, we explore superionic solid electrolytes (SEs) of different crystallinity, namely glassy 1.5Li2S-0.5P2S5-LiI and argyrodite Li6PS5Cl, with emphasis on how they affect the cyclability of slurry-cast cathodes with NCM622 (60% Ni) or NCM851005 (85% Ni). The application of a combination of ex situ and in situ analytical techniques helped to reveal the benefits of using a SE with a low Young’s modulus. Through a synergistic interplay of (electro)chemical and (chemo)mechanical effects, the glassy SE employed in this work was able to achieve robust and stable interfaces, enabling intimate contact with the cathode material while at the same time mitigating volume changes. Our results emphasize the importance of considering chemical, electrochemical, and mechanical properties to realize long-term cycling performance in high-loading SSBs.
-
Figure 3. Nyquist plots of the electrochemical impedance of SSB cells (black lines: measured data; solid symbols: fitted data) using a slurry-cast cathode with (a) glassy SE (1.5Li2S-0.5P2S5-LiI) and (b) crystalline SE (Li6PS5Cl) after 200 cycles at a rate of C/5 and 45 C. Semicircles provide eye guidance for the individual resistance contributions.
Figure 4. In situ pressure monitoring of Super C65 electrodes with (a)-(c) glassy SE (1.5Li2S-0.5P2S5-LiI) and (e)-(g) crystalline SE (Li6PS5Cl). (a), (e) CV profiles, (b), (f) current response, and (c), (g) pressure response. Cells tested at 45 C, 0.05 mV s-1, OCV-4.4 V vs Li+/Li in the first cycle and 1.55-4.4 V vs Li+/Li in the following cycles. Top-view SEM images of the (d) glassy SE/Super C65 and (h) crystalline SE/Super C65 electrodes after cycling.
Figure 5. Electrochemical profile of SSB cells using a slurry-cast cathode with (a) glassy SE (1.5Li2S-0.5P2S5-LiI) and (b) crystalline SE (Li6PS5Cl) and corresponding time-resolved evolution rates (left y-axis) and cumulative amounts (right y-axis) for H2, O2, and CO2, as well as normalized ion currents for SO2. Cells tested at 45 C, C/20, 2.9-5.0 V vs Li+/Li.
Figure 6. X-ray photoelectron spectra of the (a) S 2p and (b) P 2p core levels of slurry-cast cathodes with glassy SE (1.5Li2S-0.5P2S5-LiI) and crystalline SE (Li6PS5Cl) collected before and after 200 cycles at a rate of C/5 and 45 C. Box plots of the normalized intensity of (c) PO2-, (d) PO3-, (e) SO2-, and (f) SO3- fragments for the uncycled and cycled g-SE and c-SE cells from ToF-SIMS depth-profiling analysis.
Figure 7. Cycling performance of SSB cells using a slurry-cast cathode with NCM622 (see also figure 1(a)) or NCM851005 and with glassy SE (1.5Li2S-0.5P2S5-LiI). Cells tested at 45 C, C/5, 2.9-4.4 V vs Li+/Li.
-
[1] Blomgren G E 2017 J. Electrochem. Soc. 164 A5019-25 doi: 10.1149/2.0251701jes [2] Tarascon J-M, Armand M 2001 Nature 414 359-67 doi: 10.1038/35104644 [3] Larcher D, Tarascon J-M 2015 Nat. Chem. 7 19-29 doi: 10.1038/nchem.2085 [4] Wang Q, Ping P, Zhao X, Chu G, Sun J, Chen C 2012 J. Power Sources 208 210-24 doi: 10.1016/j.jpowsour.2012.02.038 [5] Etacheri V, Marom R, Elazari R, Salitra G, Aurbach D 2011 Energy Environ. Sci. 4 3243-62 doi: 10.1039/c1ee01598b [6] Janek J, Zeier W G 2016 Nat. Energy 1 16141 doi: 10.1038/nenergy.2016.141 [7] Conforto G, Ruess R, Schrder D, Trevisanello E, Fantin R, Richter F H, Janek J 2021 J. Electrochem. Soc. 168 070546 doi: 10.1149/1945-7111/ac13d2 [8] Ruess R, Schweidler S, Hemmelmann H, Conforto G, Bielefeld A, Weber D A, Sann J, Elm M T, Janek J 2020 J. Electrochem. Soc. 167 100532 doi: 10.1149/1945-7111/ab9a2c [9] Ma Y, Teo J H, Kitsche D, Diemant T, Strauss F, Ma Y, Goonetilleke D, Janek J, Bianchini M, Brezesinski T 2021 ACS Energy Lett. 6 3020-8 doi: 10.1021/acsenergylett.1c01447 [10] de Biasi L, Kondrakov A O, Gewein H, Brezesinski T, Hartmann P, Janek J 2017 J. Phys. Chem. C 121 26163-71 doi: 10.1021/acs.jpcc.7b06363 [11] Jung S H, Kim U-H, Kim J-H, Jun S, Yoon C S, Jung Y S, Sun Y-K 2020 Adv. Energy Mater. 10 1903360 doi: 10.1002/aenm.201903360 [12] Li W, Erickson E M, Manthiram A 2020 Nat. Energy 5 26-34 doi: 10.1038/s41560-019-0513-0 [13] Deng Z, Wang Z, Chu I-H, Luo J, Ong S P 2016 J. Electrochem. Soc. 163 A67-A74 doi: 10.1149/2.0061602jes [14] McGrogan F P, Swamy T, Bishop S R, Eggleton E, Porz L, Chen X, Chiang Y-M, Van Vliet K J 2017 Adv. Energy Mater. 7 1602011 doi: 10.1002/aenm.201602011 [15] Kato A, Yamamoto M, Sakuda A, Hayashi A, Tatsumisago M 2018 ACS Appl. Energy Mater. 1 1002-7 doi: 10.1021/acsaem.7b00140 [16] Han F, Yue J, Zhu X, Wang C 2018 Adv. Energy Mater. 8 1703644 doi: 10.1002/aenm.201703644 [17] Han Y, Jung S H, Kwak H, Jun S, Kwak H H, Lee J H, Hong S-T, Jung Y S 2021 Adv. Energy Mater. 11 2100126 doi: 10.1002/aenm.202100126 [18] Koerver R, Aygn I, Leichtwei T, Dietrich C, Zhang W, Binder J O, Hartmann P, Zeier W G, Janek J 2017 Chem. Mater. 29 5574-82 doi: 10.1021/acs.chemmater.7b00931 [19] Park K H, Bai Q, Kim D H, Oh D Y, Zhu Y, Mo Y, Jung Y S 2018 Adv. Energy Mater. 8 1800035 doi: 10.1002/aenm.201800035 [20] Richards W D, Miara L J, Wang Y, Kim J C, Ceder G 2016 Chem. Mater. 28 266-73 doi: 10.1021/acs.chemmater.5b04082 [21] Wang S, Xu H, Li W, Dolocan A, Manthiram A 2018 J. Am. Chem. Soc. 140 250-7 doi: 10.1021/jacs.7b09531 [22] Takada K, Ohta N, Zhang L, Fukuda K, Sakaguchi I, Ma R, Osada M, Sasaki T 2008 Solid State Ion. 179 1333-7 doi: 10.1016/j.ssi.2008.02.017 [23] Ohta N, Takada K, Sakaguchi I, Zhang L, Ma R, Fukuda K, Osada M, Sasaki T 2007 Electrochem. Commun. 9 1486-90 doi: 10.1016/j.elecom.2007.02.008 [24] Machida N, Kashiwagi J, Naito M, Shigematsu T 2012 Solid State Ion. 225 354-8 doi: 10.1016/j.ssi.2011.11.026 [25] Kim A-Y, Strauss F, Bartsch T, Teo J H, Hatsukade T, Mazilkin A, Janek J, Hartmann P, Brezesinski T 2019 Chem. Mater. 31 9664-72 doi: 10.1021/acs.chemmater.9b02947 [26] Strauss F, Teo J H, Maibach J, Kim A-Y, Mazilkin A, Janek J, Brezesinski T 2020 ACS Appl. Mater. Interfaces 12 57146-54 doi: 10.1021/acsami.0c18590 [27] Walther F, Randau S, Schneider Y, Sann J, Rohnke M, Richter F H, Zeier W G, Janek J 2020 Chem. Mater. 32 6123-36 doi: 10.1021/acs.chemmater.0c01825 [28] Wang S, et al 2021 Adv. Energy Mater. 11 2100654 doi: 10.1002/aenm.202100654 [29] Strauss F, Teo J H, Janek J, Brezesinski T 2020 Inorg. Chem. Front. 7 3953-60 doi: 10.1039/D0QI00758G [30] Koerver R, Zhang W, de Biasi L, Schweidler S, Kondrakov A O, Kolling S, Brezesinski T, Hartmann P, Zeier W G, Janek J 2018 Energy Environ. Sci. 11 2142-58 doi: 10.1039/C8EE00907D [31] Shi T, Zhang Y-Q, Tu Q, Wang Y, Scott M C, Ceder G 2020 J. Mater. Chem. A 8 17399-404 doi: 10.1039/D0TA06985J [32] Strauss F, de Biasi L, Kim A-Y, Hertle J, Schweidler S, Janek J, Hartmann P, Brezesinski T 2020 ACS Mater. Lett. 2 84-8 doi: 10.1021/acsmaterialslett.9b00441 [33] Reuter F, Baasner A, Pampel J, Piwko M, Drfler S, Althues H, Kaskel S 2019 J. Electrochem. Soc. 166 A3265-A3271 doi: 10.1149/2.0431914jes [34] Chen S, Zhang J, Nie L, Hu X, Huang Y, Yu Y, Liu W 2021 Adv. Mater. 33 2002325 doi: 10.1002/adma.202002325 [35] Minnmann P, Quillman L, Burkhardt S, Richter F H, Janek J 2021 J. Electrochem. Soc. 168 040537 doi: 10.1149/1945-7111/abf8d7 [36] Kim M-J, Park J-W, Kim B G, Lee Y-J, Ha Y-C, Lee S-M, Baeg K-J 2020 Sci. Rep. 10 11923 doi: 10.1038/s41598-020-68885-4 [37] Teo J H, Strauss F, Tripkovi , Schweidler S, Ma Y, Bianchini M, Janek J, Brezesinski T 2021 Cell Rep. Phys. Sci. 2 100465 doi: 10.1016/j.xcrp.2021.100465 [38] Zhang W, Schrder D, Arlt T, Manke I, Koerver R, Pinedo R, Weber D A, Sann J, Zeier W G, Janek J 2017 J. Mater. Chem. A 5 9929-36 doi: 10.1039/C7TA02730C [39] Zhang W, et al 2017 ACS Appl. Mater. Interfaces 9 17835-45 doi: 10.1021/acsami.7b01137 [40] Sakuda A, Hayashi A, Tatsumisago M 2010 Chem. Mater. 22 949-56 doi: 10.1021/cm901819c [41] Ohzuku T, Ueda A, Yamamoto N 1995 J. Electrochem. Soc. 142 1431-5 doi: 10.1149/1.2048592 [42] Wagemaker M, Simon D R, Kelder E M, Schoonman J, Ringpfeil C, Haake U, Ltzenkirchen-Hecht D, Frahm R, Mulder F M 2006 Adv. Mater. 18 3169-73 doi: 10.1002/adma.200601636 [43] Haetge J, Hartmann P, Brezesinski K, Janek J, Brezesinski T 2011 Chem. Mater. 23 4384-93 doi: 10.1021/cm202185y [44] Sun G, Sui T, Song B, Zheng H, Lu L, Korsunsky A M 2016 Extreme Mech. Lett. 9 449-58 doi: 10.1016/j.eml.2016.03.018 [45] Sakuda A, Hayashi A, Takigawa Y, Higashi K, Tatsumisago M 2013 J. Ceram. Soc. Japan 121 946-9 doi: 10.2109/jcersj2.121.946 [46] Wang S, et al 2021 Adv. Energy Mater. 11 2101370 doi: 10.1002/aenm.202101370 [47] Ujiie S, Hayashi A, Tatsumisago M 2013 J. Solid State Electrochem. 17 675-80 doi: 10.1007/s10008-012-1900-7 [48] Ujiie S, Hayashi A, Tatsumisago M 2012 Solid State Ion. 211 42-5 doi: 10.1016/j.ssi.2012.01.017 [49] Auvergniot J, Cassel A, Ledeuil J-B, Viallet V, Seznec V, Dedryvre R 2017 Chem. Mater. 29 3883-90 doi: 10.1021/acs.chemmater.6b04990 [50] Bernhard R, Meini S, Gasteiger H A 2014 J. Electrochem. Soc. 161 A497-A505 doi: 10.1149/2.013404jes [51] Calpa M, Rosero-Navarro N C, Miura A, Jalem R, Tateyama Y, Tadanaga K 2021 Appl. Mater. Today 22 100918 doi: 10.1016/j.apmt.2020.100918 [52] Jung R, Metzger M, Maglia F, Stinner C, Gasteiger H A 2017 J. Electrochem. Soc. 164 A1361-A1377 doi: 10.1149/2.0021707jes [53] Jung R, Strobl P, Maglia F, Stinner C, Gasteiger H A 2018 J. Electrochem. Soc. 165 A2869-A2879 doi: 10.1149/2.1261811jes [54] Bartsch T, Strauss F, Hatsukade T, Schiele A, Kim A-Y, Hartmann P, Janek J, Brezesinski T 2018 ACS Energy Lett. 3 2539-43 doi: 10.1021/acsenergylett.8b01457 [55] Strauss F, Teo J H, Schiele A, Bartsch T, Hatsukade T, Hartmann P, Janek J, Brezesinski T 2020 ACS Appl. Mater. Interfaces 12 20462-8 doi: 10.1021/acsami.0c02872 [56] Wandt J, Freiberg A T S, Ogrodnik A, Gasteiger H A 2018 Mater. Today 21 825-33 doi: 10.1016/j.mattod.2018.03.037 [57] Jung R, Metzger M, Maglia F, Stinner C, Gasteiger H A 2017 J. Phys. Chem. Lett. 8 4820-5 doi: 10.1021/acs.jpclett.7b01927 [58] Mahne N, Renfrew S E, McCloskey B D, Freunberger S A 2018 Angew. Chem., Int. Ed. 57 5529-33 doi: 10.1002/anie.201802277 [59] Hatsukade T, Schiele A, Hartmann P, Brezesinski T, Janek J 2018 ACS Appl. Mater. Interfaces 10 38892-9 doi: 10.1021/acsami.8b13158 [60] Walther F, Strauss F, Wu X, Mogwitz B, Hertle J, Sann J, Rohnke M, Brezesinski T, Janek J 2021 Chem. Mater. 33 2110-25 doi: 10.1021/acs.chemmater.0c04660 [61] Auvergniot J, Cassel A, Foix D, Viallet V, Seznec V, Dedryvre R 2017 Solid State Ion. 300 78-85 doi: 10.1016/j.ssi.2016.11.029 [62] Dietrich C, Koerver R, Gaultois M W, Kieslich G, Cibin G, Janek J, Zeier W G 2018 Phys. Chem. Chem. Phys. 20 20088-95 doi: 10.1039/C8CP01968A [63] Walther F, Koerver R, Fuchs T, Ohno S, Sann J, Rohnke M, Zeier W G, Janek J 2019 Chem. Mater. 31 3745-55 doi: 10.1021/acs.chemmater.9b00770 [64] Minami K, Hayashi A, Tatsumisago M 2010 Solid State Ion. 181 1505-9 doi: 10.1016/j.ssi.2010.08.021 [65] Franke R, Chass T, Streubel P, Meisel A 1991 J. Electron Spectrosc. Relat. Phenom. 56 381-8 doi: 10.1016/0368-2048(91)85035-R [66] Cronau M, Szabo M, Knig C, Wassermann T B, Roling B 2021 ACS Energy Lett. 6 3072-7 doi: 10.1021/acsenergylett.1c01299 [67] Vizintin A, Lozinek M, Chellappan R K, Foix D, Krajnc A, Mali G, Drazic G, Genorio B, Dedryvre R, Dominko R 2015 Chem. Mater. 27 7070-81 doi: 10.1021/acs.chemmater.5b02906 -
abstract-video.mp4 mfac3568supp1.pdf