Efficient red perovskite quantum dot light-emitting diode fabricated by inkjet printing
doi: 10.1088/2752-5724/ac3568
-
Abstract: Perovskite quantum dots (PeQDs) are considered potential display materials due to their high color purity, high photoluminescence quantum yield (PLQY), low cost and easy film casting. In this work, a novel electroluminescence (EL) device consisting of the interface layer of long alkyl-based oleylammonium bromide (OAmBr), which passivates the surface defects of PeQDs and adjusts the carrier transport properties, was designed. The PLQY of the OAmBr/PeQD bilayer was significantly improved. A high-performance EL device with the structure of indium tin oxide/poly(3,4-ethylenedioxythiophene) polystyrene sulfonate/poly(bis(4-phenyl)(2,4,6-trimethylphenyl)amine)/OAmBr/PeQDs/2,2,2-(1,3,5-benzinetriyl)-tris(1-phenyl-1H benzimidazole)/LiF/Al was constructed using a spin-coating method. A peak external quantum efficiency (EQE) of 16.5% at the emission wavelength of 646 nm was obtained. Furthermore, an efficient matrix EL device was fabricated using an inkjet printing method. A high-quality PeQD matrix film was obtained by introducing small amounts of polybutene into the PeQDs to improve the printing process. The EQE reached 9.6% for the matrix device with 120 pixels per inch and the same device structure as that of the spin-coating one.
-
Key words:
- perovskite quantum dot /
- light-emitting diode /
- inkjet print
-
Figure 1. (a) Absorption and PL spectra of PeQDs deposited on a quartz plate. (b) TEM image of PeQD. Inset: size distribution of PeQDs. (c) XRD pattern of PeQDs with and without OAmBr film deposited on a glass substrate. (d) PL decay curves of PeQD film with and without OAmBr. Inset: photo of PeQD film with (right) and without OAmBr (left) under UV light.
Figure 3. (a)-(c), XPS spectra of PeQD films with and without OAmBr. (a) Br 3d spectra. (b) I 3d spectra. (c) N 1s spectra. (d) Absorption and PL spectra of PeQDs with and without OAmBr. (e) J-V curve of the hole-only device with and without OAmBr layer. (f) J-V curve of the electron-only device with and without OAmBr layer.
Figure 5. (a) Drying process of one droplet of PeQDs with and without PB in air over time. (b) J-V-L characteristic, and (c) LE-J characteristic of inkjet printing PeQD-LED with and without PB. (d) PL image of inkjet-printed matrix PeQD-LED. (e) Light-on image of inkjet-printed matrix PeQD-LED with a bias of 4 V (scale bar: 200
m). Table 1. The elemental ratios of Sr, Zn and Pb in PeQDs.
Ratio Pb Sr Zn Sr:Zn = 2:8 99.45% 0.20% 0.35% Sr:Zn = 4:6 99.10% 0.33% 0.57% Sr:Zn = 6:4 99.24% 0.30% 0.46% Sr:Zn = 8:2 98.74% 0.30% 0.96% -
[1] Chiba T, Hayashi Y, Ebe H, Hoshi K, Sato J, Sato S, Pu Y, Ohisa S, Kido J 2018 Nat. Photon. 12 681-7 doi: 10.1038/s41566-018-0260-y [2] Park M H, et al 2019 Adv. Funct. Mater. 29 1902017 doi: 10.1002/adfm.201902017 [3] Hassan Y, et al 2021 Nature 591 72-7 doi: 10.1038/s41586-021-03217-8 [4] Lin K, et al 2018 Nature 562 245-8 doi: 10.1038/s41586-018-0575-3 [5] Dong Y, et al 2020 Nat. Nanotechnol. 15 668-74 doi: 10.1038/s41565-020-0714-5 [6] Shen Y, Wu H, Li Y, Shen K, Gao X, Song F, Tang J 2021 Adv. Funct. Mater. 31 2103870 doi: 10.1002/adfm.202103870 [7] Xiang C, et al 2020 Nat. Commun. 11 1646 doi: 10.1038/s41467-020-15481-9 [8] Li D, Wang J, Li M, Xie G, Guo B, Mu L, Li H, Wang J, Yip H L, Peng J 2020 Adv. Mater. Technol. 5 2000099 doi: 10.1002/admt.202000099 [9] Li Y, et al 2021 Adv. Opt. Mater. 9 2100553 doi: 10.1002/adom.202100553 [10] Hermerschmidt F, Mathies F, Schrder V R F, Rehermann C, Morales N Z, Unger E L, List-Kratochvil E J W 2020 Mater. Horiz. 7 1773-81 doi: 10.1039/D0MH00512F [11] Zheng C, Zheng X, Feng C, Ju S, Xu Z, Ye Y, Guo T, Li F 2021 Org. Electron. 93 106168 doi: 10.1016/j.orgel.2021.106168 [12] Zhang J, Zhong Y, Chen L, Yang L 2020 Chem. Phys. Lett. 752 137572 doi: 10.1016/j.cplett.2020.137572 [13] Chen C, Xuan T, Bai W, Zhou T, Huang F, Xie A, Wang L, Xie R 2021 Nano Energy 85 106033 doi: 10.1016/j.nanoen.2021.106033 [14] Yao J, Ge J, Wang K, Zhang G, Zhu B, Chen C, Zhang Q, Luo Y, Yu S, Yao H 2019 J. Am. Chem. Soc. 141 2069-79 doi: 10.1021/jacs.8b11447 [15] Shen X, et al 2019 Nano Lett. 19 1552-9 doi: 10.1021/acs.nanolett.8b04339 [16] Shin Y S, et al 2020 ACS Appl. Mater. Interfaces 12 31582-90 doi: 10.1021/acsami.0c06213 [17] Ye J, Byranvand M M, Martinez C O, Hoye R L Z, Saliba M, Polavarapu L 2021 Angew. Chem. 133 21804-28 doi: 10.1002/ange.202102360 [18] Song J, Fang T, Li J, Xu L, Zhang F, Han B, Shan Q, Zeng H 2018 Adv. Mater. 30 1805409 doi: 10.1002/adma.201805409 [19] Chiba T, Ishikawa S, Sato J, Takahashi Y, Ebe H, Ohisa S, Kido J 2020 Adv. Opt. Mater. 8 2000289 doi: 10.1002/adom.202000289 [20] Jiang C, Zhong Z, Liu B, He Z, Zou J, Wang L, Wang J, Peng J, Cao Y 2016 ACS Appl. Mater. Inter. 8 26162-8 doi: 10.1021/acsami.6b08679 [21] Liu Y, Li F, Xu Z, Zheng C, Guo T, Xie X, Qian L, Fu D, Yan X 2017 ACS Appl. Mater. Inter. 9 25506-12 doi: 10.1021/acsami.7b05381 [22] Roh H, Ko D, Shin D Y, Chang J H, Hahm D, Bae W K, Lee C, Kim J Y, Kwak J 2021 Adv. Opt. Mater. 9 2002129 doi: 10.1002/adom.202002129 [23] Cho H, Kim Y, Wolf C, Lee H, Lee T 2018 Adv. Mater. 30 1704587 doi: 10.1002/adma.201704587 -
mfac3568supp1.pdf