Si nanoparticles seeded in carbon-coated Sn nanowires as an anode for high-energy and high-rate lithium-ion batteries
doi: 10.1088/2752-5724/ac3257
-
Abstract: High-capacity and high-rate anode materials are desperately desired for applications in the next generation lithium-ion batteries. Here, we report preparation of an anode showing a structure of Si nanoparticles wrapped inside Sn nanowires. This anode inherits the advantages of both Si and Sn, endowing lithiation/delithiation of Si nanoparticles inside the conducting networks of Sn nanowires. It demonstrates a high and reversible capacity of 1500 mAh g-1 over 300 cycles at 0.2 C and a good rate capability (0.2 C-5 C) equivalent to Sn. The excellent cycling performance is attributed to the novel structure of the anode as well as the strong mechanical strength of the nanowires which is directly confirmed by in-situ lithiation and bending experiments.
-
Key words:
- anode /
- Si /
- Sn /
- nanowire /
- electrochemical cycling
-
Figure 1. A typical SEM image of (a1) Si and (a2) SnO2 NPs and (a3), (a4) SiNPs-in-SnNWs anode. (b1), (b2) STEM-BF images of SiNPs-in-SnNWs with the green bean shaped NWs and associated EDS mapping of (b3) C, (b4) Sn, and (b5) Si. (c) Schematic showing the formation of Si NPs seeded in Sn NWs with green bean shaped NWs and Sn NWs with straight shaped NWs. (d1) and (d2) STEM-BF images of SnNWs with straight shaped NWs.
Figure 2. (a1) A low-magnification STEM-HAADF image of a part of NW of the SiNPs-in-SnNWs anode and (a2) corresponding EELS mapping of elemental carbon. (b1) and (b2) Enlarged surface regions of panel a1. (c1) and (c2) Enlarged centre regions of panel a1. FFTs corresponding to the surface (I41/amd) and center (Fd-3m) regions are inlaid in panels b2 and c2, respectively. The detailed index of FFTs is shown in supporting information figure S7.
Figure 3. Electrochemical performance of SiNPs, SnNWs, and SiNPs-in-SnNWs half-cells. Charge-discharge curves (at 0.2 C) in the 1st and 2nd cycles for (a1)-(a3) SiNPs, SnNWs, and SiNPs-in-SnNWs half-cells. Capacity retention and coulombic efficiency over 300 cycles (at 0.2 C) at room temperature for (b1)-(b3) SiNPs, SnNWs, and SiNPs-in-SnNWs half-cells, respectively. Rate capability (0.2 C-5 C) for (c1)-(c3) SiNPs, SnNWs half-cells and SiNPs-in-SnNWs, respectively.
Figure 4. The first and second dQ/dV curves for (a1) SiNPs, (a2) SnNWs and (a3) SiNPs-in-SnNWs. dQ/dV curves of the SiNP-in-SnNWs half-cell during (b1) 2nd charge and (b2) 3rd-20th charge cycles. -dQ/dV curves of the SiNP-in-SnNWs half-cell during (c1) 2nd discharge and (c2) 3rd-20th discharge cycles.
Figure 5. (a1) In-situ XRD scans (140 scans for the first discharging cycle, 112 scans for the first charging cycle and 130 scans for the second discharging cycle) collected, (a2) an isoplot converted from the collected XRD scans. Charge-discharge curves in the first-charge, first discharge and second charge cycle for the in-situ XRD experiment is also shown. The maximum peak intensity extracted from the in-situ XRD patterns for the (b1) Sn (002), (b2) Li2Sn5 (001), (b3) LiSn (010), (b4) Li22Sn5 (066) and (c) Si (111) peaks. Charge discharge curves in the first cycle are shown in (d). The dashed line across panels d indicates the start of the decrease in the Si (111) peak intensity. The unit a.u. in the panel is the abbreviation of arbitrary unit.
Figure 6. (a1) and (a2) A SEM image of the SiNPs-in-SnNWs anode after the 100th cycle. (c1)-(c3) a series of low-magnification STEM images of a continuous lithiation process of a single NW of SiNPs-in-SnNWs anode material. The total lithiation time is 15 s. (d1) and (d2) a series of low-magnification STEM images of a continuous bending and recovery process of a single NW of SiNPs-in-SnNWs anode after lithiation. The bending time is 4 s and the recovery time is 3 s. (d3) schematic shows the calculation of the bending strain.
-
[1] Tarascon J M, Armand M 2001 Issues and challenges facing rechargeable lithium batteries Nature 414 359-67 doi: 10.1038/35104644 [2] Armand M, Tarascon J M 2008 Building better batteries Nature 451 652-7 doi: 10.1038/451652a [3] Goodenough J B, Kim Y 2010 Challenges for rechargeable Li batteries Chem. Mater. 22 587-603 doi: 10.1021/cm901452z [4] Aurbach D, Markovsky B, Weissman I, Levi E, Ein-Eli Y 1999 On the correlation between surface chemistry and performance of graphite negative electrodes for Li ion batteries Electrochim. Acta 45 67-86 doi: 10.1016/S0013-4686(99)00194-2 [5] Idota Y, Kubota T, Matsufuji A, Maekawa Y, Miyasaka T 1997 Tin-based amorphous oxide: a high-capacity lithium-ion-storage material Science 276 1395-7 doi: 10.1126/science.276.5317.1395 [6] Li H, Huang X, Chen L, Zhou G, Zhang Z, Yu D, Mo Y J, Pei N 2000 The crystal structural evolution of nano-Si anode caused by lithium insertion and extraction at room temperature Solid State Ion. 135 181-91 doi: 10.1016/S0167-2738(00)00362-3 [7] Chen J, Cheng F Y 2009 Combination of lightweight elements and nanostructured materials for batteries Acc. Chem. Res. 42 713-23 doi: 10.1021/ar800229g [8] Li H, Wang Z X, Chen L Q, Huang X J 2009 Research on advanced materials for Li-ion batteries Adv. Mater. 21 4593-607 doi: 10.1002/adma.200901710 [9] Park C M, Kim J H, Kim H, Sohn H J 2010 Li-alloy based anode materials for Li secondary batteries Chem. Soc. Rev. 39 3115-41 doi: 10.1039/b919877f [10] Xu Y H, Zhu Y J, Liu Y H, Wang C S 2013 Electrochemical performance of porous carbon/tin composite anodes for sodium-ion and lithium-ion batteries Adv. Energy Mater. 3 128-33 doi: 10.1002/aenm.201200346 [11] Obrovac M N, Chevrier V L 2014 Alloy negative electrodes for Li-ion batteries Chem. Rev. 114 11444-502 doi: 10.1021/cr500207g [12] Su X, Wu Q L, Li J C, Xiao X C, Lott A, Lu W Q, Sheldon B W, Wu J 2014 Silicon-based nanomaterials for lithium-ion batteries: a review Adv. Energy Mater. 4 1300882-905 doi: 10.1002/aenm.201300882 [13] Aravindan V, Lee Y S, Madhavi S 2015 Research progress on negative electrodes for practical Li-ion batteries: beyond carbonaceous anodes Adv. Energy Mater. 5 1402225-68 doi: 10.1002/aenm.201402225 [14] Obrovac M N, Christensen L 2004 Structural changes in silicon anodes during lithium insertion/extraction Electrochem. Solid-State Lett. 7 A93-A6 doi: 10.1149/1.1652421 [15] Chan C K, Peng H, Liu G, Mcllwrath K, Zhang X F, Huggins R A, Cui Y 2008 High-performance lithium battery anodes using silicon nanowires Nat. Nanotechnol. 3 31-35 doi: 10.1038/nnano.2007.411 [16] Todd A D W, Ferguson P P, Fleischauer M D, Dahn J R 2010 Tin-based materials as negative electrodes for Li-ion batteries: combinatorial approaches and mechanical methods Int. J. Energy Res. 34 535-55 doi: 10.1002/er.1669 [17] Chen J S, Lou X W 2013 SnO2-based nanomaterials: synthesis and application in lithium-ion batteries Small 9 1877-93 doi: 10.1002/smll.201202601 [18] Li Z, Ding J, Mitlin D 2015 Tin and tin compounds for sodium ion battery anodes: phase transformations and performance Acc. Chem. Res. 48 1657-65 doi: 10.1021/acs.accounts.5b00114 [19] Liu Y C, Zhang N, Jiao L F, Chen J 2015 Tin nanodots encapsulated in porous nitrogen-doped carbon nanofibers as a free-standing anode for advanced sodium-ion batteries Adv. Mater. 27 6702 doi: 10.1002/adma.201503015 [20] Liu X H, Zhong L, Huang S, Mao S X, Zhu T, Huang J Y 2012 Size-dependent fracture of silicon nanoparticles during lithiation ACS Nano 6 1522-31 doi: 10.1021/nn204476h [21] Jo H, Kim J, Nguyen D T, Kang K K, Jeon D M, Yang A R, Song S-W 2016 Stabilizing the solid electrolyte interphase layer and cycling performance of silicon-graphite battery anode by using a binary additive of fluorinated carbonates J. Phys. Chem. C 120 22466-75 doi: 10.1021/acs.jpcc.6b07570 [22] Mao O, Dunlap R A, Dahn J R 1999 Mechanically alloyed Sn-Fe(-C) powders as anode materials for Li-ion batteries-I. The Sn2Fe-C system J. Electrochem. Soc. 146 405-13 doi: 10.1149/1.1391622 [23] Li H, Shi L H, Lu W, Huang X J, Chen L Q 2001 Studies on capacity loss and capacity fading of nanosized snsb alloy anode for Li-ion batteries J. Electrochem. Soc. 148 A915-A22 doi: 10.1149/1.1383070 [24] McDowell M T, Lee S W, Nix W D, Cui Y 2013 25th anniversary article: understanding the lithiation of silicon and other alloying anodes for lithium-ion batteries Adv. Mater. 25 4966-84 doi: 10.1002/adma.201301795 [25] Zhang X H, Kong D B, Li X L, Zhi L J 2019 Dimensionally designed carbon-silicon hybrids for lithium storage Adv. Funct. Mater. 29 24 doi: 10.1002/adfm.2018-6061 [26] Liu J, Yang Y, Lyu P, Nachtigall P, Xu Y 2018 Few-layer silicene nanosheets with superior lithium-storage properties Adv. Mater. 30 1800838 doi: 10.1002/adma.201800838 [27] Zhou X S, Yu L, Lou X W 2016 Nanowire-templated formation of SnO2/carbon nanotubes with enhanced lithium storage properties Nanoscale 8 8384-9 doi: 10.1039/C6NR01272H [28] Li Q Q, et al 2019 Real-time TEM study of nanopore evolution in battery materials and their suppression for enhanced cycling performance Nano Lett. 19 3074-82 doi: 10.1021/acs.nanolett.9b00491 [29] Xu H, Li S, Zhang C, Chen X L, Liu W J, Zheng Y H, Xie Y, Huang Y, Li J 2019 Roll-to-roll prelithiation of Sn foil anode suppresses gassing and enables stable full-cell cycling of lithium ion batteries Energy Environ. Sci. 12 2991-3000 doi: 10.1039/C9EE01404G [30] Wu H B, Chen J S, Lou X W, Hng H H 2011 Synthesis of SnO2 hierarchical structures assembled from nanosheets and their lithium storage properties J. Phys. Chem. C 115 24605-10 doi: 10.1021/jp208158m [31] Pollak E, Salitra G, Baranchugov V, Aurbach D 2007 In situ conductivity, impedance spectroscopy, and ex situ Raman spectra of amorphous silicon during the insertion/extraction of lithium J. Phys. Chem. C 111 11437-44 doi: 10.1021/jp0729563 [32] Ding N, Xu J, Yao Y X, Wegner G, Fang X, Chen C H, Lieberwirth I 2009 Determination of the diffusion coefficient of lithium ions in nano-Si Solid State Ion. 180 222-5 doi: 10.1016/j.ssi.2008.12.015 [33] Xue L, Xu G, Li Y, Li S, Fu K, Shi Q, Zhang X 2013 Carbon-coated Si nanoparticles dispersed in carbon nanotube networks as anode material for lithium-ion batteries ACS Appl. Mater. Interfaces 5 21 doi: 10.1021/am3027597 [34] Zhou M, Cai T, Pu F, Chen H, Wang Z, Zhang H, Guan S 2013 Graphene/carbon-coated Si nanoparticle hybrids as high-performance anode materials for Li-ion batteries ACS Appl. Mater. Interfaces 5 3449 doi: 10.1021/am400521n [35] Tamura N, Ohshita R, Fujimoto M, Fujitani S, Kamino M, Yonezu I 2002 Study on the anode behavior of Sn and Sn-Cu alloy thin-film electrodes J. Power Sources 107 48-55 doi: 10.1016/S0378-7753(01)00979-X [36] Shi J J, Wang Z G, Fu Y Q 2016 Density functional theory study of diffusion of lithium in Li-Sn alloys J. Mater. Sci. 51 3271-6 doi: 10.1007/s10853-015-9639-z [37] Heitsch A T, Akhavan V A, Korgel B A 2011 Rapid SFLS synthesis of Si nanowires using trisilane with in situ alkyl-amine passivation Chem. Mater. 23 2697-9 doi: 10.1021/cm2007704 [38] Jin Z, Ben L, Yu H, Zhao W, Huang X 2020 A facile method to synthesize 3D structured Sn anode material with excellent electrochemical performance for lithium-ion batteries Prog. Nat. Sci. 30 456-60 doi: 10.1016/j.pnsc.2020.06.007 [39] Hu J T, Odom T W, Lieber C M 1999 Chemistry and physics in one dimension: synthesis and properties of nanowires and nanotubes Acc. Chem. Res. 32 435-45 doi: 10.1021/ar9700365 [40] Wang H Y, Huang H Q, Chen L, Wang C G, Yan B, Yu Y T, Yang Y, Yang G 2014 Preparation of Si/Sn-based nanoparticles composited with carbon fibers and improved electrochemical performance as anode materials ACS Sustain. Chem. Eng. 2 2310-7 doi: 10.1021/sc500290x [41] Wang F, Wu L, Key B, Yang X-Q, Grey C P, Zhu Y, Graetz J 2013 Electrochemical reaction of lithium with nanostructured silicon anodes: a study by in-situ synchrotron x-ray diffraction and electron energy-loss spectroscopy Adv. Energy Mater. 3 1324-31 doi: 10.1002/aenm.201300394 [42] Im H S, Cho Y J, Lim Y R, Jung C S, Jang D M, Park J, Shojaei F, Kang H S 2013 Phase evolution of tin nanocrystals in lithium ion batteries ACS Nano 7 11103-11 doi: 10.1021/nn404837d [43] Zhou G W, Zhang Z, Bai Z G, Feng S Q, Yu D P 1998 Controlled Li doping of Si nanowires by electrochemical insertion method Appl. Phys. Lett. 73 677 doi: 10.1063/1.121945 [44] Jin Y, Tan Y, Hu X, Zhu B, Zheng Q, Zhang Z, Zhu G, Yu Q, Jin Z, Zhu J 2017 Scalable production of the silicon-tin Yin-Yang hybrid structure with graphene coating for high performance lithium-ion battery anodes ACS Appl. Mater. Interfaces 9 15388-93 doi: 10.1021/acsami.7b00366 [45] Rhodes K J, Meisner R, Kirkham M, Dudney N, Daniel C 2012 In situ XRD of thin film tin electrodes for lithium ion batteries J. Electrochem. Soc. 159 A294-A9 doi: 10.1149/2.077203jes [46] Yang X-Q, McBreen J, Yoon W-S, Yoshio M, Wang H, Fukuda K, Umeno T 2002 Structural studies of the new carbon-coated silicon anode materials using synchrotron-based in situ XRD Electrochem. Commun. 4 893-7 doi: 10.1016/S1388-2481(02)00483-6 [47] Luo B, Wang B, Liang M H, Ning J, Li X L, Zhi L J 2012 Reduced graphene oxide-mediated growth of uniform tin-core/carbon-sheath coaxial nanocables with enhanced lithium ion storage properties Adv. Mater. 24 1405-9 doi: 10.1002/adma.201104362 [48] Zheng K, Han X D, Wang L H, Zhang Y F, Yue Y H, Qin Y, Zhang X, Zhang Z 2009 Atomic mechanisms governing the elastic limit and the incipient plasticity of bending Si nanowires Nano Lett. 9 2471-6 doi: 10.1021/nl9012425 -
mfac3257supp4.zip mfac3257supp1.pdf mfac3257supp3.zip