Citation: | Martine Jacob, Kerstin Wissel, Oliver Clemens. Recycling of solid-state batterieschallenge and opportunity for a circular economy?[J]. Materials Futures, 2024, 3(1): 012101. doi: 10.1088/2752-5724/acfb28 |
[1] |
Janek J, Zeier W G 2016 A solid future for battery development Nat. Energy 1 16141 doi: 10.1038/nenergy.2016.141
|
[2] |
Lotsch B V, Maier J 2017 Relevance of solid electrolytes for lithium-based batteries: a realistic view J. Electroceramics 38 128-41 doi: 10.1007/s10832-017-0091-0
|
[3] |
Kuhn A, Gerbig O, Zhu C, Falkenberg F, Maier J, Lotsch B V 2014 A new ultrafast superionic Li-conductor: ion dynamics in Li11Si2PS12 and comparison with other tetragonal LGPS-type electrolytes Phys. Chem. Chem. Phys. 16 14669-74 doi: 10.1039/C4CP02046D
|
[4] |
Thangadurai V, Kaack H, Weppner W J 2003 Novel fast lithium ion conduction in garnet-type Li5La3M2O12 (M= Nb, Ta) J. Am. Ceram. Soc. 86 437-40 doi: 10.1111/j.1151-2916.2003.tb03318.x
|
[5] |
Zhu J, et al 2021 End-of-life or second-life options for retired electric vehicle batteries Cell Rep. Phys. Sci. 2 100537 doi: 10.1016/j.xcrp.2021.100537
|
[6] |
Shahjalal M, Roy P K, Shams T, Fly A, Chowdhury J I, Ahmed M R, Liu K 2022 A review on second-life of Li-ion batteries: prospects, challenges, and issues Energy 241 122881 doi: 10.1016/j.energy.2021.122881
|
[7] |
He Y Q, Yuan X, Zhang G W, Wang H F, Zhang T, Xie W N, Li L P 2021 A critical review of current technologies for the liberation of electrode materials from foils in the recycling process of spent lithium-ion batteries Sci. Total Environ. 766 022025 doi: 10.1016/j.scitotenv.2020.142382
|
[8] |
Velzquez-Martnez O, Valio J, Santasalo-Aarnio A, Reuter M, Serna-Guerrero R 2019 A critical review of lithium-ion battery recycling processes from a circular economy perspective Batteries 5 68 doi: 10.3390/batteries5040068
|
[9] |
Arshad F, Li L, Amin K, Fan E, Manurkar N, Ahmad A, Yang J, Wu F, Chen R 2020 A comprehensive review of the advancement in recycling the anode and electrolyte from spent lithium ion batteries ACS Sustain. Chem. Eng. 8 13527-54 doi: 10.1021/acssuschemeng.0c04940
|
[10] |
Chen Y, Dou A, Zhang Y 2021 A review of recycling status of decommissioned lithium batteries Front. Mater. 8 634667 doi: 10.3389/fmats.2021.634667
|
[11] |
Vanderburgt S, Santos R M, Chiang Y W 2023 Is it worthwhile to recover lithium-ion battery electrolyte during lithium-ion battery recycling? Resour. Conserv. Recycl. 189 106733 doi: 10.1016/j.resconrec.2022.106733
|
[12] |
Windisch-Kern S, et al 2022 Recycling chains for lithium-ion batteries: a critical examination of current challenges, opportunities and process dependencies Waste Manage. 138 125-39 doi: 10.1016/j.wasman.2021.11.038
|
[13] |
Schwich L, Kupers M, Finsterbusch M, Schreiber A, Fattakhova-Rohlfing D, Guillon O, Friedrich B 2020 Recycling strategies for ceramic all-solid-state batteries-part I: study on possible treatments in contrast to Li-ion battery recycling Metals 10 1523 doi: 10.3390/met10111523
|
[14] |
Tan D H, Banerjee A, Chen Z, Meng Y S 2020 From nanoscale interface characterization to sustainable energy storage using all-solid-state batteries Nat. Nanotechnol. 15 170-80 doi: 10.1038/s41565-020-0657-x
|
[15] |
Tan D H, Xu P, Yang H, M-c K, Nguyen H, Wu E A, Doux J-M, Banerjee A, Meng Y S, Chen Z 2020 Sustainable design of fully recyclable all solid-state batteries MRS Energy Sustain. 7 E23 doi: 10.1557/mre.2020.25
|
[16] |
Huang Y X, Qin Z W, Shan C, Xie Y M, Meng X C, Qian D L, He G, Mao D X, Wan L 2023 Green recycling of short-circuited garnet-type electrolyte for high-performance solid-state lithium batteries J. Energy Chem. 80 492-500 doi: 10.1016/j.jechem.2023.01.057
|
[17] |
Schneider K, Kiyek V, Finsterbusch M, Yagmurlu B, Goldmann D 2023 Acid leaching of Al-and Ta-substituted Li7La3Zr2O12 (LLZO) solid electrolyte Metals 13 834 doi: 10.3390/met13050834
|
[18] |
Chen S J, Hu X C, Nie L, Yu Y, Liu W 2023 Recycling of garnet solid electrolytes with lithium-dendrite penetration by thermal healing Sci. China Mater. 66 2192-8 doi: 10.1007/s40843-022-2371-9
|
[19] |
Kononova N, Blmeke S, Cerdas F, Zellmer S, Herrmann C 2023 Identification of target materials for recycling of solid-state batteries from environmental and economic perspective using information theory entropy Proc. CIRP 116 185-90 doi: 10.1016/j.procir.2023.02.032
|
[20] |
Abraham M 2015 Prospects and limits of energy storage in batteries J. Phys. Chem. Lett. 6 830-44 doi: 10.1021/jz5026273
|
[21] |
Pitek J, Afyon S, Budnyak T M, Budnyk S, Sipponen M H, Slabon A 2021 Sustainable Li-ion batteries: chemistry and recycling Adv. Energy Mater. 11 2003456 doi: 10.1002/aenm.202003456
|
[22] |
Chen M Y, Ma X T, Chen B, Arsenault R, Karlson P, Simon N, Wang Y 2019 Recycling end-of-life electric vehicle lithium-ion batteries Joule 3 2622-46 doi: 10.1016/j.joule.2019.09.014
|
[23] |
Bai Y C, Muralidharan N, Sun Y-K, Passerini S, Whittingham M S, Belharouak I 2020 Energy and environmental aspects in recycling lithium-ion batteries: concept of battery identity global passport Mater. Today 41 304-15 doi: 10.1016/j.mattod.2020.09.001
|
[24] |
Yang J, Fan E, Lin J, Arshad F, Zhang X, Wang H, Wu F, Chen R, Li L 2021 Recovery and reuse of anode graphite from spent lithium-ion batteries via citric acid leaching ACS Appl. Energy Mater. 4 6261-8 doi: 10.1021/acsaem.1c01029
|
[25] |
Neumann J, Petranikova M, Meeus M, Gamarra J D, Younesi R, Winter M, Nowak S 2022 Recycling of lithium-ion batteries-current state of the art, circular economy, and next generation recycling Adv. Energy Mater. 12 2102917 doi: 10.1002/aenm.202102917
|
[26] |
Yu D, Huang Z, Makuza B, Guo X, Tian Q 2021 Pretreatment options for the recycling of spent lithium-ion batteries: a comprehensive review Miner. Eng. 173 107218 doi: 10.1016/j.mineng.2021.107218
|
[27] |
Zhang X, Li L, Fan E, Xue Q, Bian Y, Wu F, Chen R 2018 Toward sustainable and systematic recycling of spent rechargeable batteries Chem. Soc. Rev. 47 7239-302 doi: 10.1039/c8cs00297e
|
[28] |
Dunn J B, Gaines L, Sullivan J, Wang M Q 2012 Impact of recycling on cradle-to-gate energy consumption and greenhouse gas emissions of automotive lithium-ion batteries Environ. Sci. Technol. 46 12704-10 doi: 10.1021/es302420z
|
[29] |
Li J, Wang G, Xu Z 2016 Environmentally-friendly oxygen-free roasting/wet magnetic separation technology for in situ recycling cobalt, lithium carbonate and graphite from spent LiCoO2/graphite lithium batteries J. Hazard. Mater. 302 97-104 doi: 10.1016/j.jhazmat.2015.09.050
|
[30] |
Xiao J, Li J, Xu Z 2017 Recycling metals from lithium ion battery by mechanical separation and vacuum metallurgy J. Hazard. Mater. 338 124-31 doi: 10.1016/j.jhazmat.2017.05.024
|
[31] |
Wang D H, Wen H, Chen H J, Yang Y J, Liang H Y 2016 Chemical evolution of LiCoO2 and NaHSO4 center dot H2O mixtures with different mixing ratios during roasting process Chem. Res. Chin. Univ. 32 674-7 doi: 10.1007/s40242-016-5490-2
|
[32] |
Fan E, Li L, Wang Z, Lin J, Huang Y, Yao Y, Chen R, Wu F 2020 Sustainable recycling technology for Li-ion batteries and beyond: challenges and future prospects Chem. Rev. 120 7020-63 doi: 10.1021/acs.chemrev.9b00535
|
[33] |
Barik S P, Prabaharan G, Kumar L 2017 Leaching and separation of Co and Mn from electrode materials of spent lithium-ion batteries using hydrochloric acid: laboratory and pilot scale study J. Clean. Prod. 147 37-43 doi: 10.1016/j.jclepro.2017.01.095
|
[34] |
Wang R-C, Lin Y-C, Wu S-H 2009 A novel recovery process of metal values from the cathode active materials of the lithium-ion secondary batteries Hydrometallurgy 99 194-201 doi: 10.1016/j.hydromet.2009.08.005
|
[35] |
Zhang P W, Yokoyama T, Itabashi O, Suzuki T M, Inoue K 1998 Hydrometallurgical process for recovery of metal values from spent lithium-ion secondary batteries Hydrometallurgy 47 259-71 doi: 10.1016/S0304-386X(97)00050-9
|
[36] |
Tang W J, Chen X P, Zhou T, Duan H, Chen Y B, Wang J 2014 Recovery of Ti and Li from spent lithium titanate cathodes by a hydrometallurgical process Hydrometallurgy 147 210-6 doi: 10.1016/j.hydromet.2014.05.013
|
[37] |
Nan J M, Han D M, Zuo X X 2005 Recovery of metal values from spent lithium-ion batteries with chemical deposition and solvent extraction J. Power Sources 152 278-84 doi: 10.1016/j.jpowsour.2005.03.134
|
[38] |
Fan X P, Song C H, Lu X F, Shi Y, Yang S L, Zheng F H, Huang Y G, Liu K, Wang H Q, Li Q Y 2021 Separation and recovery of valuable metals from spent lithium-ion batteries via concentrated sulfuric acid leaching and regeneration of LiNi1/3Co1/3Mn1/3O2 J. Alloys Compd. 863 158775 doi: 10.1016/j.jallcom.2021.158775
|
[39] |
Meshram P, Pandey B D, Mankhand T R 2015 Hydrometallurgical processing of spent lithium ion batteries (LIBs) in the presence of a reducing agent with emphasis on kinetics of leaching Chem. Eng. J. 281 418-27 doi: 10.1016/j.cej.2015.06.071
|
[40] |
Li H, Xing S Z, Liu Y, Li F J, Guo H, Kuang G 2017 Recovery of lithium, iron, and phosphorus from spent LiFePO4 batteries using stoichiometric sulfuric acid leaching system ACS Sustain. Chem. Eng. 5 8017-24 doi: 10.1021/acssuschemeng.7b01594
|
[41] |
Lee C K, Rhee K-I 2002 Preparation of LiCoO2 from spent lithium-ion batteries J. Power Sources 109 17-21 doi: 10.1016/S0378-7753(02)00037-X
|
[42] |
Lee C K, Rhee K-I 2003 Reductive leaching of cathodic active materials from lithium ion battery wastes Hydrometallurgy 68 5-10 doi: 10.1016/S0304-386X(02)00167-6
|
[43] |
Pinna E G, Ruiz M C, Ojeda M W, Rodriguez M H 2017 Cathodes of spent Li-ion batteries: dissolution with phosphoric acid and recovery of lithium and cobalt from leach liquors Hydrometallurgy 167 66-71 doi: 10.1016/j.hydromet.2016.10.024
|
[44] |
Chen X, Ma H, Luo C, Zhou T 2017 Recovery of valuable metals from waste cathode materials of spent lithium-ion batteries using mild phosphoric acid J. Hazard. Mater. 326 77-86 doi: 10.1016/j.jhazmat.2016.12.021
|
[45] |
Dong X Y, Huang X R, Tang R, Min Y L, Xu Q J, Hu Z H, Shi P H 2023 Efficient photo-oxidation leaching of Ni and Co in a spent lithium-ion battery cathode by homogeneous UV/H2O2 ACS Sustain. Chem. Eng. 11 9330-6 doi: 10.1021/acssuschemeng.3c00390
|
[46] |
Qi Y P, Meng F S, Yi X X, Shu J C, Chen M J, Sun Z, Sun S H, Xiu F-R 2020 A novel and efficient ammonia leaching method for recycling waste lithium ion batteries J. Clean. Prod. 251 119665 doi: 10.1016/j.jclepro.2019.119665
|
[47] |
Li D M, Zhang B, Ou X, Zhang J F, Meng K, Ji G J, Li P F, Xu J H 2021 Ammonia leaching mechanism and kinetics of LiCoO2 material from spent lithium-ion batteries Chin. Chem. Lett. 32 2333-7 doi: 10.1016/j.cclet.2020.11.074
|
[48] |
Ku H, Jung Y, Jo M, Park S, Kim S, Yang D, Rhee K, An E-M, Sohn J, Kwon K 2016 Recycling of spent lithium-ion battery cathode materials by ammoniacal leaching J. Hazard. Mater. 313 138-46 doi: 10.1016/j.jhazmat.2016.03.062
|
[49] |
Almeida J R, Moura M N, Barrada R V, Barbieri E M S, Carneiro M, Ferreira S A D, Lelis M F F, de Freitas M, Brandao G P 2019 Composition analysis of the cathode active material of spent Li-ion batteries leached in citric acid solution: a study to monitor and assist recycling processes Sci. Total Environ. 685 589-95 doi: 10.1016/j.scitotenv.2019.05.243
|
[50] |
Yu M, Zhang Z H, Xue F, Yang B, Guo G H, Qiu J H 2019 A more simple and efficient process for recovery of cobalt and lithium from spent lithium-ion batteries with citric acid Sep. Purif. Technol. 215 398-402 doi: 10.1016/j.seppur.2019.01.027
|
[51] |
Li L, Ge J, Wu F, Chen R J, Chen S, Wu B R 2010 Recovery of cobalt and lithium from spent lithium ion batteries using organic citric acid as leachant J. Hazard. Mater. 176 288-93 doi: 10.1016/j.jhazmat.2009.11.026
|
[52] |
Setiawan H, Petrus H T B M, Perdana I 2019 Reaction kinetics modeling for lithium and cobalt recovery from spent lithium-ion batteries using acetic acid Int. J. Miner. Metall. Mater. 26 98-107 doi: 10.1007/s12613-019-1713-0
|
[53] |
Zhang Z M, He W Z, Li G M, Xia J, Hu H K, Huang J W 2014 Ultrasound-assisted hydrothermal renovation of LiCoO2 from the cathode of spent lithium-ion batteries Int. J. Electrochem. Sci. 9 3691-700 doi: 10.1016/S1452-3981(23)08042-2
|
[54] |
Ganter M J, Landi B J, Babbitt C W, Anctil A, Gaustad G 2014 Cathode refunctionalization as a lithium ion battery recycling alternative J. Power Sources 256 274-80 doi: 10.1016/j.jpowsour.2014.01.078
|
[55] |
Ciez R E, Whitacre J F 2019 Examining different recycling processes for lithium-ion batteries Nat. Sustain. 2 148-56 doi: 10.1038/s41893-019-0222-5
|
[56] |
Zhang Z Z, et al 2018 New horizons for inorganic solid state ion conductors Energy Environ. Sci. 11 1945-76 doi: 10.1039/C8EE01053F
|
[57] |
Zhou D, Shanmukaraj D, Tkacheva A, Armand M, Wang G 2019 Polymer electrolytes for lithium-based batteries: advances and prospects Chemistry 5 2326-52 doi: 10.1016/j.chempr.2019.05.009
|
[58] |
Gao Z, Sun H, Fu L, Ye F, Zhang Y, Luo W, Huang Y 2018 Promises, challenges, and recent progress of inorganic solid-state electrolytes for all-solid-state lithium batteries Adv. Mater. 30 e1705702 doi: 10.1002/adma.201705702
|
[59] |
Zeier W G 2014 Structural limitations for optimizing garnet-type solid electrolytes: a perspective Dalton Trans. 43 16133-8 doi: 10.1039/C4DT02162B
|
[60] |
Bates J, Dudney N J, Gruzalski G R, Zuhr R A, Choudhury A, Luck C F, Robertson J D 1992 Electrical properties of amorphous lithium electrolyte thin films Solid State Ionics 53-56 647-54 doi: 10.1016/0167-2738(92)90442-R
|
[61] |
Kwon W J, Kim H, Jung K-N, Cho W, Kim S H, Lee J-W, Park M-S 2017 Enhanced Li+ conduction in perovskite Li3xLa2/3-x1/3-2xTiO3 solid-electrolytes via microstructural engineering J. Mater. Chem. A 5 6257-62 doi: 10.1039/C7TA00196G
|
[62] |
DeWees R, Wang H 2019 Synthesis and properties of NaSICON-type LATP and LAGP solid electrolytes ChemSusChem 12 3713-25 doi: 10.1002/cssc.201900725
|
[63] |
Howard M A, Clemens O, Knight K S, Anderson P A, Hafiz S, Panchmatia P M, Slater P R 2013 Synthesis, conductivity and structural aspects of Nd3Zr2Li7-3xAlxO12 J. Mater. Chem. A 1 14013-22 doi: 10.1039/c3ta13252h
|
[64] |
Waetzig K, Rost A, Heubner C, Coeler M, Nikolowski K, Wolter M, Schilm J 2020 Synthesis and sintering of Li1.3Al0.3Ti1.7(PO43 (LATP) electrolyte for ceramics with improved Li+ conductivity J. Alloys Compd. 818 153237 doi: 10.1016/j.jallcom.2019.153237
|
[65] |
Djenadic R, Botros M, Benel C, Clemens O, Indris S, Choudhary A, Bergfeldt T, Hahn H 2014 Nebulized spray pyrolysis of Al-doped Li7La3Zr2O12 solid electrolyte for battery applications Solid State Ionics 263 49-56 doi: 10.1016/j.ssi.2014.05.007
|
[66] |
Botros M, Djenadic R, Clemens O, Mller M, Hahn H 2016 Field assisted sintering of fine-grained Li7-3xLa3Zr2AlxO12 solid electrolyte and the influence of the microstructure on the electrochemical performance J. Power Sources 309 108-15 doi: 10.1016/j.jpowsour.2016.01.086
|
[67] |
Lobe S, Bauer A, Sebold D, Wettengl N, Fattakhova-Rohlfing D, Uhlenbruck S 2022 Sintering of Li-garnets: impact of Al-incorporation and powder-bed composition on microstructure and ionic conductivity Open Ceram. 10 100268 doi: 10.1016/j.oceram.2022.100268
|
[68] |
Koerver R, Zhang W, de Biasi L, Schweidler S, Kondrakov A O, Kolling S, Brezesinski T, Hartmann P, Zeier W G, Janek J 2018 Chemo-mechanical expansion of lithium electrode materialson the route to mechanically optimized all-solid-state batteries Energy Environ. Sci. 11 2142-58 doi: 10.1039/C8EE00907D
|
[69] |
Koerver R, Aygn I, Leichtwei T, Dietrich C, Zhang W, Binder J O, Hartmann P, Zeier W G, Janek J 2017 Capacity fade in solid-state batteries: interphase formation and chemomechanical processes in nickel-rich layered oxide cathodes and lithium thiophosphate solid electrolytes Chem. Mater. 29 5574-82 doi: 10.1021/acs.chemmater.7b00931
|
[70] |
Chen L, Li Y, Li S-P, Fan L-Z, Nan C-W, Goodenough J B 2018 PEO/garnet composite electrolytes for solid-state lithium batteries: from ceramic-in-polymer to polymer-in-ceramic Nano Energy 46 176-84 doi: 10.1016/j.nanoen.2017.12.037
|
[71] |
Fingerle M, Loho C, Ferber T, Hahn H, Hausbrand R 2017 Evidence of the chemical stability of the garnet-type solid electrolyte Li5La3Ta2O12 towards lithium by a surface science approach J. Power Sources 366 72-79 doi: 10.1016/j.jpowsour.2017.08.109
|
[72] |
Liu Z, Fu W, Payzant E A, Yu X, Wu Z, Dudney N J, Kiggans J, Hong K, Rondinone A J, Liang C 2013 Anomalous high ionic conductivity of nanoporous beta-Li3PS4 J. Am. Chem. Soc. 135 975-8 doi: 10.1021/ja3110895
|
[73] |
Deiseroth H-J, Kong S-T, Eckert H, Vannahme J, Reiner C, Zaiss T, Schlosser M 2008 Li6PS5X: a class of crystalline Li-rich solids with an unusually high Li+ mobility Angew. Chem., Int. Ed. 47 755-8 doi: 10.1002/anie.200703900
|
[74] |
Kamaya N, et al 2011 A lithium superionic conductor Nat. Mater. 10 682-6 doi: 10.1038/nmat3066
|
[75] |
Wingender J, Redaktion R, Hartwig A 2013 Phosphor RÖMPP. Thieme Gruppe(available at: https://roempp.thieme.de/lexicon/RD-16-01961)(Accessed 16 October 2023)
|
[76] |
Yamamoto K, et al 2021 High ionic conductivity of liquid-phase-synthesized Li3PS4 solid electrolyte, comparable to that obtained via ball milling ACS Appl. Energy Mater. 4 2275-81 doi: 10.1021/acsaem.0c02771
|
[77] |
Li X, Liang J, Yang X, Adair K R, Wang C, Zhao F, Sun X 2020 Progress and perspectives on halide lithium conductors for all-solid-state lithium batteries Energy Environ. Sci. 13 1429-61 doi: 10.1039/C9EE03828K
|
[78] |
Braga M H, Ferreira J A, Stockhausen V, Oliveira J E, El-Azab A 2014 Novel Li3ClO based glasses with superionic properties for lithium batteries J. Mater. Chem. A 2 5470-80 doi: 10.1039/C3TA15087A
|
[79] |
Kwak H, et al 2021 New cost-effective halide solid electrolytes for all-solid-state batteries: mechanochemically prepared Fe3+-substituted Li2ZrCl6 Adv. Energy Mater. 11 2003190 doi: 10.1002/aenm.202003190
|
[80] |
Li X, et al 2019 Air-stable Li3InCl6 electrolyte with high voltage compatibility for all-solid-state batteries Energy Environ. Sci. 12 2665-71 doi: 10.1039/C9EE02311A
|
[81] |
Heenen H H, Voss J, Scheurer C, Reuter K, Luntz A C 2019 Multi-ion conduction in Li3OCl glass electrolytes J. Phys. Chem. Lett. 10 2264-9 doi: 10.1021/acs.jpclett.9b00500
|
[82] |
Zhao Y, Daemen L L 2012 Superionic conductivity in lithium-rich anti-perovskites J. Am. Chem. Soc. 134 15042-7 doi: 10.1021/ja305709z
|
[83] |
Li X, et al 2019 Water-mediated synthesis of a superionic halide solid electrolyte Angew. Chem. 131 16579-84 doi: 10.1002/ange.201909805
|
[84] |
Wang C, et al 2021 A universal wet-chemistry synthesis of solid-state halide electrolytes for all-solid-state lithium-metal batteries Sci. Adv. 7 eabh1896 doi: 10.1126/sciadv.abh1896
|
[85] |
Arya A, Sharma A L 2020 A glimpse on all-solid-state Li-ion battery (ASSLIB) performance based on novel solid polymer electrolytes: a topical review J. Mater. Sci. 55 6242-304 doi: 10.1007/s10853-020-04434-8
|
[86] |
Zhao Y, Wang L, Zhou Y, Liang Z, Tavajohi N, Li B, Li T 2021 Solid polymer electrolytes with high conductivity and transference number of Li ions for Li-based rechargeable batteries Adv. Sci. 8 2003675 doi: 10.1002/advs.202003675
|
[87] |
Sashmitha K, Rani M U 2023 A comprehensive review of polymer electrolyte for lithium-ion battery Polym. Bull. 80 89-135 doi: 10.1007/s00289-021-04008-x
|
[88] |
Ravve A 2012 Principles of Polymer ChemistrySpringer doi: 10.1002/pola.25955
|
[89] |
Peacock A J, Calhoun A 2012 Polymer Chemistry: Properties and ApplicationCarl Hanser Verlag GmbH & Company KG
|
[90] |
Ye F, Liao K, Ran R, Shao Z 2020 Recent advances in filler engineering of polymer electrolytes for solid-state Li-ion batteries: a review Energy Fuels 34 9189-207 doi: 10.1021/acs.energyfuels.0c02111
|
[91] |
Waidha A I, Ferber T, Donzelli M, Hosseinpourkahvaz N, Vanita V, Dirnberger K, Ludwigs S, Hausbrand R, Jaegermann W, Clemens O 2021 Compositional dependence of Li-ion conductivity in garnet-rich composite electrolytes for all-solid-state lithium-ion batteries-toward understanding the drawbacks of ceramic-rich composites ACS Appl. Mater. Interfaces 13 31111-28 doi: 10.1021/acsami.1c05846
|
[92] |
Hees T, Zhong F, Sturzel M, Mulhaupt R 2019 Tailoring hydrocarbon polymers and all-hydrocarbon composites for circular economy Macromol. Rapid Commun. 40 e1800608 doi: 10.1002/marc.201800608
|
[93] |
Doose S, Mayer J K, Michalowski P, Kwade A 2021 Challenges in ecofriendly battery recycling and closed material cycles: a perspective on future lithium battery generations Metals 11 291 doi: 10.3390/met11020291
|
[94] |
Miara L, Windmuller A, Tsai C-L, Richards W D, Ma Q, Uhlenbruck S, Guillon O, Ceder G 2016 About the compatibility between high voltage spinel cathode materials and solid oxide electrolytes as a function of temperature ACS Appl. Mater. Interfaces 8 26842-50 doi: 10.1021/acsami.6b09059
|
[95] |
Gellert M, Dashjav E, Grner D, Ma Q, Tietz F 2017 Compatibility study of oxide and olivine cathode materials with lithium aluminum titanium phosphate Ionics 24 1001-6 doi: 10.1007/s11581-017-2276-6
|
[96] |
Rumpel M, Nagler F, Appold L, Stracke W, Flegler A, Clemens O, Sextl G 2022 Thermal stabilities of Mn-based active materials in combination with the ceramic electrolyte LATP for ASSB bulk cathodes Mater. Adv. 3 4015-25 doi: 10.1039/D2MA00158F
|
[97] |
Wiberg N 2008 Lehrbuch der Anorganischen Chemie102 ednDe Gruyter doi: 10.1515/9783110177701
|
[98] |
Redaktion R 2002 Zirconium RÖMPP. Thieme Gruppe(available at: https://roempp.thieme.de/lexicon/RD-26-00467)(Accessed 16 October 2023)
|
[99] |
Schirmer T, Qiu H, Goldmann D, Stallmeister C, Friedrich B 2022 Influence of P and Ti on phase formation at solidification of synthetic slag containing Li, Zr, La, and Ta Minerals 12 310 doi: 10.3390/min12030310
|
[100] |
Geeson M B, Cummins C C 2020 Let’s make white phosphorus obsolete ACS Central Sci. 6 848-60 doi: 10.1021/acscentsci.0c00332
|
[101] |
Heitmann A, Reher P 1974 Recycling-Prozesse fr Schwefel-Verbindungen Chem. Ing. Tech. 46 589-94 doi: 10.1002/cite.330461403
|
[102] |
Blengini G A, et alEuropean Commission 2020 Study on the EU’s list of critical raw materialsfinal report (Publications Office of the European Union)10.2873/11619
|
[103] |
Oelkers B 2002 Zirconiumchloride RÖMPP. Thieme Gruppe(available at: https://roempp.thieme.de/lexicon/RD-26-00469)(Accessed 16 October 2023)
|
[104] |
Redaktion R 2002 Yttrium-Verbindungen RÖMPP. Thieme Gruppe(available at: https://roempp.thieme.de/lexicon/RD-25-00067)(Accessed 16 October 2023)
|
[105] |
Vohldal J 2021 Polymer degradation: a short review Chem. Teach. Int. 3 213-20 doi: 10.1515/cti-2020-0015
|
[106] |
Nisar A, Khan S, Hameed M, Nisar A, Ahmad H, Mehmood S A 2021 Bio-conversion of CO2 into biofuels and other value-added chemicals via metabolic engineering Microbiol. Res. 251 126813 doi: 10.1016/j.micres.2021.126813
|
[107] |
Saleh H M, Hassan A I 2023 Green conversion of carbon dioxide and sustainable fuel synthesis Fire 6 128 doi: 10.3390/fire6030128
|
[108] |
Ali Nowroozi M, Iqbal Waidha A, Jacob M, van Aken P A, Predel F, Ensinger W, Clemens O 2022 Towards recycling of LLZO solid electrolyte exemplarily performed on LFP/LLZO/LTO cells ChemistryOpen 11 e202100274 doi: 10.1002/open.202100274
|
[109] |
Falcn H, Goeta A E, Punte G, Carbonio R E 1997 Crystal structure refinement and stability of LaFexNi1-xO3 solid solutions J. Solid State Chem. 133 379-85 doi: 10.1006/jssc.1997.7477
|
[110] |
Rodrguez-Carvajal J, Hennion M, Moussa F, Moudden A H, Pinsard L, Revcolevschi A 1998 Neutron-diffraction study of the Jahn-Teller transition in stoichiometric LaMnO3 Phys. Rev. B 57 R3189-92 doi: 10.1103/PhysRevB.57.R3189
|
[111] |
Thornton G, Tofield B C, Hewat A W 1986 A neutron diffraction study of LaCoO3 in the temperature range 4.2 < T < 1248 K J. Solid State Chem. 61 301-7 doi: 10.1016/0022-4596(86)90035-6
|
[112] |
Bhatia H, Thieu D T, Pohl A H, Chakravadhanula V S K, Fawey M H, Kubel C, Fichtner M 2017 Conductivity optimization of tysonite-type La1-xBaxF3-x solid electrolytes for advanced fluoride ion battery ACS Appl. Mater. Interfaces 9 23707-15 doi: 10.1021/acsami.7b04936
|
[113] |
Holleman A F, Wiberg N 1995 Lehrbuch der Anorganischen Chemie101 edndeGruyter doi: 10.1002/ange.19961082135
|
[114] |
Bae H, Kim Y 2021 Technologies of lithium recycling from waste lithium ion batteries: a review Mater. Adv. 2 3234-50 doi: 10.1039/D1MA00216C
|
[115] |
Waidha A I, et al 2023 Recycling of all-solid-state li-ion batteries: a case study of the separation of individual components within a system composed of LTO, LLZTO and NMC ChemSusChem 16 e202202361 doi: 10.1002/cssc.202202361
|
[116] |
Ghidiu M, Ruhl J, Culver S P, Zeier W G 2019 Solution-based synthesis of lithium thiophosphate superionic conductors for solid-state batteries: a chemistry perspective J. Mater. Chem. A 7 17735-53 doi: 10.1039/C9TA04772G
|
[117] |
Nikodimos Y, Huang C-J, Taklu B W, Su W-N, Hwang B J 2022 Chemical stability of sulfide solid-state electrolytes: stability toward humid air and compatibility with solvents and binders Energy Environ. Sci. 15 991-1033 doi: 10.1039/D1EE03032A
|
[118] |
Prayog L D, Faisal M, Kartini E, Hoggowiranto W, Supardi S 2016 Morphology and conductivity study of solid electrolyte Li3PO4 AIP Conf. Proc. 1710 030047 doi: 10.1063/1.4941513
|
[119] |
Stffler H, et al 2019 Amorphous versus crystalline Li3PS4: local structural changes during synthesis and Li ion mobility J. Phys. Chem. C 123 10280-90 doi: 10.1021/acs.jpcc.9b01425
|
[120] |
Dietrich C, Weber D A, Culver S, Senyshyn A, Sedlmaier S J, Indris S, Janek J, Zeier W G 2017 Synthesis, structural characterization, and lithium ion conductivity of the lithium thiophosphate Li2P2S6 Inorg. Chem. 56 6681-7 doi: 10.1021/acs.inorgchem.7b00751
|
[121] |
Dietrich C, Weber D A, Sedlmaier S J, Indris S, Culver S P, Walter D, Janek J, Zeier W G 2017 Lithium ion conductivity in Li2S-P2S5 glassesbuilding units and local structure evolution during the crystallization of superionic conductors Li3PS4, Li7P3S11 and Li4P2S7 J. Mater. Chem. A 5 18111-9 doi: 10.1039/C7TA06067J
|
[122] |
Kuhn A, Duppel V, Lotsch B V 2013 Tetragonal Li10GeP2S12 and Li7GePS8exploring the Li ion dynamics in LGPS Li electrolytes Energy Environ. Sci. 6 3548-52 doi: 10.1039/c3ee41728j
|
[123] |
Calpa M, Nakajima H, Mori S, Goto Y, Mizuguchi Y, Moriyoshi C, Kuroiwa Y, Rosero-Navarro N C, Miura A, Tadanaga K 2021 Formation mechanism of -Li3PS4 through decomposition of complexes Inorg. Chem. 60 6964-70 doi: 10.1021/acs.inorgchem.1c00294
|
[124] |
Wang H, Hood Z D, Xia Y, Liang C 2016 Fabrication of ultrathin solid electrolyte membranes of -Li3PS4 nanoflakes by evaporation-induced self-assembly for all-solid-state batteries J. Mater. Chem. A 4 8091-6 doi: 10.1039/C6TA02294D
|
[125] |
Hikima K, Ogawa K, Gamo H, Matsuda A 2023 Li10GeP2S12 solid electrolytes synthesised via liquid-phase methods Chem. Commun. 59 6564-7 doi: 10.1039/D3CC01018J
|
[126] |
Yubuchi S, Teragawa S, Aso K, Tadanaga K, Hayashi A, Tatsumisago M 2015 Preparation of high lithium-ion conducting Li6PS5Cl solid electrolyte from ethanol solution for all-solid-state lithium batteries J. Power Sources 293 941-5 doi: 10.1016/j.jpowsour.2015.05.093
|
[127] |
Yubuchi S, Uematsu M, Hotehama C, Sakuda A, Hayashi A, Tatsumisago M 2019 An argyrodite sulfide-based superionic conductor synthesized by a liquid-phase technique with tetrahydrofuran and ethanol J. Mater. Chem. A 7 558-66 doi: 10.1039/C8TA09477B
|
[128] |
Teragawa S, Aso K, Tadanaga K, Hayashi A, Tatsumisago M 2013 Formation of Li2S-P2S5 solid electrolyte from N-methylformamide solution Chem. Lett. 42 1435-7 doi: 10.1246/cl.130726
|
[129] |
Teragawa S, Aso K, Tadanaga K, Hayashi A, Tatsumisago M 2014 Preparation of Li2S-P2S5 solid electrolyte from N-methylformamide solution and application for all-solid-state lithium battery J. Power Sources 248 939-42 doi: 10.1016/j.jpowsour.2013.09.117
|
[130] |
Zhou L, Park K-H, Sun X, Lalre F, Adermann T, Hartmann P, Nazar L F 2018 Solvent-engineered design of argyrodite Li6PS5X (X = Cl, Br, I) solid electrolytes with high ionic conductivity ACS Energy Lett. 4 265-70 doi: 10.1021/acsenergylett.8b01997
|
[131] |
Zhang Z, Zhang L, Liu Y, Yan X, Xu B, Wang L-M 2020 One-step solution process toward formation of Li6PS5Cl argyrodite solid electrolyte for all-solid-state lithium-ion batteries J. Alloys Compd. 812 152103 doi: 10.1016/j.jallcom.2019.152103
|
[132] |
Wissel K, et al 2023 Dissolution and recrystallization behavior of Li3PS4 in different organic solvents with a focus on N-methylformamide ACS Appl. Energy Mater. 6 7790-802 doi: 10.1021/acsaem.2c03278
|
[133] |
Ruhl J, Riegger L M, Ghidiu M, Zeier W G 2021 Impact of solvent treatment of the superionic argyrodite Li6PS5Cl on solid-state battery performance Adv. Energy Sustain. Res. 2 2000077 doi: 10.1002/aesr.202000077
|
[134] |
Yubuchi S, Uematsu M, Deguchi M, Hayashi A, Tatsumisago M 2018 Lithium-ion-conducting argyrodite-type Li6PS5X (X = Cl, Br, I) solid electrolytes prepared by a liquid-phase technique using ethanol as a solvent ACS Appl. Energy Mater. 1 3622-9 doi: 10.1021/acsaem.8b00280
|
[135] |
Azhari L, Bong S, Ma X, Wang Y 2020 Recycling for all solid-state lithium-ion batteries Matter 3 1845-61 doi: 10.1016/j.matt.2020.10.027
|
[136] |
Zhu Y, He X, Mo Y 2015 Origin of outstanding stability in the lithium solid electrolyte materials: insights from thermodynamic analyses based on first-principles calculations ACS Appl. Mater. Interfaces 7 23685-93 doi: 10.1021/acsami.5b07517
|
[137] |
Morchhale A, Tang Z, Yu C, Farahati R, Kim J-H 2023 Coating materials and processes for cathodes in sulfide-based all solid-state batteries Curr. Opin. Electrochem. 39 101251 doi: 10.1016/j.coelec.2023.101251
|
[138] |
Wissel K, Haben A, Kster K, Starke U, Kautenburger R, Ensinger W, Clemens O 2023 Recycling of -Li3PS4-based all-solid-state Li-ion batteries: Interactions of electrode materials and electrolyte in a dissolution-based separation process 10.48550/arxiv.2311.07190
|
[139] |
Heubner C, Maletti S, Auer H, Httl J, Voigt K, Lohrberg O, Nikolowski K, Partsch M, Michaelis A 2021 From lithium-metal toward anode-free solid-state batteries: current developments, issues, and challenges Adv. Funct. Mater. 31 2106608 doi: 10.1002/adfm.202106608
|
[140] |
Hood Z D, Kates C, Kirkham M, Adhikari S, Liang C, Holzwarth N A W 2016 Structural and electrolyte properties of Li4P2S6 Solid State Ionics 284 61-70 doi: 10.1016/j.ssi.2015.10.015
|
[141] |
Wolf G-U, Meisel M 1982 Beitrge zur Chemie von Phosphorverbindungen mit Adamantanstruktur. ber Darstellung und Eigenschaften von Nonathio-cyclotriphosphat Z. Anorg. Allg. Chem. 494 49-54 doi: 10.1002/zaac.19824940106
|
[142] |
Sitzmann H, Redaktion R, Schmidt A 2008 Phosphane RÖMPP. Thieme Gruppe(available at: https://roempp.thieme.de/lexicon/RD-16-01853)(Accessed 16 October 2023)
|
[143] |
Sitzmann H 2006 Chloride RÖMPP. Thieme Gruppe(available at: https://roempp.thieme.de/lexicon/RD-03-01457)(Accessed 16 October 2023)
|
[144] |
Seifert H J 2006 Ternary chlorides of the trivalent late lanthanides J. Therm. Anal. Calorim. 83 479-505 doi: 10.1007/s10973-005-7132-7
|
[145] |
Kear G, Barker B D, Walsh F C 2004 Electrochemical corrosion of unalloyed copper in chloride media--a critical review Corros. Sci. 46 109-35 doi: 10.1016/S0010-938X(02)00257-3
|
[146] |
Jacob M, Wissel K, Clemens O, et al in preparation
|
[147] |
Humani N 2021 Recycling of Li3OCl-based solid-state batteries Bachelor Thesis Institut fr Materialwissenschaft. Chemische MaterialsyntheseUniversity of Stuttgart
|
[148] |
Ensing B, Tiwari A, Tros M, Hunger J, Domingos S R, Perez C, Smits G, Bonn M, Bonn D, Woutersen S 2019 On the origin of the extremely different solubilities of polyethers in water Nat. Commun. 10 2893 doi: 10.1038/s41467-019-10783-z
|
[149] |
zdemir C, Gner A 2007 Solubility profiles of poly(ethylene glycol)/solvent systems, I: qualitative comparison of solubility parameter approaches Eur. Polym. J. 43 3068-93 doi: 10.1016/j.eurpolymj.2007.02.022
|
[150] |
Xin N, Sun Y, He M, Radke C J, Prausnitz J M 2018 Solubilities of six lithium salts in five non-aqueous solvents and in a few of their binary mixtures Fluid Phase Equilib. 461 1-7 doi: 10.1016/j.fluid.2017.12.034
|
[151] |
Roth S H 2004 Signal Transduction and the Gasotransmitters: NO, CO, and H2S in Biology and MedicineWang R 2004 Humana Press 293-313 doi: 10.1007/978-1-59259-806-9
|
[152] |
Jovell D, Pou J O, Llovell F, Gonzalez-Olmos R 2022 Life cycle assessment of the separation and recycling of fluorinated gases using ionic liquids in a circular economy framework ACS Sustain. Chem. Eng. 10 71-80 doi: 10.1021/acssuschemeng.1c04723
|
[153] |
Popp D 2022 (available at: www.europarl.europa.eu/news/en/press-room/20221205IPR60614/batteries-deal-on-new-eu-rules-for-design-production-and-waste-treatment)(Accessed 16 October 2023)
|
[154] |
Mao J, Ye C, Zhang S, Xie F, Zeng R, Davey K, Guo Z, Qiao S 2022 Toward practical lithium-ion battery recycling: adding value, tackling circularity and recycling-oriented design Energy Environ. Sci. 15 2732-52 doi: 10.1039/D2EE00162D
|
[155] |
Pozo Arcos B, Balkenende A R, Bakker C A, Sundin E 2018 Product design for a circular economy: functional recovery on focus DS 92: Proc. Design 2018 15th Int. Design Conf. 2727-3810.21278/idc.2018.0214
|