Citation: | Shafket Rasool, Jiwoo Yeop, Hye Won Cho, Woojin Lee, Jae Won Kim, Dohun Yuk, Jin Young Kim. Path to the fabrication of efficient, stable and commercially viable large-area organic solar cells[J]. Materials Futures, 2023, 2(3): 032102. doi: 10.1088/2752-5724/acd6ab |
Conflict of interest
The authors declare that the work was conducted in the absence of any commercial or financial relationships that could be construed to be a potential conflict of interest.
Author contributions
S R and J Y K conceptualized the work, wrote and edited the manuscript. All authors contributed to the literature review and discussion of the results and commented on the manuscript.
[1] |
IEA 2021 World Energy Outlook 2021ParisIEA(available at: www.iea.org/reports/world-energy-outlook-2021)
|
[2] |
Chapin D M, Fuller C S, Pearson G L 1954 A new silicon pn junction photocell for converting solar radiation into electrical power J. Appl. Phys. 25 676-7 doi: 10.1063/1.1721711
|
[3] |
Yoshikawa K, et al 2017 Silicon heterojunction solar cell with interdigitated back contacts for a photoconversion efficiency over 26% Nat. Energy 2 17032 doi: 10.1038/nenergy.2017.32
|
[4] |
Rohatgi A, Zhu K, Tong J, Kim D H, Reichmanis E, Rounsaville B, Prakash V, Ok Y-W 2020 26.7% efficient 4-terminal perovskite-silicon tandem solar cell composed of a high-performance semitransparent perovskite cell and a doped poly-Si/SiOx passivating contact silicon cell IEEE J. Photovolt. 10 417-22 doi: 10.1109/JPHOTOV.2019.2963564
|
[5] |
Tang C W 1986 Two-layer organic photovoltaic cell Appl. Phys. Lett. 48 183-5 doi: 10.1063/1.96937
|
[6] |
National Renewable Energy Laboratory Best-research-cell-efficiencies-rev211011 (available at: www.nrel.gov/pv/cell-efficiency.html)
|
[7] |
Zheng Z, Wang J, Bi P, Ren J, Wang Y, Yang Y, Liu X, Zhang S, Hou J 2021 Tandem organic solar cell with 20.2% efficiency Joule 6 171-84 doi: 10.1016/j.joule.2021.12.017
|
[8] |
He C, et al 2022 Asymmetric electron acceptor enables highly luminescent organic solar cells with certified efficiency over 18 Nat. Commun. 13 2598 doi: 10.1038/s41467-022-30225-7
|
[9] |
Zhu L, et al 2022 Single-junction organic solar cells with over 19% efficiency enabled by a refined double-fibril network morphology Nat. Mater. 21 656-63 doi: 10.1038/s41563-022-01244-y
|
[10] |
Jrgensen M, et al 2013 The state of organic solar cellsa meta analysis Sol. Energy Mater. Sol. Cells 119 84-93 doi: 10.1016/j.solmat.2013.05.034
|
[11] |
Zhao W, Li S, Yao H, Zhang S, Zhang Y, Yang B, Hou J 2017 Molecular optimization enables over 13% efficiency in organic solar cells J. Am. Chem. Soc. 139 7148-51 doi: 10.1021/jacs.7b02677
|
[12] |
Wang G, Adil M A, Zhang J, Wei Z 2018 Large-area organic solar cells: material requirements, modular designs, and printing methods Adv. Mater. 31 1805089 doi: 10.1002/adma.201805089
|
[13] |
Qin F, et al 2021 54 cm2 large-area flexible organic solar modules with efficiency above 13% Adv. Mater. Weinheim 33 2103017 doi: 10.1002/adma.202103017
|
[14] |
Kan B, et al 2015 A series of simple oligomer-like small molecules based on oligothiophenes for solution-processed solar cells with high efficiency J. Am. Chem. Soc. 137 3886-93 doi: 10.1021/jacs.5b00305
|
[15] |
Fan J, et al 2022 Highperformance organic solar modules via bilayermergedannealing assisted blade coating Adv. Mater. 34 2110569 doi: 10.1002/adma.202110569
|
[16] |
Jiang M, Bai H R, Zhi H F, Sun J-K, Wang J-L, Zhang F, An Q 2021 Two-pronged effect of warm solution and solvent-vapor annealing for efficient and stable all-small-molecule organic solar cells ACS Energy Lett. 6 2898-906 doi: 10.1021/acsenergylett.1c01289
|
[17] |
Sun K, et al 2015 A molecular nematic liquid crystalline material for high-performance organic photovoltaics Nat. Commun. 6 6013 doi: 10.1038/ncomms7013
|
[18] |
Jae K L, Wan L M, Brabec C J, Yuen J, Moon J S, Kim J Y, Lee K, Bazan G C, Heeger A J 2008 Processing additives for improved efficiency from bulk heterojunction solar cells J. Am. Chem. Soc. 130 3619-23 doi: 10.1021/ja710079w
|
[19] |
Kyaw A K K, Wang D H, Luo C, Cao Y, Nguyen T-Q, Bazan G C, Heeger A J 2014 Effects of solvent additives on morphology, charge generation, transport, and recombination in solution-processed small-molecule solar cells Adv. Energy Mater. 4 1301469 doi: 10.1002/aenm.201301469
|
[20] |
Hoang Q V, et al 2017 Effects of morphology evolution on solution-processed small molecule photovoltaics: via a solvent additive J. Mater. Chem. C 5 7837-44 doi: 10.1039/C7TC02088K
|
[21] |
Lu L, Xu T, Chen W, Landry E S, Yu L 2014 Ternary blend polymer solar cells with enhanced power conversion efficiency Nat. Photon. 8 716-22 doi: 10.1038/nphoton.2014.172
|
[22] |
Ma R, et al 2022 High-efficiency ternary organic solar cells with a good figure-of-merit enabled by two low-cost donor polymers ACS Energy Lett. 7 2547-56 doi: 10.1021/acsenergylett.2c01364
|
[23] |
Vohra V, Kawashima K, Kakara T, Koganezawa T, Osaka I, Takimiya K, Murata H 2015 Efficient inverted polymer solar cells employing favourable molecular orientation Nat. Photon. 9 403-8 doi: 10.1038/nphoton.2015.84
|
[24] |
Liu Y, Zhao J, Li Z, Mu C, Ma W, Hu H, Jiang K, Lin H, Ade H, Yan H 2014 Aggregation and morphology control enables multiple cases of high-efficiency polymer solar cells Nat. Commun. 5 5293 doi: 10.1038/ncomms6293
|
[25] |
Zhao J, Li Y, Yang G, Jiang K, Lin H, Ade H, Ma W, Yan H 2016 Efficient organic solar cells processed from hydrocarbon solvents Nat. Energy 1 15027 doi: 10.1038/nenergy.2015.27
|
[26] |
Rasool S, et al 2019 High-efficiency non-halogenated solvent processable polymer/PCBM solar cells: via fluorination-enabled optimized nanoscale morphology J. Mater. Chem. A 7 24992-5002 doi: 10.1039/C9TA08960H
|
[27] |
Guo X, et al 2013 Polymer solar cells with enhanced fill factors Nat. Photon. 7 825-33 doi: 10.1038/nphoton.2013.207
|
[28] |
Gong X, Tong M, Brunetti F G, Seo J, Sun Y, Moses D, Wudl F, Heeger A J 2011 Bulk heterojunction solar cells with large open-circuit voltage: electron transfer with small donor-acceptor energy offset Adv. Mater. 23 2272-7 doi: 10.1002/adma.201003768
|
[29] |
Proctor C M, Kuik M, Nguyen T Q 2013 Charge carrier recombination in organic solar cells Prog. Polym. Sci. 38 1941-60 doi: 10.1016/j.progpolymsci.2013.08.008
|
[30] |
Ma W, Tumbleston J R, Wang M, Gann E, Huang F, Ade H 2013 Domain purity, miscibility, and molecular orientation at donor/acceptor interfaces in high performance organic solar cells: paths to further improvement Adv. Energy Mater. 3 864-72 doi: 10.1002/aenm.201200912
|
[31] |
Tumbleston J R, Collins B A, Yang L, Stuart A C, Gann E, Ma W, You W, Ade H 2014 The influence of molecular orientation on organic bulk heterojunction solar cells Nature Photon. 8 385-91 doi: 10.1038/nphoton.2014.55
|
[32] |
Yuan J, et al 2019 Single-junction organic solar cell with over 15% efficiency using fused-ring acceptor with electron-deficient core single-junction organic solar cell with over 15% efficiency using fused-ring acceptor with electron-deficient core Joule 3 1140-51 doi: 10.1016/j.joule.2019.01.004
|
[33] |
Yu H, et al 2020 Tailoring non-fullerene acceptors using selenium-incorporated heterocycles for organic solar cells with over 16% efficiency J. Mater. Chem. A 8 23756-65 doi: 10.1039/D0TA06658C
|
[34] |
Wang H, et al 2022 Chlorination enabling a low-cost benzodithiophene-based wide-bandgap donor polymer with an efficiency of over 17% Adv. Mater. 34 2105483 doi: 10.1002/adma.202105483
|
[35] |
Liu Q, et al 2020 18% efficiency organic solar cells Sci. Bull. 65 272-5 doi: 10.1016/j.scib.2020.01.001
|
[36] |
Wang J, et al 2022 A new polymer donor enables binary all-polymer organic photovoltaic cells with 18% efficiency and excellent mechanical robustness Adv. Mater. 34 2205009 doi: 10.1002/adma.202205009
|
[37] |
Sun C, Pan F, Bin H, Zhang J, Xue L, Qiu B, Wei Z, Zhang Z-G, Li Y 2018 A low cost and high performance polymer donor material for polymer solar cells Nat. Commun. 9 743 doi: 10.1038/s41467-018-03207-x
|
[38] |
Li C, et al 2021 Non-fullerene acceptors with branched side chains and improved molecular packing to exceed 18% efficiency in organic solar cells Nat. Energy 6 605-13 doi: 10.1038/s41560-021-00820-x
|
[39] |
Abbas Z, Un S, Haris M, Song C E, Lee H K, Lee S K, Shin W S, Park T, Lee J-C 2022 Nano energy optimized vertical phase separation via systematic Y6 inner side-chain modulation for non-halogen solvent processed inverted organic solar cells Nano Energy 101 107574 doi: 10.1016/j.nanoen.2022.107574
|
[40] |
Cui Y, et al 2019 Over 16% efficiency organic photovoltaic cells enabled by a chlorinated acceptor with increased open-circuit voltages Nat. Commun. 10 2515 doi: 10.1038/s41467-019-10351-5
|
[41] |
He Q, Ufimkin P, Anis F, Hu X, Kafourou P, Rimmele M, Rapley C L, Ding B 2022 Molecular engineering of Yseries acceptors for nonfullerene organic solar cells SusMat 2 591-606 doi: 10.1002/sus2.82
|
[42] |
Chai G, et al 2021 Fine-tuning of side-chain orientations on nonfullerene acceptors enables organic solar cells with 17.7% efficiency Energy Environ. Sci. 14 3469-79 doi: 10.1039/D0EE03506H
|
[43] |
Liu G, Xia R, Huang Q, Zhang K, Hu Z, Jia T, Liu X, Yip H-L, Huang F 2021 Tandem organic solar cells with 18.7% efficiency enabled by suppressing the charge recombination in front sub-cell Adv. Funct. Mater. 31 2103283 doi: 10.1002/adfm.202103283
|
[44] |
Wang J, Zheng Z, Zu Y, Wang Y, Liu X, Zhang S, Zhang M, Hou J 2021 A tandem organic photovoltaic cell with 19.6% efficiency enabled by light distribution control Adv. Mater. 33 2102787 doi: 10.1002/adma.202102787
|
[45] |
Holliday S, et al 2016 High-efficiency and air-stable P3HT-based polymer solar cells with a new non-fullerene acceptor Nat. Commun. 7 11585 doi: 10.1038/ncomms11585
|
[46] |
Qi F, et al 2021 Over 17% efficiency binary organic solar cells with photoresponses reaching 1000 nm enabled by selenophene-fused nonfullerene acceptors ACS Energy Lett. 6 9-15 doi: 10.1021/acsenergylett.0c02230
|
[47] |
Chang Y 2021 Achieving efficient ternary organic solar cells using structurally similar non-fullerene acceptors with varying flanking side chains ACS Energy Mater. 11 2100079 doi: 10.1002/aenm.202100079
|
[48] |
Chen H, et al 2021 A guest-assisted molecular-organization approach for >17% efficiency organic solar cells using environmentally friendly solvents Nat. Energy 6 1045-53 doi: 10.1038/s41560-021-00923-5
|
[49] |
Li Y, Cai Y, Xie Y, Song J, Wu H, Tang Z, Zhang J, Huang F, Sun Y 2021 A facile strategy for third-component selection in non-fullerene acceptor-based ternary organic solar cells Energy Environ. Sci. 14 5009-16 doi: 10.1039/D1EE01864G
|
[50] |
Lin Y, et al 2022 18.9% efficient organic solar cells based on n-doped bulk-heterojunction and halogen-substituted self-assembled monolayers as hole extracting interlayers Adv. Energy Mater. 12 2202503 doi: 10.1002/aenm.202202503
|
[51] |
Wang J, et al 2022 An asymmetric wide-bandgap acceptor simultaneously enabling highly efficient single-junction and tandem organic solar cells Energy Environ. Sci. 15 1585-93 doi: 10.1039/D1EE03673D
|
[52] |
Rasool S, Van V D, Song C E, Lee H K, Lee S K, Lee J-C, Moon S-J, Shin W S 2019 Room temperature processed highly efficient large-area polymer solar cells achieved with molecular engineering of copolymers Adv. Energy Mater. 9 1900168 doi: 10.1002/aenm.201900168
|
[53] |
Zhang B, Yang F, Chen S, Chen H, Zeng G, Shen Y, Li Y, Li Y 2022 Fluid mechanics inspired sequential blade-coating for high-performance large-area organic solar modules Adv. Funct. Mater. 32 2202011 doi: 10.1002/adfm.202202011
|
[54] |
Cho Y, et al 2023 CF3-terminated side chain enables efficiencies surpassing 18.2% and 16.1% in small- and large-scale manufacturing of organic solar cells ACS Energy Lett. 8 96-106 doi: 10.1021/acsenergylett.2c02140
|
[55] |
Badgujar S, Lee G Y, Park T, Song C E, Park S, Oh S, Shin W S, Moon S-J, Lee J-C, Lee S K 2016 High-performance small molecule via tailoring intermolecular interactions and its application in large-area organic photovoltaic modules Adv. Energy Mater. 6 1600228 doi: 10.1002/aenm.201600228
|
[56] |
Yuan J, et al 2021 Patterned blade coating strategy enables the enhanced device reproducibility and optimized morphology of organic solar cells Adv. Energy Mater. 11 2100098 doi: 10.1002/aenm.202100098
|
[57] |
Dong S, Jia T, Zhang K, Jing J, Huang F 2020 Single-component non-halogen solvent-processed high-performance organic solar cell module with efficiency over 14% Joule 4 2004-16 doi: 10.1016/j.joule.2020.07.028
|
[58] |
Chaturvedi N, Gasparini N, Corzo D, Bertrandie J, Wehbe N, Troughton J, Baran D 2021 All slot-die coated non-fullerene organic solar cells with PCE 11% Adv. Funct. Mater. 31 2009996 doi: 10.1002/adfm.202009996
|
[59] |
Polymer F, Diodes L-E, Polymer C, Higuchi H, Yoshioka M, Nagatsuka T 2002 High-performance, flexible polymer light- emitting diodes fabricated by a continuous polymer coating process Adv. Mater. 14 915-8 doi: 10.1002/1521-4095(20020618)14:12<915::AID-ADMA915>3.0.CO;2-9
|
[60] |
Khim D, Han H, Baeg K J, Kim J, Kwak S-W, Kim D-Y, Noh Y-Y 2013 Simple bar-coating process for large-area, high-performance organic field-effect transistors and ambipolar complementary integrated circuits Adv. Mater. Weinheim 25 4302-8 doi: 10.1002/adma.201205330
|
[61] |
Han Y W, Lee H S, Moon D K 2021 Printable and semitransparent nonfullerene organic solar modules over 30 cm2introducing an energy-level controllable hole transport layer ACS Appl. Mater. Interfaces 13 19085-98 doi: 10.1021/acsami.1c01021
|
[62] |
Jeong J H, Jahandar M, Prasetio A, Kim J M, Kim J H, Kim S, Lim D C 2021 Multi-dimensional interfacial engineering for a practical large-area transparent flexible organic photovoltaics Chem. Eng. J. 419 129672 doi: 10.1016/j.cej.2021.129672
|
[63] |
Jahandar M, Prasetio A, Lee C, Kim H, Kim A R, Heo J, Kim Y, Kim S, Lim D C 2022 Highly efficient flexible organic photovoltaic modules for sustainable energy harvesting under low-light condition via suppressing voltage-drop by metal-mediated cross-linkable polymer interfacial layer Chem. Eng. J. 448 137555 doi: 10.1016/j.cej.2022.137555
|
[64] |
Roth B, Sndergaard R R, Krebs F C 2014 Roll-to-roll printing and coating techniques for manufacturing large-area flexible organic electronics (Elsevier Ltd)10.1016/B978-1-78242-035-4.00007-5
|
[65] |
Zhang Y, et al 2021 Graded bulk-heterojunction enables 17% binary organic solar cells via nonhalogenated open air coating Nat. Commun. 12 4815 doi: 10.1038/s41467-021-25148-8
|
[66] |
Yoon S, et al 2022 High-performance scalable organic photovoltaics with high thickness tolerance from 1 cm2 to above 50 cm2 6Joule 1-17 doi: 10.1016/j.joule.2022.07.014
|
[67] |
Liao C Y, et al 2020 Processing strategies for an organic photovoltaic module with over 10% efficiency Joule 4 189-206 doi: 10.1016/j.joule.2019.11.006
|
[68] |
Lee T, Oh S, Rasool S, Song C E, Kim D, Lee S K, Shin W S, Lim E 2020 Non-halogenated solvent-processed ternary-blend solar cells via alkyl-side-chain engineering of a non-fullerene acceptor and their application in large-area devices J. Mater. Chem. A 8 10318-30 doi: 10.1039/D0TA00947D
|
[69] |
Kim H S, Rasool S, Shin W S, Song C E, Hwang D-H 2020 Alkylated indacenodithiophene-based non-fullerene acceptors with extended -conjugation for high-performance large-area organic solar cells ACS Appl. Mater. Interfaces 12 50638-47 doi: 10.1021/acsami.0c13277
|
[70] |
Park S H, Park S, Lee S, Kim J, Ahn H, Kim B J, Chae B, Son H J 2020 Developement of highly efficient large area organic photovoltaic module: effects of nonfullerene acceptor Nano Energy 77 105147 doi: 10.1016/j.nanoen.2020.105147
|
[71] |
Zhang L, Zhao H, Lin B, Yuan J, Xu X, Wu J, Zhou K, Guo X, Zhang M, Ma W 2019 A blade-coated highly efficient thick active layer for non-fullerene organic solar cells J. Mater. Chem. A 7 22265-73 doi: 10.1039/C9TA09799F
|
[72] |
Sun R, et al 2020 A layer-by-layer architecture for printable organic solar cells overcoming the scaling lag of module efficiency Joule 4 407-19 doi: 10.1016/j.joule.2019.12.004
|
[73] |
Dong X, Jiang Y, Sun L, Qin F, Zhou X, Lu X, Wang W, Zhou Y 2022 Large-area organic solar modules with efficiency over 14% Adv. Funct. Mater. 32 2110209 doi: 10.1002/adfm.202110209
|
[74] |
Zeng G, et al 2022 Realizing 17.5% efficiency flexible organic solar cells via atomic- level chemical welding of silver nanowire electrodes J. Am. Chem. Soc. 144 8658-68 doi: 10.1021/jacs.2c01503
|
[75] |
Chen X, Xu G, Zeng G, Gu H, Chen H, Xu H, Yao H, Li Y, Hou J, Li Y 2020 Realizing ultrahigh mechanical flexibility and >15% efficiency of flexible organic solar cells via a welding flexible transparent electrode Adv. Mater. 32 1908478 doi: 10.1002/adma.201908478
|
[76] |
Chen Y, Wan J, Xu G, Wu X, Li X, Shen Y, Yang F, Ou X, Li Y, Li Y 2022 Reinforced concrete-like flexible transparent electrode for organic solar cells with high efficiency and mechanical robustness Sci. China Chem. 65 1164-72 doi: 10.1007/s11426-022-1242-9
|
[77] |
Pokuri B S S, Sit J, Wodo O, Baran D, Ameri T, Brabec C J, Moule A J, Ganapathysubramanian B 2017 Nanoscale morphology of doctor bladed versus spin-coated organic photovoltaic films Adv. Energy Mater. 7 1701269 doi: 10.1002/aenm.201701269
|
[78] |
Li H, Liu S, Wu X, Qi Q, Zhang H, Meng X, Hu X, Ye L, Chen Y 2022 A general enlarging shear impulse approach to green printing large-area and efficient organic photovoltaics Energy Environ. Sci. 15 2130-8 doi: 10.1039/D2EE00639A
|
[79] |
Zhao H, et al 2020 Hot hydrocarbon-solvent slot-die coating enables high-efficiency organic solar cells with temperature-dependent aggregation behavior Adv. Mater. 32 2002302 doi: 10.1002/adma.202002302
|
[80] |
Weng K, Ye L, Zhu L, Xu J, Zhou J, Feng X, Lu G, Tan S, Liu F, Sun Y 2020 Optimized active layer morphology toward efficient and polymer batch insensitive organic solar cells Nat. Commun. 11 2855 doi: 10.1038/s41467-020-16621-x
|
[81] |
Liu S, et al 2020 Printable and large-area organic solar cells enabled by a ternary pseudo-planar heterojunction strategy Adv. Funct. Mater. 30 2003223 doi: 10.1002/adfm.202003223
|
[82] |
Jee M H, Ryu H S, Lee D, Lee W, Woo H Y 2022 Recent advances in nonfullerene acceptor-based layer-by-layer organic solar cells using a solution process Adv. Sci. 9 2201876 doi: 10.1002/advs.202201876
|
[83] |
Khenkin M V, et al 2020 reporting for perovskite photovoltaics based on Nat. Energy 5 35-49 doi: 10.1038/s41560-019-0529-5
|
[84] |
Reese M O, et al 2011 Consensus stability testing protocols for organic photovoltaic materials and devices Sol. Energy Mater. Sol. Cells 95 1253-67 doi: 10.1016/j.solmat.2011.01.036
|
[85] |
Mateker W R, McGehee M D 2017 Progress in understanding degradation mechanisms and improving stability in organic photovoltaics Adv. Mater. 29 1603940 doi: 10.1002/adma.201603940
|
[86] |
Xu X, Li D, Yuan J, Zhou Y, Zou Y 2021 EnergyChem recent advances in stability of organic solar cells Energy Chem. 3 100046 doi: 10.1016/j.enchem.2020.100046
|
[87] |
Cros S, de Bettignies R, Berson S, Bailly S, Maisse P, Lemaitre N, Guillerez S 2011 Definition of encapsulation barrier requirements: a method applied to organic solar cells Sol. Energy Mater. Sol. Cells 95 S65-9 doi: 10.1016/j.solmat.2011.01.035
|
[88] |
Angmo D, Krebs F C 2015 Over 2years of outdoor operational and storage stability of ITO-free, fully roll-to-roll fabricated polymer solar cell modules Energy Technol. 3 774-83 doi: 10.1002/ente.201500086
|
[89] |
Castro-Hermosa S, Top M, Dagar J, Fahlteich J, Brown T M 2019 Quantifying performance of permeation barrierencapsulation systems for flexible and glass-based electronics and their application to perovskite solar cells Adv. Electron. Mater. 5 1800978 doi: 10.1002/aelm.201800978
|
[90] |
Zhang J, Tan H S, Guo X, Facchetti A, Yan H 2018 Material insights and challenges for non-fullerene organic solar cells based on small molecular acceptors Nat. Energy 3 720-31 doi: 10.1038/s41560-018-0181-5
|
[91] |
Fraga Domnguez I, Distler A, Ler L 2017 Stability of organic solar cells: the influence of nanostructured carbon materials Adv. Energy Mater. 7 1601320 doi: 10.1002/aenm.201601320
|
[92] |
Conings B, Bertho S, Vandewal K, Senes A, D’Haen J, Manca J, Janssen R A J 2010 Modeling the temperature induced degradation kinetics of the short circuit current in organic bulk heterojunction solar cells Appl. Phys. Lett. 96 32-35 doi: 10.1063/1.3391669
|
[93] |
Liu Q, Toudert J, Liu F, MantillaPerez P, Bajo M M, Russell T P, Martorell J 2017 Circumventing UV light induced nanomorphology disorder to achieve long lifetime PTB7-Th:PCBM based solar cells Adv. Energy Mater. 7 1701201 doi: 10.1002/aenm.201701201
|
[94] |
Rasool S, van Doan V, Lee H K, Lee S K, Lee J-C, Moon S-J, So W W, Song C E, Shin W S 2019 Enhanced photostability in polymer solar cells achieved with modified electron transport layer Thin Solid Films 669 42-48 doi: 10.1016/j.tsf.2018.09.040
|
[95] |
Cheng P, Yan C, Lau T K, Mai J, Lu X, Zhan X 2016 Molecular lock: a versatile key to enhance efficiency and stability of organic solar cells Adv. Mater. 2 5822-9 doi: 10.1002/adma.201600426
|
[96] |
Wu S-C, Strover L T, Yao X, Chen X-Q, Xiao W-J, Liu L-N, Wang J, Visoly-Fisher I, Katz E A, Li W-S 2018 UV-cross-linkable donor-acceptor polymers bearing a photostable conjugated backbone for efficient and stable organic photovoltaics ACS Appl. Mater. Interfaces 10 35430-40 doi: 10.1021/acsami.8b11506
|
[97] |
Zhu Y, Gadisa A, Peng Z, Ghasemi M, Ye L, Xu Z, Zhao S, Ade H 2019 Rational strategy to stabilize an unstable high-efficiency binary nonfullerene organic solar cells with a third component Adv. Energy Mater. 9 1900376 doi: 10.1002/aenm.201900376
|
[98] |
Liu B, et al 2023 Efficient and stable organic solar cells enabled by multicomponent photoactive layer based on one-pot polymerization Nat. Commun. 14 967 doi: 10.1038/s41467-023-36413-3
|
[99] |
Chang Y M, Liao C Y, Lee C C, Lin S-Y, Teng N-W, Huei-Shuan Tan P 2019 All solution and ambient processable organic photovoltaic modules fabricated by slot-die coating and achieved a certified 7.56% power conversion efficiency Sol. Energy Mater. Sol. Cells 202 110064 doi: 10.1016/j.solmat.2019.110064
|
[100] |
Li S, Fu Q, Meng L, Wan X, Ding L, Lu G, Lu G, Yao Z, Li C, Chen Y 2022 Achieving over 18% efficiency organic solar cell enabled by a ZnO-based hybrid electron transport layer with an operational lifetime up to 5years Angew. Chem., Int. Ed. 61 e202207397 doi: 10.1002/ange.202207397
|
[101] |
Dahlstrm S, Wilken S, Zhang Y, Ahlng C, Barlow S, Nyman M, Marder S R, sterbacka R 2021 Cross-linking of doped organic semiconductor interlayers for organic solar cells: potential and challenges ACS Appl. Energy Mater. 4 14458-66 doi: 10.1021/acsaem.1c03127
|
[102] |
Leccisi E, Fthenakis V 2021 Life cycle energy demand and carbon emissions of scalable single-junction and tandem perovskite PV Prog. Photovolt., Res. Appl. 29 1078-92 doi: 10.1002/pip.3442
|
[103] |
Tian X, Stranks S D, You F 2021 Life cycle assessment of recycling strategies for perovskite photovoltaic modules Nat. Sustain. 4 821-9 doi: 10.1038/s41893-021-00737-z
|
[104] |
Riede M, Spoltore D, Leo K 2021 Organic solar cellsthe path to commercial success Adv. Energy Mater. 11 2002653 doi: 10.1002/aenm.202002653
|
[105] |
Li Q, Monticelli C, Zanelli A 2022 Life cycle assessment of organic solar cells and perovskite solar cells with graphene transparent electrodes Renew. Energy 195 906-17 doi: 10.1016/j.renene.2022.06.075
|