Volume 2 Issue 3
August  2023
Turn off MathJax
Article Contents
Shafket Rasool, Jiwoo Yeop, Hye Won Cho, Woojin Lee, Jae Won Kim, Dohun Yuk, Jin Young Kim. Path to the fabrication of efficient, stable and commercially viable large-area organic solar cells[J]. Materials Futures, 2023, 2(3): 032102. doi: 10.1088/2752-5724/acd6ab
Citation: Shafket Rasool, Jiwoo Yeop, Hye Won Cho, Woojin Lee, Jae Won Kim, Dohun Yuk, Jin Young Kim. Path to the fabrication of efficient, stable and commercially viable large-area organic solar cells[J]. Materials Futures, 2023, 2(3): 032102. doi: 10.1088/2752-5724/acd6ab
Topical Review •
OPEN ACCESS

Path to the fabrication of efficient, stable and commercially viable large-area organic solar cells

© 2023 The Author(s). Published by IOP Publishing Ltd on behalf of the Songshan Lake Materials Laboratory
Materials Futures, Volume 2, Number 3
  • Received Date: 2022-12-28
  • Accepted Date: 2023-05-16
  • Rev Recd Date: 2023-05-15
  • Publish Date: 2023-06-16
  • Organic solar cells (OSCs) have reached an outstanding certified power conversion efficiency (PCE) of over 19% in single junction and 20% in tandem architecture design. Such high PCEs have emerged with outstanding Y-shaped Y6 non-fullerene acceptors (NFAs), together with PM6 electron donor polymers. PCEs are on the rise for small-area OSCs. However, large-area OSC sub-modules are still unable to achieve such high PCEs, and the highest certified PCE reported so far is 12% having an area of 58 cm2. To fabricate efficient large-area OSCs, new custom-designed NFAs for large-area systems are imminent along with improvements in the sub-module fabrication platforms. Moreover, the search for stable yet efficient OSCs is still in progress. In this review, progress in small-area OSCs is presented with reference to the advancement in the chemical structure of NFAs and donor polymers. Finally, the life-cycle assessment of OSCs is presented and the energy payback time of the efficient and stable OSCs is discussed and lastly, an outlook for the OSCs is given.
  • loading
  • Conflict of interest

    The authors declare that the work was conducted in the absence of any commercial or financial relationships that could be construed to be a potential conflict of interest.

    Author contributions

    S R and J Y K conceptualized the work, wrote and edited the manuscript. All authors contributed to the literature review and discussion of the results and commented on the manuscript.

  • [1]
    IEA 2021 World Energy Outlook 2021ParisIEA(available at: www.iea.org/reports/world-energy-outlook-2021)
    [2]
    Chapin D M, Fuller C S, Pearson G L 1954 A new silicon pn junction photocell for converting solar radiation into electrical power J. Appl. Phys. 25 676-7 doi: 10.1063/1.1721711
    [3]
    Yoshikawa K, et al 2017 Silicon heterojunction solar cell with interdigitated back contacts for a photoconversion efficiency over 26% Nat. Energy 2 17032 doi: 10.1038/nenergy.2017.32
    [4]
    Rohatgi A, Zhu K, Tong J, Kim D H, Reichmanis E, Rounsaville B, Prakash V, Ok Y-W 2020 26.7% efficient 4-terminal perovskite-silicon tandem solar cell composed of a high-performance semitransparent perovskite cell and a doped poly-Si/SiOx passivating contact silicon cell IEEE J. Photovolt. 10 417-22 doi: 10.1109/JPHOTOV.2019.2963564
    [5]
    Tang C W 1986 Two-layer organic photovoltaic cell Appl. Phys. Lett. 48 183-5 doi: 10.1063/1.96937
    [6]
    National Renewable Energy Laboratory Best-research-cell-efficiencies-rev211011 (available at: www.nrel.gov/pv/cell-efficiency.html)
    [7]
    Zheng Z, Wang J, Bi P, Ren J, Wang Y, Yang Y, Liu X, Zhang S, Hou J 2021 Tandem organic solar cell with 20.2% efficiency Joule 6 171-84 doi: 10.1016/j.joule.2021.12.017
    [8]
    He C, et al 2022 Asymmetric electron acceptor enables highly luminescent organic solar cells with certified efficiency over 18 Nat. Commun. 13 2598 doi: 10.1038/s41467-022-30225-7
    [9]
    Zhu L, et al 2022 Single-junction organic solar cells with over 19% efficiency enabled by a refined double-fibril network morphology Nat. Mater. 21 656-63 doi: 10.1038/s41563-022-01244-y
    [10]
    Jrgensen M, et al 2013 The state of organic solar cellsa meta analysis Sol. Energy Mater. Sol. Cells 119 84-93 doi: 10.1016/j.solmat.2013.05.034
    [11]
    Zhao W, Li S, Yao H, Zhang S, Zhang Y, Yang B, Hou J 2017 Molecular optimization enables over 13% efficiency in organic solar cells J. Am. Chem. Soc. 139 7148-51 doi: 10.1021/jacs.7b02677
    [12]
    Wang G, Adil M A, Zhang J, Wei Z 2018 Large-area organic solar cells: material requirements, modular designs, and printing methods Adv. Mater. 31 1805089 doi: 10.1002/adma.201805089
    [13]
    Qin F, et al 2021 54 cm2 large-area flexible organic solar modules with efficiency above 13% Adv. Mater. Weinheim 33 2103017 doi: 10.1002/adma.202103017
    [14]
    Kan B, et al 2015 A series of simple oligomer-like small molecules based on oligothiophenes for solution-processed solar cells with high efficiency J. Am. Chem. Soc. 137 3886-93 doi: 10.1021/jacs.5b00305
    [15]
    Fan J, et al 2022 Highperformance organic solar modules via bilayermergedannealing assisted blade coating Adv. Mater. 34 2110569 doi: 10.1002/adma.202110569
    [16]
    Jiang M, Bai H R, Zhi H F, Sun J-K, Wang J-L, Zhang F, An Q 2021 Two-pronged effect of warm solution and solvent-vapor annealing for efficient and stable all-small-molecule organic solar cells ACS Energy Lett. 6 2898-906 doi: 10.1021/acsenergylett.1c01289
    [17]
    Sun K, et al 2015 A molecular nematic liquid crystalline material for high-performance organic photovoltaics Nat. Commun. 6 6013 doi: 10.1038/ncomms7013
    [18]
    Jae K L, Wan L M, Brabec C J, Yuen J, Moon J S, Kim J Y, Lee K, Bazan G C, Heeger A J 2008 Processing additives for improved efficiency from bulk heterojunction solar cells J. Am. Chem. Soc. 130 3619-23 doi: 10.1021/ja710079w
    [19]
    Kyaw A K K, Wang D H, Luo C, Cao Y, Nguyen T-Q, Bazan G C, Heeger A J 2014 Effects of solvent additives on morphology, charge generation, transport, and recombination in solution-processed small-molecule solar cells Adv. Energy Mater. 4 1301469 doi: 10.1002/aenm.201301469
    [20]
    Hoang Q V, et al 2017 Effects of morphology evolution on solution-processed small molecule photovoltaics: via a solvent additive J. Mater. Chem. C 5 7837-44 doi: 10.1039/C7TC02088K
    [21]
    Lu L, Xu T, Chen W, Landry E S, Yu L 2014 Ternary blend polymer solar cells with enhanced power conversion efficiency Nat. Photon. 8 716-22 doi: 10.1038/nphoton.2014.172
    [22]
    Ma R, et al 2022 High-efficiency ternary organic solar cells with a good figure-of-merit enabled by two low-cost donor polymers ACS Energy Lett. 7 2547-56 doi: 10.1021/acsenergylett.2c01364
    [23]
    Vohra V, Kawashima K, Kakara T, Koganezawa T, Osaka I, Takimiya K, Murata H 2015 Efficient inverted polymer solar cells employing favourable molecular orientation Nat. Photon. 9 403-8 doi: 10.1038/nphoton.2015.84
    [24]
    Liu Y, Zhao J, Li Z, Mu C, Ma W, Hu H, Jiang K, Lin H, Ade H, Yan H 2014 Aggregation and morphology control enables multiple cases of high-efficiency polymer solar cells Nat. Commun. 5 5293 doi: 10.1038/ncomms6293
    [25]
    Zhao J, Li Y, Yang G, Jiang K, Lin H, Ade H, Ma W, Yan H 2016 Efficient organic solar cells processed from hydrocarbon solvents Nat. Energy 1 15027 doi: 10.1038/nenergy.2015.27
    [26]
    Rasool S, et al 2019 High-efficiency non-halogenated solvent processable polymer/PCBM solar cells: via fluorination-enabled optimized nanoscale morphology J. Mater. Chem. A 7 24992-5002 doi: 10.1039/C9TA08960H
    [27]
    Guo X, et al 2013 Polymer solar cells with enhanced fill factors Nat. Photon. 7 825-33 doi: 10.1038/nphoton.2013.207
    [28]
    Gong X, Tong M, Brunetti F G, Seo J, Sun Y, Moses D, Wudl F, Heeger A J 2011 Bulk heterojunction solar cells with large open-circuit voltage: electron transfer with small donor-acceptor energy offset Adv. Mater. 23 2272-7 doi: 10.1002/adma.201003768
    [29]
    Proctor C M, Kuik M, Nguyen T Q 2013 Charge carrier recombination in organic solar cells Prog. Polym. Sci. 38 1941-60 doi: 10.1016/j.progpolymsci.2013.08.008
    [30]
    Ma W, Tumbleston J R, Wang M, Gann E, Huang F, Ade H 2013 Domain purity, miscibility, and molecular orientation at donor/acceptor interfaces in high performance organic solar cells: paths to further improvement Adv. Energy Mater. 3 864-72 doi: 10.1002/aenm.201200912
    [31]
    Tumbleston J R, Collins B A, Yang L, Stuart A C, Gann E, Ma W, You W, Ade H 2014 The influence of molecular orientation on organic bulk heterojunction solar cells Nature Photon. 8 385-91 doi: 10.1038/nphoton.2014.55
    [32]
    Yuan J, et al 2019 Single-junction organic solar cell with over 15% efficiency using fused-ring acceptor with electron-deficient core single-junction organic solar cell with over 15% efficiency using fused-ring acceptor with electron-deficient core Joule 3 1140-51 doi: 10.1016/j.joule.2019.01.004
    [33]
    Yu H, et al 2020 Tailoring non-fullerene acceptors using selenium-incorporated heterocycles for organic solar cells with over 16% efficiency J. Mater. Chem. A 8 23756-65 doi: 10.1039/D0TA06658C
    [34]
    Wang H, et al 2022 Chlorination enabling a low-cost benzodithiophene-based wide-bandgap donor polymer with an efficiency of over 17% Adv. Mater. 34 2105483 doi: 10.1002/adma.202105483
    [35]
    Liu Q, et al 2020 18% efficiency organic solar cells Sci. Bull. 65 272-5 doi: 10.1016/j.scib.2020.01.001
    [36]
    Wang J, et al 2022 A new polymer donor enables binary all-polymer organic photovoltaic cells with 18% efficiency and excellent mechanical robustness Adv. Mater. 34 2205009 doi: 10.1002/adma.202205009
    [37]
    Sun C, Pan F, Bin H, Zhang J, Xue L, Qiu B, Wei Z, Zhang Z-G, Li Y 2018 A low cost and high performance polymer donor material for polymer solar cells Nat. Commun. 9 743 doi: 10.1038/s41467-018-03207-x
    [38]
    Li C, et al 2021 Non-fullerene acceptors with branched side chains and improved molecular packing to exceed 18% efficiency in organic solar cells Nat. Energy 6 605-13 doi: 10.1038/s41560-021-00820-x
    [39]
    Abbas Z, Un S, Haris M, Song C E, Lee H K, Lee S K, Shin W S, Park T, Lee J-C 2022 Nano energy optimized vertical phase separation via systematic Y6 inner side-chain modulation for non-halogen solvent processed inverted organic solar cells Nano Energy 101 107574 doi: 10.1016/j.nanoen.2022.107574
    [40]
    Cui Y, et al 2019 Over 16% efficiency organic photovoltaic cells enabled by a chlorinated acceptor with increased open-circuit voltages Nat. Commun. 10 2515 doi: 10.1038/s41467-019-10351-5
    [41]
    He Q, Ufimkin P, Anis F, Hu X, Kafourou P, Rimmele M, Rapley C L, Ding B 2022 Molecular engineering of Yseries acceptors for nonfullerene organic solar cells SusMat 2 591-606 doi: 10.1002/sus2.82
    [42]
    Chai G, et al 2021 Fine-tuning of side-chain orientations on nonfullerene acceptors enables organic solar cells with 17.7% efficiency Energy Environ. Sci. 14 3469-79 doi: 10.1039/D0EE03506H
    [43]
    Liu G, Xia R, Huang Q, Zhang K, Hu Z, Jia T, Liu X, Yip H-L, Huang F 2021 Tandem organic solar cells with 18.7% efficiency enabled by suppressing the charge recombination in front sub-cell Adv. Funct. Mater. 31 2103283 doi: 10.1002/adfm.202103283
    [44]
    Wang J, Zheng Z, Zu Y, Wang Y, Liu X, Zhang S, Zhang M, Hou J 2021 A tandem organic photovoltaic cell with 19.6% efficiency enabled by light distribution control Adv. Mater. 33 2102787 doi: 10.1002/adma.202102787
    [45]
    Holliday S, et al 2016 High-efficiency and air-stable P3HT-based polymer solar cells with a new non-fullerene acceptor Nat. Commun. 7 11585 doi: 10.1038/ncomms11585
    [46]
    Qi F, et al 2021 Over 17% efficiency binary organic solar cells with photoresponses reaching 1000 nm enabled by selenophene-fused nonfullerene acceptors ACS Energy Lett. 6 9-15 doi: 10.1021/acsenergylett.0c02230
    [47]
    Chang Y 2021 Achieving efficient ternary organic solar cells using structurally similar non-fullerene acceptors with varying flanking side chains ACS Energy Mater. 11 2100079 doi: 10.1002/aenm.202100079
    [48]
    Chen H, et al 2021 A guest-assisted molecular-organization approach for >17% efficiency organic solar cells using environmentally friendly solvents Nat. Energy 6 1045-53 doi: 10.1038/s41560-021-00923-5
    [49]
    Li Y, Cai Y, Xie Y, Song J, Wu H, Tang Z, Zhang J, Huang F, Sun Y 2021 A facile strategy for third-component selection in non-fullerene acceptor-based ternary organic solar cells Energy Environ. Sci. 14 5009-16 doi: 10.1039/D1EE01864G
    [50]
    Lin Y, et al 2022 18.9% efficient organic solar cells based on n-doped bulk-heterojunction and halogen-substituted self-assembled monolayers as hole extracting interlayers Adv. Energy Mater. 12 2202503 doi: 10.1002/aenm.202202503
    [51]
    Wang J, et al 2022 An asymmetric wide-bandgap acceptor simultaneously enabling highly efficient single-junction and tandem organic solar cells Energy Environ. Sci. 15 1585-93 doi: 10.1039/D1EE03673D
    [52]
    Rasool S, Van V D, Song C E, Lee H K, Lee S K, Lee J-C, Moon S-J, Shin W S 2019 Room temperature processed highly efficient large-area polymer solar cells achieved with molecular engineering of copolymers Adv. Energy Mater. 9 1900168 doi: 10.1002/aenm.201900168
    [53]
    Zhang B, Yang F, Chen S, Chen H, Zeng G, Shen Y, Li Y, Li Y 2022 Fluid mechanics inspired sequential blade-coating for high-performance large-area organic solar modules Adv. Funct. Mater. 32 2202011 doi: 10.1002/adfm.202202011
    [54]
    Cho Y, et al 2023 CF3-terminated side chain enables efficiencies surpassing 18.2% and 16.1% in small- and large-scale manufacturing of organic solar cells ACS Energy Lett. 8 96-106 doi: 10.1021/acsenergylett.2c02140
    [55]
    Badgujar S, Lee G Y, Park T, Song C E, Park S, Oh S, Shin W S, Moon S-J, Lee J-C, Lee S K 2016 High-performance small molecule via tailoring intermolecular interactions and its application in large-area organic photovoltaic modules Adv. Energy Mater. 6 1600228 doi: 10.1002/aenm.201600228
    [56]
    Yuan J, et al 2021 Patterned blade coating strategy enables the enhanced device reproducibility and optimized morphology of organic solar cells Adv. Energy Mater. 11 2100098 doi: 10.1002/aenm.202100098
    [57]
    Dong S, Jia T, Zhang K, Jing J, Huang F 2020 Single-component non-halogen solvent-processed high-performance organic solar cell module with efficiency over 14% Joule 4 2004-16 doi: 10.1016/j.joule.2020.07.028
    [58]
    Chaturvedi N, Gasparini N, Corzo D, Bertrandie J, Wehbe N, Troughton J, Baran D 2021 All slot-die coated non-fullerene organic solar cells with PCE 11% Adv. Funct. Mater. 31 2009996 doi: 10.1002/adfm.202009996
    [59]
    Polymer F, Diodes L-E, Polymer C, Higuchi H, Yoshioka M, Nagatsuka T 2002 High-performance, flexible polymer light- emitting diodes fabricated by a continuous polymer coating process Adv. Mater. 14 915-8 doi: 10.1002/1521-4095(20020618)14:12<915::AID-ADMA915>3.0.CO;2-9
    [60]
    Khim D, Han H, Baeg K J, Kim J, Kwak S-W, Kim D-Y, Noh Y-Y 2013 Simple bar-coating process for large-area, high-performance organic field-effect transistors and ambipolar complementary integrated circuits Adv. Mater. Weinheim 25 4302-8 doi: 10.1002/adma.201205330
    [61]
    Han Y W, Lee H S, Moon D K 2021 Printable and semitransparent nonfullerene organic solar modules over 30 cm2introducing an energy-level controllable hole transport layer ACS Appl. Mater. Interfaces 13 19085-98 doi: 10.1021/acsami.1c01021
    [62]
    Jeong J H, Jahandar M, Prasetio A, Kim J M, Kim J H, Kim S, Lim D C 2021 Multi-dimensional interfacial engineering for a practical large-area transparent flexible organic photovoltaics Chem. Eng. J. 419 129672 doi: 10.1016/j.cej.2021.129672
    [63]
    Jahandar M, Prasetio A, Lee C, Kim H, Kim A R, Heo J, Kim Y, Kim S, Lim D C 2022 Highly efficient flexible organic photovoltaic modules for sustainable energy harvesting under low-light condition via suppressing voltage-drop by metal-mediated cross-linkable polymer interfacial layer Chem. Eng. J. 448 137555 doi: 10.1016/j.cej.2022.137555
    [64]
    Roth B, Sndergaard R R, Krebs F C 2014 Roll-to-roll printing and coating techniques for manufacturing large-area flexible organic electronics (Elsevier Ltd)10.1016/B978-1-78242-035-4.00007-5
    [65]
    Zhang Y, et al 2021 Graded bulk-heterojunction enables 17% binary organic solar cells via nonhalogenated open air coating Nat. Commun. 12 4815 doi: 10.1038/s41467-021-25148-8
    [66]
    Yoon S, et al 2022 High-performance scalable organic photovoltaics with high thickness tolerance from 1 cm2 to above 50 cm2 6Joule 1-17 doi: 10.1016/j.joule.2022.07.014
    [67]
    Liao C Y, et al 2020 Processing strategies for an organic photovoltaic module with over 10% efficiency Joule 4 189-206 doi: 10.1016/j.joule.2019.11.006
    [68]
    Lee T, Oh S, Rasool S, Song C E, Kim D, Lee S K, Shin W S, Lim E 2020 Non-halogenated solvent-processed ternary-blend solar cells via alkyl-side-chain engineering of a non-fullerene acceptor and their application in large-area devices J. Mater. Chem. A 8 10318-30 doi: 10.1039/D0TA00947D
    [69]
    Kim H S, Rasool S, Shin W S, Song C E, Hwang D-H 2020 Alkylated indacenodithiophene-based non-fullerene acceptors with extended -conjugation for high-performance large-area organic solar cells ACS Appl. Mater. Interfaces 12 50638-47 doi: 10.1021/acsami.0c13277
    [70]
    Park S H, Park S, Lee S, Kim J, Ahn H, Kim B J, Chae B, Son H J 2020 Developement of highly efficient large area organic photovoltaic module: effects of nonfullerene acceptor Nano Energy 77 105147 doi: 10.1016/j.nanoen.2020.105147
    [71]
    Zhang L, Zhao H, Lin B, Yuan J, Xu X, Wu J, Zhou K, Guo X, Zhang M, Ma W 2019 A blade-coated highly efficient thick active layer for non-fullerene organic solar cells J. Mater. Chem. A 7 22265-73 doi: 10.1039/C9TA09799F
    [72]
    Sun R, et al 2020 A layer-by-layer architecture for printable organic solar cells overcoming the scaling lag of module efficiency Joule 4 407-19 doi: 10.1016/j.joule.2019.12.004
    [73]
    Dong X, Jiang Y, Sun L, Qin F, Zhou X, Lu X, Wang W, Zhou Y 2022 Large-area organic solar modules with efficiency over 14% Adv. Funct. Mater. 32 2110209 doi: 10.1002/adfm.202110209
    [74]
    Zeng G, et al 2022 Realizing 17.5% efficiency flexible organic solar cells via atomic- level chemical welding of silver nanowire electrodes J. Am. Chem. Soc. 144 8658-68 doi: 10.1021/jacs.2c01503
    [75]
    Chen X, Xu G, Zeng G, Gu H, Chen H, Xu H, Yao H, Li Y, Hou J, Li Y 2020 Realizing ultrahigh mechanical flexibility and >15% efficiency of flexible organic solar cells via a welding flexible transparent electrode Adv. Mater. 32 1908478 doi: 10.1002/adma.201908478
    [76]
    Chen Y, Wan J, Xu G, Wu X, Li X, Shen Y, Yang F, Ou X, Li Y, Li Y 2022 Reinforced concrete-like flexible transparent electrode for organic solar cells with high efficiency and mechanical robustness Sci. China Chem. 65 1164-72 doi: 10.1007/s11426-022-1242-9
    [77]
    Pokuri B S S, Sit J, Wodo O, Baran D, Ameri T, Brabec C J, Moule A J, Ganapathysubramanian B 2017 Nanoscale morphology of doctor bladed versus spin-coated organic photovoltaic films Adv. Energy Mater. 7 1701269 doi: 10.1002/aenm.201701269
    [78]
    Li H, Liu S, Wu X, Qi Q, Zhang H, Meng X, Hu X, Ye L, Chen Y 2022 A general enlarging shear impulse approach to green printing large-area and efficient organic photovoltaics Energy Environ. Sci. 15 2130-8 doi: 10.1039/D2EE00639A
    [79]
    Zhao H, et al 2020 Hot hydrocarbon-solvent slot-die coating enables high-efficiency organic solar cells with temperature-dependent aggregation behavior Adv. Mater. 32 2002302 doi: 10.1002/adma.202002302
    [80]
    Weng K, Ye L, Zhu L, Xu J, Zhou J, Feng X, Lu G, Tan S, Liu F, Sun Y 2020 Optimized active layer morphology toward efficient and polymer batch insensitive organic solar cells Nat. Commun. 11 2855 doi: 10.1038/s41467-020-16621-x
    [81]
    Liu S, et al 2020 Printable and large-area organic solar cells enabled by a ternary pseudo-planar heterojunction strategy Adv. Funct. Mater. 30 2003223 doi: 10.1002/adfm.202003223
    [82]
    Jee M H, Ryu H S, Lee D, Lee W, Woo H Y 2022 Recent advances in nonfullerene acceptor-based layer-by-layer organic solar cells using a solution process Adv. Sci. 9 2201876 doi: 10.1002/advs.202201876
    [83]
    Khenkin M V, et al 2020 reporting for perovskite photovoltaics based on Nat. Energy 5 35-49 doi: 10.1038/s41560-019-0529-5
    [84]
    Reese M O, et al 2011 Consensus stability testing protocols for organic photovoltaic materials and devices Sol. Energy Mater. Sol. Cells 95 1253-67 doi: 10.1016/j.solmat.2011.01.036
    [85]
    Mateker W R, McGehee M D 2017 Progress in understanding degradation mechanisms and improving stability in organic photovoltaics Adv. Mater. 29 1603940 doi: 10.1002/adma.201603940
    [86]
    Xu X, Li D, Yuan J, Zhou Y, Zou Y 2021 EnergyChem recent advances in stability of organic solar cells Energy Chem. 3 100046 doi: 10.1016/j.enchem.2020.100046
    [87]
    Cros S, de Bettignies R, Berson S, Bailly S, Maisse P, Lemaitre N, Guillerez S 2011 Definition of encapsulation barrier requirements: a method applied to organic solar cells Sol. Energy Mater. Sol. Cells 95 S65-9 doi: 10.1016/j.solmat.2011.01.035
    [88]
    Angmo D, Krebs F C 2015 Over 2years of outdoor operational and storage stability of ITO-free, fully roll-to-roll fabricated polymer solar cell modules Energy Technol. 3 774-83 doi: 10.1002/ente.201500086
    [89]
    Castro-Hermosa S, Top M, Dagar J, Fahlteich J, Brown T M 2019 Quantifying performance of permeation barrierencapsulation systems for flexible and glass-based electronics and their application to perovskite solar cells Adv. Electron. Mater. 5 1800978 doi: 10.1002/aelm.201800978
    [90]
    Zhang J, Tan H S, Guo X, Facchetti A, Yan H 2018 Material insights and challenges for non-fullerene organic solar cells based on small molecular acceptors Nat. Energy 3 720-31 doi: 10.1038/s41560-018-0181-5
    [91]
    Fraga Domnguez I, Distler A, Ler L 2017 Stability of organic solar cells: the influence of nanostructured carbon materials Adv. Energy Mater. 7 1601320 doi: 10.1002/aenm.201601320
    [92]
    Conings B, Bertho S, Vandewal K, Senes A, D’Haen J, Manca J, Janssen R A J 2010 Modeling the temperature induced degradation kinetics of the short circuit current in organic bulk heterojunction solar cells Appl. Phys. Lett. 96 32-35 doi: 10.1063/1.3391669
    [93]
    Liu Q, Toudert J, Liu F, MantillaPerez P, Bajo M M, Russell T P, Martorell J 2017 Circumventing UV light induced nanomorphology disorder to achieve long lifetime PTB7-Th:PCBM based solar cells Adv. Energy Mater. 7 1701201 doi: 10.1002/aenm.201701201
    [94]
    Rasool S, van Doan V, Lee H K, Lee S K, Lee J-C, Moon S-J, So W W, Song C E, Shin W S 2019 Enhanced photostability in polymer solar cells achieved with modified electron transport layer Thin Solid Films 669 42-48 doi: 10.1016/j.tsf.2018.09.040
    [95]
    Cheng P, Yan C, Lau T K, Mai J, Lu X, Zhan X 2016 Molecular lock: a versatile key to enhance efficiency and stability of organic solar cells Adv. Mater. 2 5822-9 doi: 10.1002/adma.201600426
    [96]
    Wu S-C, Strover L T, Yao X, Chen X-Q, Xiao W-J, Liu L-N, Wang J, Visoly-Fisher I, Katz E A, Li W-S 2018 UV-cross-linkable donor-acceptor polymers bearing a photostable conjugated backbone for efficient and stable organic photovoltaics ACS Appl. Mater. Interfaces 10 35430-40 doi: 10.1021/acsami.8b11506
    [97]
    Zhu Y, Gadisa A, Peng Z, Ghasemi M, Ye L, Xu Z, Zhao S, Ade H 2019 Rational strategy to stabilize an unstable high-efficiency binary nonfullerene organic solar cells with a third component Adv. Energy Mater. 9 1900376 doi: 10.1002/aenm.201900376
    [98]
    Liu B, et al 2023 Efficient and stable organic solar cells enabled by multicomponent photoactive layer based on one-pot polymerization Nat. Commun. 14 967 doi: 10.1038/s41467-023-36413-3
    [99]
    Chang Y M, Liao C Y, Lee C C, Lin S-Y, Teng N-W, Huei-Shuan Tan P 2019 All solution and ambient processable organic photovoltaic modules fabricated by slot-die coating and achieved a certified 7.56% power conversion efficiency Sol. Energy Mater. Sol. Cells 202 110064 doi: 10.1016/j.solmat.2019.110064
    [100]
    Li S, Fu Q, Meng L, Wan X, Ding L, Lu G, Lu G, Yao Z, Li C, Chen Y 2022 Achieving over 18% efficiency organic solar cell enabled by a ZnO-based hybrid electron transport layer with an operational lifetime up to 5years Angew. Chem., Int. Ed. 61 e202207397 doi: 10.1002/ange.202207397
    [101]
    Dahlstrm S, Wilken S, Zhang Y, Ahlng C, Barlow S, Nyman M, Marder S R, sterbacka R 2021 Cross-linking of doped organic semiconductor interlayers for organic solar cells: potential and challenges ACS Appl. Energy Mater. 4 14458-66 doi: 10.1021/acsaem.1c03127
    [102]
    Leccisi E, Fthenakis V 2021 Life cycle energy demand and carbon emissions of scalable single-junction and tandem perovskite PV Prog. Photovolt., Res. Appl. 29 1078-92 doi: 10.1002/pip.3442
    [103]
    Tian X, Stranks S D, You F 2021 Life cycle assessment of recycling strategies for perovskite photovoltaic modules Nat. Sustain. 4 821-9 doi: 10.1038/s41893-021-00737-z
    [104]
    Riede M, Spoltore D, Leo K 2021 Organic solar cellsthe path to commercial success Adv. Energy Mater. 11 2002653 doi: 10.1002/aenm.202002653
    [105]
    Li Q, Monticelli C, Zanelli A 2022 Life cycle assessment of organic solar cells and perovskite solar cells with graphene transparent electrodes Renew. Energy 195 906-17 doi: 10.1016/j.renene.2022.06.075
  • 加载中

Catalog

    Figures(7)  / Tables(2)

    Article Metrics

    Article Views(859) PDF downloads(111)
    Article Statistics
    Related articles from

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return