Citation: | Leire Meabe, Itziar Aldalur, Simon Lindberg, Mikel Arrese-Igor, Michel Armand, Maria Martinez-Ibaez, Heng Zhang. Solid-state electrolytes for safe rechargeable lithium metal batteries: a strategic view[J]. Materials Futures, 2023, 2(3): 033501. doi: 10.1088/2752-5724/accdf3 |
[1] |
Stephen N, LaRose A 2021 International Energy Outlook 2021(available at: www.eia.gov/outlooks/ieo/)(Accessed 8 May 2023)
|
[2] |
Obrovac M N, Christensen L, Le D B, Dahn J R 2007 Alloy design for lithium-ion battery anodes J. Electrochem. Soc. 154 A849 doi: 10.1149/1.2752985
|
[3] |
Feng X, Ouyang M, Liu X, Lu L, Xia Y, He X 2018 Thermal runaway mechanism of lithium ion battery for electric vehicles: a review Energy Storage Mater. 10 246-67 doi: 10.1016/j.ensm.2017.05.013
|
[4] |
Janek J, Zeier W G 2016 A solid future for battery development Nat. Energy 1 16141 doi: 10.1038/nenergy.2016.141
|
[5] |
Armand M, Tarascon J-M 2008 Building better batteries Nature 451 652-7 doi: 10.1038/451652a
|
[6] |
Judez X, Eshetu G G, Li C, Rodriguez-Martinez L M, Zhang H, Armand M 2018 Opportunities for rechargeable solid-state batteries based on Li-intercalation cathodes Joule 2 2208-24 doi: 10.1016/j.joule.2018.09.008
|
[7] |
Eshetu G G, Judez X, Li C, Martinez-Ibaez M, Snchez-Diez E, Rodriguez-Martinez L M, Zhang H, Armand M 2019 Solid electrolytes for lithium metal and future lithium-ion batteries Future Lithium-Ion BatteriesThe Royal Society of Chemistrych 4 doi: 10.3390/batteries8020019
|
[8] |
Webpage of Blue Solutions (available at: www.blue-solutions.com/en/)(Accessed 8 May 2023)
|
[9] |
Li S, Zhang S Q, Shen L, Liu Q, Ma J B, Lv W, He Y B, Yang Q H 2020 Progress and perspective of ceramic/polymer composite solid electrolytes for lithium batteries Adv. Sci. 7 1903088 doi: 10.1002/advs.201903088
|
[10] |
Wang H, Sheng L, Yasin G, Wang L, Xu H, He X 2020 Reviewing the current status and development of polymer electrolytes for solid-state lithium batteries Energy Storage Mater. 33 188-215 doi: 10.1016/j.ensm.2020.08.014
|
[11] |
Xu K 2004 Nonaqueous liquid electrolytes for lithium-based rechargeable batteries Chem. Rev. 104 4303-418 doi: 10.1021/cr030203g
|
[12] |
Xu K 2014 Electrolytes and interphases in Li-ion batteries and beyond Chem. Rev. 114 11503-618 doi: 10.1021/cr500003w
|
[13] |
Zhang H, Qiao L, Khnle H, Figgemeier E, Armand M, Eshetu G G 2023 From lithium to emerging mono- and multivalent-cation-based rechargeable batteries: non-aqueous organic electrolyte and interphase perspectives Energy Environ. Sci. 16 11-52 doi: 10.1039/D2EE02998G
|
[14] |
Zhang Z, Nazar L F 2022 Exploiting the paddle-wheel mechanism for the design of fast ion conductors Nat. Rev. Mater. 7 389-405 doi: 10.1038/s41578-021-00401-0
|
[15] |
Cazorla C 2019 Refrigeration based on plastic crystals Nature 567 470-1 doi: 10.1038/d41586-019-00974-5
|
[16] |
Ratner M A, Shriver D F 1988 Ion transport in solvent-free polymers Chem. Rev. 88 109-24 doi: 10.1021/cr00083a006
|
[17] |
Wang C, et al 2020 Garnet-type solid-state electrolytes: materials, interfaces, and batteries Chem. Rev. 120 4257-300 doi: 10.1021/acs.chemrev.9b00427
|
[18] |
Zou Z, et al 2020 Mobile ions in composite solids Chem. Rev. 120 4169-221 doi: 10.1021/acs.chemrev.9b00760
|
[19] |
Wang X, Zhu H, Greene G W, Zhou Y, Yoshizawafujita M, Miyachi Y, Armand M, Forsyth M, Pringle J M, Howlett P C 2017 Organic ionic plastic crystal-based composite electrolyte with surface enhanced ion transport and its use in all-solid-state lithium batteries Adv. Mater. Technol. 2 1700046 doi: 10.1002/admt.201700046
|
[20] |
Wang X, Kerr R, Chen F, Goujon N, Pringle J M, Mecerreyes D, Forsyth M, Howlett P C 2020 Toward high-energy-density lithium metal batteries: opportunities and challenges for solid organic electrolytes Adv. Mater. 32 1905219 doi: 10.1002/adma.201905219
|
[21] |
Yunis R, Al-Masri D, Hollenkamp A F, Doherty C M, Zhu H, Pringle J M 2020 Plastic crystals utilising small ammonium cations and sulfonylimide anions as electrolytes for lithium batteries J. Electrochem. Soc. 167 070529 doi: 10.1149/1945-7111/ab76a2
|
[22] |
Tlmmermans K 1961 (Solids Pergamon Press)
|
[23] |
MacFarlane D R, et al 2016 Ionic liquids and their solid-state analogues as materials for energy generation and storage Nat. Rev. Mater. 1 15005 doi: 10.1038/natrevmats.2015.5
|
[24] |
Basile A, Hilder M, Makhlooghiazad F, Pozogonzalo C, MacFarlane D R, Howlett P C, Forsyth M 2018 Ionic liquids and organic ionic plastic crystals: advanced electrolytes for safer high performance sodium energy storage technologies Adv. Energy Mater. 8 1703491 doi: 10.1002/aenm.201703491
|
[25] |
Zhu H, MacFarlane D R, Pringle J M, Forsyth M 2019 Organic ionic plastic crystals as solid-state electrolytes Trends Chem. 1 126-40 doi: 10.1016/j.trechm.2019.01.002
|
[26] |
Zhou H, Xie J, Bao L, Qiao S, Sui J, Wang J 2022 Poly(carbonate)-based ionic plastic crystal fast ion-conductor for solid-state rechargeable lithium batteries J. Energy Chem. 73 360-9 doi: 10.1016/j.jechem.2022.06.038
|
[27] |
Dong Y, Ding T, Fan L-Z 2017 A free-standing and thermostable polymer/plastic crystal electrolyte for all-solid-state lithium batteries Ionics 23 3339-45 doi: 10.1007/s11581-017-2152-4
|
[28] |
Wang A, Geng S, Zhao Z, Hu Z, Luo J 2022 In situ cross-linked plastic crystal electrolytes for wide-temperature and high-energy-density lithium metal batteries Adv. Funct. Mater. 32 2201861 doi: 10.1002/adfm.202201861
|
[29] |
Alarco P-J, Abu-Lebdeh Y, Abouimrane A, Armand M 2004 The plastic-crystalline phase of succinonitrile as a universal matrix for solid-state ionic conductors Nat. Mater. 3 476-81 doi: 10.1038/nmat1158
|
[30] |
Liu Y, Zhao Y, Lu W, Sun L, Lin L, Zheng M, Sun X, Xie H 2021 PEO based polymer in plastic crystal electrolytes for room temperature high-voltage lithium metal batteries Nano Energy 88 106205 doi: 10.1016/j.nanoen.2021.106205
|
[31] |
Lee M J, Han J, Lee K, Lee Y J, Kim B G, Jung K-N, Kim B J, Lee S W 2022 Elastomeric electrolytes for high-energy solid-state lithium batteries Nature 601 217-22 doi: 10.1038/s41586-021-04209-4
|
[32] |
Forsyth M, Porcarelli L, Wang X, Goujon N, Mecerreyes D 2019 Innovative electrolytes based on ionic liquids and polymers for next-generation solid-state batteries Acc. Chem. Res. 52 686-94 doi: 10.1021/acs.accounts.8b00566
|
[33] |
Warrington A, et al 2022 Thermal, structural and dynamic properties of ionic liquids and organic ionic plastic crystals with a small ether-functionalised cation Mater. Chem. Front. 6 1437-55 doi: 10.1039/D2QM00045H
|
[34] |
Park H, Park C B, Sung B J 2021 The effects of vacancies and their mobility on the dynamic heterogeneity in 1,3-dimethylimidazolium hexafluorophosphate organic ionic plastic crystals Phys. Chem. Chem. Phys. 23 11980-9 doi: 10.1039/D1CP00952D
|
[35] |
Zhu H, Wang X, Vijayaraghava R, Zhou Y, Macfarlane D R, Forsyth M 2018 Structure and ion dynamics in imidazolium-based protic organic ionic plastic crystals J. Phys. Chem. Lett. 9 3904-9 doi: 10.1021/acs.jpclett.8b01500
|
[36] |
Abeysooriya S, Lee M, O’Dell L A, Pringle J M 2022 Plastic crystal-based electrolytes using novel dicationic salts Phys. Chem. Chem. Phys. 24 4899-909 doi: 10.1039/D1CP04314E
|
[37] |
Yamada H, Miyachi Y, Takeoka Y, Rikukawa M, Yoshizawa-Fujita M 2019 Pyrrolidinium-based organic ionic plastic crystals: relationship between side chain length and properties Electrochim. Acta 303 293-8 doi: 10.1016/j.electacta.2019.02.076
|
[38] |
Sirigiri N, Chen F, Forsyth C M, Yunis R, O’Dell L, Pringle J M, Forsyth M 2022 Factors controlling the physical properties of an organic ionic plastic crystal Mater. Today Phys. 22 100603 doi: 10.1016/j.mtphys.2022.100603
|
[39] |
Li S, Yang K, Zhang Z, Yang L, Hirano S-I 2018 Organic ionic plastic crystal-poly(ethylene oxide) solid polymer electrolytes: application in all-solid-state lithium batteries Ind. Eng. Chem. Res. 57 13608-14 doi: 10.1021/acs.iecr.8b01964
|
[40] |
Fang Z, Zhao M, Peng Y, Guan S 2021 Organic ionic plastic crystal enhanced interface compatibility of PEO-based solid polymer electrolytes for lithium-metal batteries Solid State Ion. 373 115806 doi: 10.1016/j.ssi.2021.115806
|
[41] |
Wang W, Fang Z, Zhao M, Peng Y, Zhang J, Guan S 2020 Solid polymer electrolytes based on the composite of PEO-LiFSI and organic ionic plastic crystal Chem. Phys. Lett. 747 137335 doi: 10.1016/j.cplett.2020.137335
|
[42] |
Iranipour N, Gunzelmann D J, Seeber A J, Vongsvivut J, Hollenkamp A F, Forsyth M, Howlett P C 2017 Effect of secondary phase on thermal behaviour and solid-state ion conduction in lithium doped N-ethyl-N-methylpyrrolidinium tetrafluoroborate organic ionic plastic crystal J. Mater. Chem. A 5 24909-19 doi: 10.1039/C7TA08653A
|
[43] |
Zhou Y, Wang X, Zhu H, Armand M, Forsyth M, Greene G W, Pringle L M, Howlett P C 2017 N-ethyl-N-methylpyrrolidinium bis(fluorosulfonyl)imide-electrospun polyvinylidene fluoride composite electrolytes: characterization and lithium cell studies Phys. Chem. Chem. Phys. 19 2225-34 doi: 10.1039/C6CP07415D
|
[44] |
Al-Masri D, Yunis R, Hollenkamp A F, Pringle J M 2020 Designing solid-state electrolytes through the structural modification of a high-performing ionic liquid ChemElectroChem. 7 4118-23 doi: 10.1002/celc.202000772
|
[45] |
Al-Masri D, Yunis R, Zhu H, Jin L, Bruce P, Hollenkamp A F, Pringle J M 2019 A new approach to very high lithium salt content quasi-solid state electrolytes for lithium metal batteries using plastic crystals J. Mater. Chem. A 7 25389-98 doi: 10.1039/C9TA11175A
|
[46] |
Biernacka K, Al-Masri D, Yunis R, Zhu H, Hollenkamp A F, Pringle J M 2020 Development of new solid-state electrolytes based on a hexamethylguanidinium plastic crystal and lithium salts Electrochim. Acta 357 136863 doi: 10.1016/j.electacta.2020.136863
|
[47] |
Jin L, Howlett P C, Pringle J M, Janikowski J, Armand M, MacFarlane D R, Forsyth M 2014 An organic ionic plastic crystal electrolyte for rate capability and stability of ambient temperature lithium batteries Energy Environ. Sci. 7 3352-61 doi: 10.1039/C4EE01085J
|
[48] |
Zhou Y, Wang X, Zhu H, Greene G W, Armand M, Forsyth M, Pringle K M, Howlett P C 2021 Phase behavior and electrochemical properties of solid lithium electrolytes based on N-ethyl-N-methylpyrrolidinium bis(fluorosulfonyl)imide and PVdF composites Solid State Ion. 363 115588 doi: 10.1016/j.ssi.2021.115588
|
[49] |
Yang K, Zhang Z, Liao Z, Yang L, Hirano S-I 2018 Organic ionic plastic crystal-polymer solid electrolytes with high ionic conductivity and mechanical ability for solid-state lithium ion batteries ChemistrySelect 3 12595-9 doi: 10.1002/slct.201803094
|
[50] |
Zhou Y, Wang X, Zhu H, YoshizawaFujita M, Miyachi Y, Armand M, Forsyth M, Greene G W, Pringle J M, Howlett P C 2017 Solid-state lithium conductors for lithium metal batteries based on electrospun nanofiber/plastic crystal composites ChemSusChem 10 3135-45 doi: 10.1002/cssc.201700691
|
[51] |
Rao J, Vijayaraghavan R, Wang X, Zhou Y, Howlett P C, Macfarlane D R, Forsyth M, Zhu H 2018 Influence of electrospun poly(vinylidene difluoride) nanofiber matrix on the ion dynamics of a protic organic ionic plastic crystal J. Phys. Chem C 122 14546-53 doi: 10.1021/acs.jpcc.8b02985
|
[52] |
Nti F, Greene G W, Zhu H, Howlett P C, Forsyth M, Wang X 2021 Anion effects on the properties of OIPC/PVDF composites Mater. Adv. 2 1683-94 doi: 10.1039/D0MA00992J
|
[53] |
Nti F, Porcarelli L, Greene G W, Zhu H, Makhlooghiazad F, Mecerreyes D, Howlett P C, Forsyth M, Wang X 2020 The influence of interfacial interactions on the conductivity and phase behaviour of organic ionic plastic crystal/polymer nanoparticle composite electrolytes J. Mater. Chem. A 8 5350-62 doi: 10.1039/C9TA12827A
|
[54] |
Zhang H, et al 2019 Enhanced lithium-ion conductivity of polymer electrolytes by selective introduction of hydrogen into the anion Angew. Chem., Int. Ed. Engl. 58 7829-34 doi: 10.1002/anie.201813700
|
[55] |
Hei Z, Wu S, Zheng H, Liu H, Duan H 2022 Increasing the electrochemical stability window for polyethylene-oxide-based solid polymer electrolytes by understanding the affecting factors Solid State Ion. 375 115837 doi: 10.1016/j.ssi.2021.115837
|
[56] |
Burjanadze M, et al 2010 Salt-in-polymer electrolytes for lithium ion batteries based on organo-functionalized polyphosphazenes and polysiloxanes Z. Phys. Chem. 224 1439-73 doi: 10.1524/zpch.2010.0046
|
[57] |
Hu P, Chai J, Duan Y, Liu Z, Cui G, Chen L 2016 Progress in nitrile-based polymer electrolytes for high performance lithium batteries J. Mater. Chem. A 4 10070-83 doi: 10.1039/C6TA02907H
|
[58] |
Mindemark J, Sun B, Trm E, Brandell D 2015 High-performance solid polymer electrolytes for lithium batteries operational at ambient temperature J. Power Sources 298 166-70 doi: 10.1016/j.jpowsour.2015.08.035
|
[59] |
Mindemark J, Lacey M J, Bowden T, Brandell D 2018 Beyond PEOalternative host materials for Li+-conducting solid polymer electrolytes Prog. Polym. Sci. 81 114-43 doi: 10.1016/j.progpolymsci.2017.12.004
|
[60] |
Eriksson T, Mindemark J, Yue M, Brandell D 2019 Effects of nanoparticle addition to poly(-caprolactone) electrolytes: crystallinity, conductivity and ambient temperature battery cycling Electrochim. Acta 300 489-96 doi: 10.1016/j.electacta.2019.01.117
|
[61] |
Commarieu B, Paolella A, Collin-Martin S, Gagnon C, Vijh A, Guerfi A, Zaghib K 2019 Solid-to-liquid transition of polycarbonate solid electrolytes in Li-metal batteries J. Power Sources 436 226852 doi: 10.1016/j.jpowsour.2019.226852
|
[62] |
Aldalur I, Zhang H, Piszcz M, Oteo U, Rodriguez-Martinez L M, Shanmukaraj D, Rojo T, Armand M 2017 Jeffamine based polymers as highly conductive polymer electrolytes and cathode binder materials for battery application J. Power Sources 347 37-46 doi: 10.1016/j.jpowsour.2017.02.047
|
[63] |
Aldalur I, Martinez-Ibaez M, Piszcz M, Rodriguez-Martinez L M, Zhang H, Armand M 2018 Lowering the operational temperature of all-solid-state lithium polymer cell with highly conductive and interfacially robust solid polymer electrolytes J. Power Sources 383 144-9 doi: 10.1016/j.jpowsour.2018.02.066
|
[64] |
Aldalur I, Martinez-Ibaez M, Krzto-Maziopa A, Piszcz M, Armand M, Zhang H 2019 Flowable polymer electrolytes for lithium metal batteries J. Power Sources 423 218-26 doi: 10.1016/j.jpowsour.2019.03.057
|
[65] |
Aldalur I, Martinezibaez M, Piszcz M, Zhang H, Armand M 2018 Self-standing highly conductive solid electrolytes based on block copolymers for rechargeable all-solid-state lithium-metal batteries Batter. Supercaps 1 149-59 doi: 10.1002/batt.201800048
|
[66] |
Aldalur I, et al 2020 Nanofiber-reinforced polymer electrolytes toward room temperature solid-state lithium batteries J. Power Sources 448 227424 doi: 10.1016/j.jpowsour.2019.227424
|
[67] |
Arrese-Igor M, Martinez-Ibaez M, Pavlenko E, Forsyth M, Zhu H, Armand M, Aguesse F, Lpez-Aranguren P 2022 Toward high-voltage solid-state li-metal batteries with double-layer polymer electrolytes ACS Energy Lett. 7 1473-80 doi: 10.1021/acsenergylett.2c00488
|
[68] |
Zhang J, et al 2015 Safety-reinforced poly(propylene carbonate)-based all-solid-state polymer electrolyte for ambient-temperature solid polymer lithium batteries Adv. Energy Mater. 5 1501082 doi: 10.1002/aenm.201501082
|
[69] |
Wang C, Zhang H, Li J, Chai J, Dong S, Cui G 2018 The interfacial evolution between polycarbonate-based polymer electrolyte and Li-metal anode J. Power Sources 397 157-61 doi: 10.1016/j.jpowsour.2018.07.008
|
[70] |
Meabe L, Pea S R, Martinez-Ibaez M, Zhang Y, Lobato E, Manzano H, Armand M, Carrasco J, Zhang H 2020 Insight into the ionic transport of solid polymer electrolytes in polyether and polyester blends J. Phys. Chem. C 124 17981-91 doi: 10.1021/acs.jpcc.0c04987
|
[71] |
Arrese-Igor M, Martinez-Ibaez M, Lpez Del Amo J M, Sanchez-Diez E, Shanmukaraj D, Dumont E, Armand M, Aguesse F, Lpez-Aranguren P 2022 Enabling double layer polymer electrolyte batteries: overcoming the Li-salt interdiffusion Energy Storage Mater. 45 578-85 doi: 10.1016/j.ensm.2021.11.052
|
[72] |
Arrese-Igor M, Martinez-Ibaez M, Orue A, Pavlenko E, Dumont E, Armand M, Aguesse F, Lpez-Aranguren P 2022 Influence of the operating temperature on the ageing and interfaces of double layer polymer electrolyte solid state Li metal batteries Nano Res. 1998-0124 doi: 10.1007/s12274-022-5278-2
|
[73] |
Porcarelli L, Shaplov A S, Salsamendi M, Nair J R, Vygodskii Y S, Mecerreyes D, Gerbaldi C 2016 Single-ion block copoly(ionic liquid)s as electrolytes for all-solid state lithium batteries ACS Appl. Mater. Interfaces 8 10350-9 doi: 10.1021/acsami.6b01973
|
[74] |
Porcarelli L, Aboudzadeh M A, Rubatat L, Nair J R, Shaplov A S, Gerbaldi C, Mecerreyes D 2017 Single-ion triblock copolymer electrolytes based on poly(ethylene oxide) and methacrylic sulfonamide blocks for lithium metal batteries J. Power Sources 364 191-9 doi: 10.1016/j.jpowsour.2017.08.023
|
[75] |
Mindemark J, Trm E, Sun B, Brandell D 2015 Copolymers of trimethylene carbonate and -caprolactone as electrolytes for lithium-ion batteries Polymer 63 91-98 doi: 10.1016/j.polymer.2015.02.052
|
[76] |
Johansson I L, Brandell D, Mindemark J 2020 Mechanically stable UV-crosslinked polyester-polycarbonate solid polymer electrolyte for high-temperature batteries Batter. Supercaps 3 527-33 doi: 10.1002/batt.201900228
|
[77] |
Luo Y, Li X, Zhang Y, Ge L, Chen H, Guo L 2019 Electrochemical properties and structural stability of Ga- and Y- co-doping in Li7La3Zr2O12 ceramic electrolytes for lithium-ion batteries Electrochim. Acta 294 217-25 doi: 10.1016/j.electacta.2018.10.078
|
[78] |
Ohta S, Kobayashi T, Seki J, Asaoka T 2012 Electrochemical performance of an all-solid-state lithium ion battery with garnet-type oxide electrolyte J. Power Sources 202 332-5 doi: 10.1016/j.jpowsour.2011.10.064
|
[79] |
Shao Y, et al 2018 Drawing a soft interface: an effective interfacial modification strategy for garnet-type solid-state Li batteries ACS Energy Lett. 3 1212-8 doi: 10.1021/acsenergylett.8b00453
|
[80] |
Zhang W, Nie J, Li F, Wang Z L, Sun C 2018 A durable and safe solid-state lithium battery with a hybrid electrolyte membrane Nano Energy 45 413-9 doi: 10.1016/j.nanoen.2018.01.028
|
[81] |
Zhou L, Kwok C Y, Shyamsunder A, Zhang Q, Wu X, Nazar L F 2020 A new halospinel superionic conductor for high-voltage all solid state lithium batteries Energy Environ. Sci. 13 2056-63 doi: 10.1039/D0EE01017K
|
[82] |
Kwak H, et al 2021 New cost-effective halide solid electrolytes for all-solid-state batteries: mechanochemically prepared Fe3+-Substituted Li2ZrCl6 Adv. Energy Mater. 11 2003190 doi: 10.1002/aenm.202003190
|
[83] |
Liu Z, Ma S, Liu J, Xiong S, Ma Y, Chen H 2021 High ionic conductivity achieved in Li3Y(Br3Cl3) mixed halide solid electrolyte via promoted diffusion pathways and enhanced grain boundary ACS Energy Lett. 6 298-304 doi: 10.1021/acsenergylett.0c01690
|
[84] |
Cronk A, et al 2023 Overcoming the interfacial challenges of LiFePO4 in inorganic all-solid-state batteries ACS Energy Lett. 8 827-35 doi: 10.1021/acsenergylett.2c02138
|
[85] |
Zhou L, Assoud A, Zhang Q, Wu X, Nazar L F 2019 New family of argyrodite thioantimonate lithium superionic conductors J. Am. Chem. Soc. 141 19002-13 doi: 10.1021/jacs.9b08357
|
[86] |
Kamaya N, et al 2011 A lithium superionic conductor Nat. Mater. 10 682-6 doi: 10.1038/nmat3066
|
[87] |
Zhang J, Zhong H, Zheng C, Xia Y, Liang C, Huang H, Gan Y, Tao X, Zhang W 2018 All-solid-state batteries with slurry coated LiNi0.8Co0.1Mn0.1O2 composite cathode and Li6PS5Cl electrolyte: effect of binder content J. Power Sources 391 73-79 doi: 10.1016/j.jpowsour.2018.04.069
|
[88] |
Okada K, Machida N, Naito M, Shigematsu T, Ito S, Fujiki S, Nakano M, Aihara Y 2014 Preparation and electrochemical properties of LiAlO2-coated Li(Ni1/3Mn1/3Co1/3)O2 for all-solid-state batteries Solid State Ion. 255 120-7 doi: 10.1016/j.ssi.2013.12.019
|
[89] |
DeWees R, Wang H 2019 Synthesis and properties of NaSICON-type LATP and LAGP solid electrolytes ChemSusChem 12 3713-25 doi: 10.1002/cssc.201900725
|
[90] |
Xu X, Wen Z, Yang X, Chen L 2008 Dense nanostructured solid electrolyte with high Li-ion conductivity by spark plasma sintering technique Mater. Res. Bull. 43 2334-41 doi: 10.1016/j.materresbull.2007.08.007
|
[91] |
Benabed Y, Rioux M, Rousselot S, Hautier G, Doll M 2021 Assessing the electrochemical stability window of NASICON-type solid electrolytes Front. Energy Res. 9 682008 doi: 10.3389/fenrg.2021.682008
|
[92] |
Zheng F, Kotobuki M, Song S, Lai M O, Lu L 2018 Review on solid electrolytes for all-solid-state lithium-ion batteries J. Power Sources 389 198-213 doi: 10.1016/j.jpowsour.2018.04.022
|
[93] |
Ohta S, Kobayashi T, Asaoka T 2011 High lithium ionic conductivity in the garnet-type oxide Li7-X La3(Zr2-X, NbX)O12 (X = 0-2) J. Power Sources 196 3342-5 doi: 10.1016/j.jpowsour.2010.11.089
|
[94] |
Murugan R, Thangadurai V, Weppner W 2007 Fast lithium ion conduction in garnet-type Li7La 3Zr2O12 Angew. Chem., Int. Ed. 46 7778-81 doi: 10.1002/anie.200701144
|
[95] |
Wang Y, Wu Y, Wang Z, Chen L, Li H, Wu F 2022 Doping strategy and mechanism for oxide and sulfide solid electrolytes with high ionic conductivity J. Mater. Chem. A 10 4517-32 doi: 10.1039/D1TA10966A
|
[96] |
Thangadurai V, Weppner W 2006 Recent progress in solid oxide and lithium ion conducting electrolytes research Ionics 12 81-92 doi: 10.1007/s11581-006-0013-7
|
[97] |
Kim K J, Balaish M, Wadaguchi M, Kong L, Rupp J L M 2021 Solid-state Li-metal batteries: challenges and horizons of oxide and sulfide solid electrolytes and their interfaces Adv. Energy Mater. 11 2002689 doi: 10.1002/aenm.202002689
|
[98] |
Monroe C, Newman J 2005 The impact of elastic deformation on deposition kinetics at lithium/polymer interfaces J. Electrochem. Soc. 152 A396 doi: 10.1149/1.1850854
|
[99] |
Golozar M, Paolella A, Demers H, Savoie S, Girard G, Delaporte N, Gauvin R, Guerfi A, Lorrmann H, Zaghib K 2020 Direct observation of lithium metal dendrites with ceramic solid electrolyte Sci. Rep. 10 18410 doi: 10.1038/s41598-020-75456-0
|
[100] |
Wu J, Liu S, Han F, Yao X, Wang C 2021 Lithium/sulfide all-solid-state batteries using sulfide electrolytes Adv. Mater. 33 2000751 doi: 10.1002/adma.202000751
|
[101] |
Zhou L, Minafra N, Zeier W G, Nazar L F 2021 Innovative approaches to Li-argyrodite solid electrolytes for all-solid-state lithium batteries Acc. Chem. Res. 54 2717-28 doi: 10.1021/acs.accounts.0c00874
|
[102] |
Lian P J, Zhao B S, Zhang L Q, Xu N, Wu M T, Gao X P 2019 Inorganic sulfide solid electrolytes for all-solid-state lithium secondary batteries J. Mater. Chem. A 7 20540-57 doi: 10.1039/C9TA04555D
|
[103] |
Lau J, DeBlock R H, Butts D M, Ashby D S, Choi C S, Dunn B S 2018 Sulfide solid electrolytes for lithium battery applications Adv. Energy Mater. 8 1800933 doi: 10.1002/aenm.201800933
|
[104] |
Wang S, Fang R, Li Y, Liu Y, Xin C, Richter F H, Nan C-W 2021 Interfacial challenges for all-solid-state batteries based on sulfide solid electrolytes J. Materiomics 7 209-18 doi: 10.1016/j.jmat.2020.09.003
|
[105] |
Wang C, Liang J, Kim J T, Sun X 2022 Prospects of halide-based all-solid-state batteries: from material design to practical application Sci Adv. 8 doi: 10.1126/sciadv.adc9516
|
[106] |
Combs S R, Todd P K, Gorai P, Maughan A E 2022 Editors’ choicereviewdesigning defects and diffusion through substitutions in metal halide solid electrolytes J. Electrochem. Soc. 169 040551 doi: 10.1149/1945-7111/ac5bad
|
[107] |
Asano T, Sakai A, Ouchi S, Sakaida M, Miyazaki A, Hasegawa S 2018 Solid halide electrolytes with high lithium-ion conductivity for application in 4 V class bulk-type all-solid-state batteries Adv. Mater. 30 1803075 doi: 10.1002/adma.201803075
|
[108] |
Boaretto N, Garbayo I, Valiyaveettil-sobhanraj S, Quintela A, Li C, Casas-Cabanas M, Aguesse F 2021 Lithium solid-state batteries: state-of-the-art and challenges for materials, interfaces and processing J. Power Sources 502 229919 doi: 10.1016/j.jpowsour.2021.229919
|
[109] |
Balaish M, Gonzalez-Rosillo J C, Kim K J, Zhu Y, Hood Z D, Rupp J L M 2021 Processing thin but robust electrolytes for solid-state batteries Nat. Energy 6 227-39 doi: 10.1038/s41560-020-00759-5
|
[110] |
Lpez-Aranguren P, Reynaud M, Guchowski P, Bustinza A, Galceran M, Lpez Del Amo J M, Armand M, Casas-Cabanas M 2021 Crystalline LiPON as a bulk-type solid electrolyte ACS Energy Lett. 6 445-50 doi: 10.1021/acsenergylett.0c02336
|
[111] |
Manthiram A, Yu X, Wang S 2017 Lithium battery chemistries enabled by solid-state electrolytes Nat. Rev. Mater. 2 16103 doi: 10.1038/natrevmats.2016.103
|
[112] |
Reddy M V, Julien C M, Mauger A, Zaghib K 2019 Sulfide and oxide inorganic solid electrolytes for all-solid-state li batteries: a review Nanomaterials 10 1-80 doi: 10.3390/nano10010001
|
[113] |
Campanella D, Belanger D, Paolella A 2021 Beyond garnets, phosphates and phosphosulfides solid electrolytes: new ceramic perspectives for all solid lithium metal batteries J. Power Sources 482 228949 doi: 10.1016/j.jpowsour.2020.228949
|
[114] |
Yan Y, Khnel R-S, Remhof A, Duchne L, Reyes E C, Rentsch D, odziana Z, Battaglia C 2017 A lithium amide-borohydride solid-state electrolyte with lithium-ion conductivities comparable to liquid electrolytes Adv. Energy Mater. 7 1700294 doi: 10.1002/aenm.201700294
|
[115] |
Yamauchi A, Sakuda A, Hayashi A, Tatsumisago M 2013 Preparation and ionic conductivities of (100-X)(0.75Li2S·0.25P2S5)· xLiBH4 glass electrolytes J. Power Sources 244 707-10 doi: 10.1016/j.jpowsour.2012.12.001
|
[116] |
Subramanian K, Alexander G V, Karthik K, Patra S, Indu M S, Sreejith O V, Viswanathan R, Narayanasamy J, Murugan R 2021 A brief review of recent advances in garnet structured solid electrolyte based lithium metal batteries J. Energy Storage 33 102157 doi: 10.1016/j.est.2020.102157
|
[117] |
Thokchom J S, Kumar B 2010 The effects of crystallization parameters on the ionic conductivity of a lithium aluminum germanium phosphate glass-ceramic J. Power Sources 195 2870-6 doi: 10.1016/j.jpowsour.2009.11.037
|
[118] |
Fincher C D, Athanasiou C E, Gilgenbach C, Wang M, Sheldon B W, Carter W C, Chiang Y-M 2022 Controlling dendrite propagation in solid-state batteries with engineered stress Joule 6 2794-809 doi: 10.1016/j.joule.2022.10.011
|
[119] |
Wu J, Shen L, Zhang Z, Liu G, Wang Z, Zhou D, Wan H, Xu X, Yao X 2021 All-solid-state lithium batteries with sulfide electrolytes and oxide cathodes Electrochem. Energy Rev. 4 101-35 doi: 10.1007/s41918-020-00081-4
|
[120] |
Yu T, Yang X, Yang R, Bai X, Xu G, Zhao S, Duan Y, Wu Y, Wang J 2021 Progress and perspectives on typical inorganic solid-state electrolytes J. Alloys Compd. 885 161013 doi: 10.1016/j.jallcom.2021.161013
|
[121] |
Liu H, He P, Wang G, Liang Y, Wang C, Fan L-Z 2022 Thin, flexible sulfide-based electrolyte film and its interface engineering for high performance solid-state lithium metal batteries J. Chem. Eng. 430 132991 doi: 10.1016/j.cej.2021.132991
|
[122] |
Keller M, Varzi A, Passerini S 2018 Hybrid electrolytes for lithium metal batteries J. Power Sources 392 206-25 doi: 10.1016/j.jpowsour.2018.04.099
|
[123] |
Boaretto N, Meabe L, Martinez-Ibaez M, Armand M, Zhang H 2020 Reviewpolymer electrolytes for rechargeable batteries: from nanocomposite to nanohybrid J. Electrochem. Soc. 167 070524 doi: 10.1149/1945-7111/ab7221
|
[124] |
Croce F, Settimi L, Scrosati B 2006 Superacid ZrO2-added, composite polymer electrolytes with improved transport properties Electrochem. Commun. 8 364-8 doi: 10.1016/j.elecom.2005.12.002
|
[125] |
Dissanayake M A K L, Jayathilaka P A R D, Bokalawala R S P, Albinsson I, Mellander B E 2003 Effect of concentration and grain size of alumina filler on the ionic conductivity enhancement of the (PEO)9LiCF3SO3: al2O3 composite polymer electrolyte J. Power Sources 119-121 409-14 doi: 10.1016/S0378-7753(03)00262-3
|
[126] |
Jiang G, Maeda S, Yang H, Saito Y, Tanase S, Sakai T 2005 All solid-state lithium-polymer battery using poly(urethane acrylate)/nano-SiO2 composite electrolytes J. Power Sources 141 143-8 doi: 10.1016/j.jpowsour.2004.09.004
|
[127] |
Chung S H, Wang Y, Persi L, Croce F, Greenbaum S G, Scrosati B, Plichta E 2001 Enhancement of ion transport in polymer electrolytes by addition of nanoscale inorganic oxides J. Power Sources 97-98 644-8 doi: 10.1016/S0378-7753(01)00748-0
|
[128] |
Croce F, Persi L, Scrosati B, Serraino-Fiory F, Plichta E, Hendrickson M A 2001 Role of the ceramic fillers in enhancing the transport properties of composite polymer electrolytes Electrochim. Acta. 46 2457-61 doi: 10.1016/S0013-4686(01)00458-3
|
[129] |
Kalnaus S, Tenhaeff W E, Sakamoto J, Sabau A S, Daniel C, Dudney N J 2013 Analysis of composite electrolytes with sintered reinforcement structure for energy storage applications J. Power Sources 241 178-85 doi: 10.1016/j.jpowsour.2013.04.096
|
[130] |
Zagrski J, Lpez Del Amo J M, Cordill M J, Aguesse F, Buannic L, Llords A 2019 Garnet-polymer composite electrolytes: new insights on local li-ion dynamics and electrodeposition stability with Li metal anodes ACS Appl. Energy Mater. 2 1734-46 doi: 10.1021/acsaem.8b01850
|
[131] |
Keller M, Appetecchi G B, Kim G-T, Sharova V, Schneider M, Schuhmacher J, Roters A, Passerini S 2017 Electrochemical performance of a solvent-free hybrid ceramic-polymer electrolyte based on Li7La3Zr2O12 in P(EO)15LiTFSI J. Power Sources 353 287-97 doi: 10.1016/j.jpowsour.2017.04.014
|
[132] |
Chen R, Qu W, Guo X, Li L, Wu F 2016 The pursuit of solid-state electrolytes for lithium batteries: from comprehensive insight to emerging horizons Mater. Horiz. 3 487-516 doi: 10.1039/C6MH00218H
|
[133] |
Jung Y C, Lee S M, Choi J H, Jang S S, Kim D W 2015 All solid-state lithium batteries assembled with hybrid solid electrolytes J. Electrochem. Soc. 162 A1236-45 doi: 10.1149/2.0481507jes
|
[134] |
Lpez-Aranguren P, Judez X, Chakir M, Armand M, Buannic L 2020 High voltage solid state batteries: targeting high energy density with polymer composite electrolytes J. Electrochem. Soc. 167 020548 doi: 10.1149/1945-7111/ab6dd7
|
[135] |
Wang C, Yang Y, Liu X, Zhong H, Xu H, Xu Z, Shao H, Ding F 2017 Suppression of lithium dendrite formation by using LAGP-PEO (LiTFSI) composite solid electrolyte and lithium metal anode modified by PEO (LiTFSI) in all-solid-state lithium batteries ACS Appl. Mater. Interfaces 9 13694-702 doi: 10.1021/acsami.7b00336
|
[136] |
Wang X, et al 2019 Rechargeable solid-state lithium metal batteries with vertically aligned ceramic nanoparticle/polymer composite electrolyte Nano Energy 60 205-12 doi: 10.1016/j.nanoen.2019.03.051
|
[137] |
Yu G, Wang Y, Li K, Sun S, Sun S, Chen J, Pan L, Sun Z M 2022 Plasma optimized Li7La3Zr2O12 with vertically aligned ion diffusion pathways in composite polymer electrolyte for stable solid-state lithium metal batteries J. Chem. Eng. 430 132874 doi: 10.1016/j.cej.2021.132874
|
[138] |
Zhang X, Xie J, Shi F, Lin D, Liu Y, Liu W, Xiang Y, Cui Y 2018 Vertically aligned and continuous nanoscale ceramic-polymer interfaces in composite solid polymer electrolytes for enhanced ionic conductivity Nano Lett. 18 3829-38 doi: 10.1021/acs.nanolett.8b01111
|
[139] |
Li Y, Zhai Y, Xu S, Tang M, Zhang S, Zou Z 2022 Using LLTO with vertically aligned and oriented structures to improve the ion conductivity of composite solid-state electrolytes Mater. Today Commun. 33 104243 doi: 10.1016/j.mtcomm.2022.104243
|
[140] |
Zhai H, Xu P, Ning M, Cheng Q, Mandal J, Yang Y 2017 Composite electrolyte with vertically aligned and connected ion-conducting nanoparticles for lithium batteries Nano Lett. 17 3182-7 doi: 10.1021/acs.nanolett.7b00715
|
[141] |
Li Y, Tang M, Xu S, Zhang S, Zhai Y, Yin J, Zou Z 2022 Enhanced ionic conductivity of composite solid electrolyte by directionally ordered structures of linear Li1.3Al0.3Ti1.7(PO43 J. Ind. Eng. Chem. 114 126-33 doi: 10.1016/j.jiec.2022.06.039
|
[142] |
Zha W, Li W, Ruan Y, Wang J, Wen Z 2021 In situ fabricated ceramic/polymer hybrid electrolyte with vertically aligned structure for solid-state lithium batteries Energy Storage Mater. 36 171-8 doi: 10.1016/j.ensm.2020.12.028
|
[143] |
Liu W, Liu N, Sun J, Hsu P-C, Li Y, Lee H-W, Cui Y 2015 Ionic conductivity enhancement of polymer electrolytes with ceramic nanowire fillers Nano Lett. 15 2740-5 doi: 10.1021/acs.nanolett.5b00600
|
[144] |
Liu W, Lee S W, Lin D, Shi F, Wang S, Sendek A D, Cui Y 2017 Enhancing ionic conductivity in composite polymer electrolytes with well-aligned ceramic nanowires Nat. Energy 2 17035 doi: 10.1038/nenergy.2017.35
|
[145] |
Tan D H S, Meng Y S, Jang J 2022 Scaling up high-energy-density sulfidic solid-state batteries: a lab-to-pilot perspective Joule 6 1755-69 doi: 10.1016/j.joule.2022.07.002
|
mfacdd86supp1.pdf |