Citation: | Tenglong Lu, Yanan Wang, Guanghui Cai, Huaxian Jia, Xinxin Liu, Cui Zhang, Sheng Meng, Miao Liu. Synthesizability of transition-metal dichalcogenides: a systematic first-principles evaluation[J]. Materials Futures, 2023, 2(1): 015001. doi: 10.1088/2752-5724/acbe10 |
[1] |
Wilson J A, Yoffe A D 1969 The transition metal dichalcogenides discussion and interpretation of the observed optical, electrical and structural properties Adv. Phys. 18 193-335 doi: 10.1080/00018736900101307
|
[2] |
Nicolosi V, Chhowalla M, Kanatzidis M G, Strano M S, Coleman J N 2013 Liquid exfoliation of layered materials Science 340 1226419 doi: 10.1126/science.1226419
|
[3] |
Li J, et al 2021 Printable two-dimensional superconducting monolayers Nat. Mater. 20 181-7 doi: 10.1038/s41563-020-00831-1
|
[4] |
Splendiani A, Sun L, Zhang Y, Li T, Kim J, Chim C Y, Galli G, Wang F 2010 Emerging photoluminescence in monolayer MoS2 Nano Lett. 10 1271-5 doi: 10.1021/nl903868w
|
[5] |
Xiao D, Liu G B, Feng W, Xu X, Yao W 2012 Coupled spin and valley physics in monolayers of MoS2 and other group-VI dichalcogenides Phys. Rev. Lett. 108 196802 doi: 10.1103/PhysRevLett.108.196802
|
[6] |
Bhandavat R, David L, Singh G 2012 Synthesis of surface-functionalized WS2 nanosheets and performance as Li-ion battery anodes J. Phys. Chem. Lett. 3 1523-30 doi: 10.1021/jz300480w
|
[7] |
Liu C, Chen H, Wang S, Liu Q, Jiang Y-G, Zhang D W, Liu M, Zhou P 2020 Two-dimensional materials for next-generation computing technologies Nat. Nanotechnol. 15 545-57 doi: 10.1038/s41565-020-0724-3
|
[8] |
Liu Z, Na G, Tian F, Yu L, Li J, Zhang L 2020 Computational functionality-driven design of semiconductors for optoelectronic applications InfoMat 2 879-904 doi: 10.1002/inf2.12099
|
[9] |
Lu X-C, Lu Y-Z, Wang C, Cao Y 2022 Efficient photoelectrodes based on two-dimensional transition metal dichalcogenides heterostructures: from design to construction Rare Met. 41 1142-59 doi: 10.1007/s12598-021-01875-1
|
[10] |
Niu H, Wang X, Shao C, Zhang Z, Guo Y 2020 Computational screening single-atom catalysts supported on g-CN for N2 reduction: high activity and selectivity ACS Sustain. Chem. Eng. 8 13749-58 doi: 10.1021/acssuschemeng.0c04401
|
[11] |
Belsky A, Hellenbrandt M, Karen V L, Luksch P 2002 New developments in the Inorganic Crystal Structure Database (ICSD): accessibility in support of materials research and design Acta Crystallogr. B 58 364-9 doi: 10.1107/S0108768102006948
|
[12] |
Atomly Materials Database (available at: www.atomly.net)
|
[13] |
Chhowalla M, Shin H S, Eda G, Li L J, Loh K P, Zhang H 2013 The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets Nat. Chem. 5 263-75 doi: 10.1038/nchem.1589
|
[14] |
Keum D H, et al 2015 Bandgap opening in few-layered monoclinic MoTe2 Nat. Phys. 11 482-6 doi: 10.1038/nphys3314
|
[15] |
Cho S, et al 2015 Phase patterning for ohmic homojunction contact in MoTe2 Science 349 625-8 doi: 10.1126/science.aab3175
|
[16] |
Lee C-H, Silva E C, Calderin L, Nguyen M A T, Hollander M J, Bersch B, Mallouk T E, Robinson J A 2015 Tungsten ditelluride: a layered semimetal Sci. Rep. 5 10013 doi: 10.1038/srep10013
|
[17] |
Saha P, Ghosh B, Mazumder A, Glazyrin K, Dev Mukherjee G 2020 Pressure induced lattice expansion and phonon softening in layered ReS2 J. Appl. Phys. 128 085904 doi: 10.1063/5.0014347
|
[18] |
Wang Y, Li Y, Chen Z 2015 Not your familiar two dimensional transition metal disulfide: structural and electronic properties of the PdS2 monolayer J. Mater. Chem. C 3 9603-8 doi: 10.1039/C5TC01345C
|
[19] |
Sun W, Dacek S T, Ong S P, Hautier G, Jain A, Richards W D, Gamst A C, Persson K A, Ceder G 2016 The thermodynamic scale of inorganic crystalline metastability Sci. Adv. 2 e1600225 doi: 10.1126/sciadv.1600225
|
[20] |
Yang H, Kim S W, Chhowalla M, Lee Y H 2017 Structural and quantum-state phase transitions in van der Waals layered materials Nat. Phys. 13 931-7 doi: 10.1038/nphys4188
|
[21] |
Yu Y G, Ross N L 2011 First-principles study on thermodynamic properties and phase transitions in TiS2 J. Phys.: Condens. Matter 23 055401 doi: 10.1088/0953-8984/23/5/055401
|
[22] |
Brostigen G, Kjekshus A 1970 Compounds with the marcasite type crystal structure Acta Chem. Scand. 24 1925-40 doi: 10.3891/acta.chem.scand.24-1925
|
[23] |
Bither T A, Bouchard R J, Cloud W H, Donohue P C, Siemons W J 1968 Transition metal pyrite dichalcogenides high-pressure synthesis and correlation of properties Inorg. Chem. 7 2208-20 doi: 10.1021/ic50069a008
|
[24] |
Kimber S A, Salamat A, Evans S R, Jeschke H O, Muthukumar K, Tomi M, Salvat-Pujol F, Valent R, Kaisheva M V, Zizak I 2014 Giant pressure-induced volume collapse in the pyrite mineral MnS2 Proc. Natl Acad. Sci. 111 5106-10 doi: 10.1073/pnas.1318543111
|
[25] |
Elliott N 1937 The crystal structure of manganese diselenide and manganese ditelluride J. Am. Chem. Soc. 59 1958-62 doi: 10.1021/ja01289a049
|
[26] |
Soulard C, Rocquefelte X, Petit P E, Evain M, Jobic S, Iti J P, Munsch P, Koo H J, Whangbo M H 2004 Experimental and theoretical investigation on the relative stability of the PdS2- and pyrite-type structures of PdSe2 Inorg. Chem. 43 1943-9 doi: 10.1021/ic0352396
|
[27] |
Wang Q H, Kalantar-Zadeh K, Kis A, Coleman J N, Strano M S 2012 Electronics and optoelectronics of two-dimensional transition metal dichalcogenides Nat. Nanotechnol. 7 699-712 doi: 10.1038/nnano.2012.193
|
[28] |
Wang C T, Du S 2020 A unique pentagonal network structure of the NiS2 monolayer with high stability and a tunable bandgap Phys. Chem. Chem. Phys. 22 7483-8 doi: 10.1039/D0CP00434K
|
[29] |
Zhang H, Dai Y-M, Liu L-M 2015 Novel monolayer pyrite FeS2 with atomic-thickness for magnetic devices Comput. Mater. Sci. 101 255-9 doi: 10.1016/j.commatsci.2015.01.035
|
[30] |
Kan M, Adhikari S, Sun Q 2014 Ferromagnetism in MnX2 (X = S, Se) monolayers Phys. Chem. Chem. Phys. 16 4990 doi: 10.1039/c3cp55146f
|
[31] |
Gjerding M N, et al 2021 Recent progress of the computational 2D materials database (C2DB) 2D Mater. 8 044002 doi: 10.1088/2053-1583/ac1059
|
[32] |
Bjorkman T, Gulans A, Krasheninnikov A V, Nieminen R M 2012 van der Waals bonding in layered compounds from advanced density-functional first-principles calculations Phys. Rev. Lett. 108 235502 doi: 10.1103/PhysRevLett.108.235502
|
[33] |
Revard B C, Tipton W W, Yesypenko A, Hennig R G 2016 Grand-canonical evolutionary algorithm for the prediction of two-dimensional materials Phys. Rev. B 93 054117 doi: 10.1103/PhysRevB.93.054117
|
[34] |
Mounet N, et al 2018 Two-dimensional materials from high-throughput computational exfoliation of experimentally known compounds Nat. Nanotechnol. 13 246-52 doi: 10.1038/s41565-017-0035-5
|
[35] |
Ashton M, Paul J, Sinnott S B, Hennig R G 2017 Topology-scaling identification of layered solids and stable exfoliated 2D materials Phys. Rev. Lett. 118 106101 doi: 10.1103/PhysRevLett.118.106101
|
[36] |
Zeng Z, Yin Z, Huang X, Li H, He Q, Lu G, Boey F, Zhang H 2011 Single-layer semiconducting nanosheets: high-yield preparation and device fabrication Angew. Chem., Int. Ed. Engl. 50 11093-7 doi: 10.1002/anie.201106004
|
[37] |
Qian X, Liu J, Fu L, Li J 2014 Quantum spin Hall effect in two-dimensional transition metal dichalcogenides Science 346 1344-7 doi: 10.1126/science.1256815
|
[38] |
Bastos C M O, Besse R, Da Silva J L F, Sipahi G M 2019 Ab initio investigation of structural stability and exfoliation energies in transition metal dichalcogenides based on Ti-, V-, and Mo-group elements Phys. Rev. Mater. 3 044002 doi: 10.1103/PhysRevMaterials.3.044002
|
[39] |
Pauling L 1932 The nature of the chemical bond IV. The energy of single bonds and the relative electronegativity of atoms J. Am. Chem. Soc. 54 3570-82 doi: 10.1021/ja01348a011
|
[40] |
Perdew J P, Burke K, Ernzerhof M 1996 Generalized gradient approximation made simple Phys. Rev. Lett. 77 3865-8 doi: 10.1103/PhysRevLett.77.3865
|
[41] |
Grimme S, Antony J, Ehrlich S, Krieg H 2010 A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu J. Chem. Phys. 132 154104 doi: 10.1063/1.3382344
|
[42] |
Kresse G, Furthmller J 1996 Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set Phys. Rev. B 54 11169-86 doi: 10.1103/PhysRevB.54.11169
|
[43] |
Ong S P, Richards W D, Jain A, Hautier G, Kocher M, Cholia S, Gunter D, Chevrier V L, Persson K A, Ceder G 2013 Python materials genomics (pymatgen): a robust, open-source Python library for materials analysis Comput. Mater. Sci. 68 314-9 doi: 10.1016/j.commatsci.2012.10.028
|
mfacbe10supp1.docx |