Exciton dynamics in 2D organic semiconductors
-
Graphical Abstract
-
Abstract
Two-dimensional (2D) semiconducting materials have been studied extensively for their interesting excitonic and optoelectronic properties arising from strong many-body interactions and quantum confinement at 2D limit. Most of these materials have been inorganic, such as transition metal dichalcogenides, phosphorene, etc. Organic semiconductor materials, on the other hand been investigated for their excellent electrical conductivity and low dielectric coefficients for similar applications in the thin film or bulk material phase. The lack of crystallinity in the thin film and bulk phases has led to ambiguity over the excitonic and electronic/optical band gap characteristics. The recent emergence of 2D organic materials has opened a new domain of high crystallinity and controlled morphology, allowing for the study of low-lying excitonic states and optoelectronic properties. They have been demonstrated to have different excitonic properties compared with the Wannier-Mott excitons in inorganic 2D materials. Here we present our recent experimental observations and analysis of 2D organic semiconductor materials. We discuss the role of high-crystalline and morphology-controlled growth of single-crystalline materials and their optoelectronic properties. The report explains the Frenkel (FR) and charge-transfer (CT) excitons and subsequent light emission and absorption properties in organic materials. The true nature of low-lying excitonic states, which arises from the interaction between CT and FR excitons, is experimentally studied and discussed to reveal the electronic band structure. We then discuss the pure FR behaviour we observed in J-type aggregated organic materials leading to coherent superradiant excitonic emissions. The supertransport of excitons within the organic materials, facilitated by their pure FR nature, and the delocalization of excitons over a large number of molecules are also demonstrated. Finally, we discuss the applications and our vision for these organic 2D materials in fast organic light-emitting diodes, high-speed excitonic circuits, quantum computing devices, and other optoelectronic devices.
-
-