Liwei Liu, Yibo Sun, Xiaohe Huang, Chunsen Liu, Zhaowu Tang, Senfeng Zeng, David Wei Zhang, Shaozhi Deng, Peng Zhou. Ultrafast flash memory with large self-rectifying ratio based on atomically thin MoS2-channel transistor[J]. Materials Futures, 2022, 1(2): 025301. DOI: 10.1088/2752-5724/ac7067
Citation: Liwei Liu, Yibo Sun, Xiaohe Huang, Chunsen Liu, Zhaowu Tang, Senfeng Zeng, David Wei Zhang, Shaozhi Deng, Peng Zhou. Ultrafast flash memory with large self-rectifying ratio based on atomically thin MoS2-channel transistor[J]. Materials Futures, 2022, 1(2): 025301. DOI: 10.1088/2752-5724/ac7067

Ultrafast flash memory with large self-rectifying ratio based on atomically thin MoS2-channel transistor

  • Flash memory with high operation speed and stable retention performance is in great demand to meet the requirements of big data. In addition, the realisation of ultrafast flash memory with novel functions offers a means of combining heterogeneous components into a homogeneous device without considering impedance matching. This report proposes a 20 ns programme flash memory with 108 self-rectifying ratios based on a 0.65 nm-thick MoS2-channel transistor. A high-quality van der Waals heterojunction with a sharp interface is formed between the Cr/Au metal floating layer and h-BN tunnelling layer. In addition, the large rectification ratio and low ideality factor (n = 1.13) facilitate the application of the MoS2-channel flash memory as a bit-line select transistor. Finally, owing to the ultralow MoS2/h-BN heterojunction capacitance (50 fF), the memory device exhibits superior performance as a high-frequency (up to 1 MHz) sine signal rectifier. These results pave the way toward the potential utilisation of multifunctional memory devices in ultrafast two-dimensional NAND-flash applications.
  • loading

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return