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Abstract
Artificial synapses are electronic devices that simulate important functions of biological
synapses, and therefore are the basic components of artificial neural morphological networks for
brain-like computing. One of the most important objectives for developing artificial synapses is
to simulate the characteristics of biological synapses as much as possible, especially their
self-adaptive ability to external stimuli. Here, we have successfully developed an artificial
synapse with multiple synaptic functions and highly adaptive characteristics based on a simple
SrTiO3/Nb: SrTiO3 heterojunction type memristor. Diverse functions of synaptic learning, such
as short-term/long-term plasticity (STP/LTP), transition from STP to LTP,
learning–forgetting–relearning behaviors, associative learning and dynamic filtering, are all
bio-realistically implemented in a single device. The remarkable synaptic performance is
attributed to the fascinating inherent dynamics of oxygen vacancy drift and diffusion, which
give rise to the coexistence of volatile- and nonvolatile-type resistive switching. This work

7 These authors contributed equally.
∗

Authors to whom any correspondence should be addressed.

Original content from this workmay be used under the terms
of the Creative Commons Attribution 4.0 licence. Any fur-

ther distribution of this work must maintain attribution to the author(s) and the
title of the work, journal citation and DOI.

2752-5724/23/035302+8$33.00 1
© 2023 The Author(s). Published by IOP Publishing Ltd
on behalf of the Songshan Lake Materials Laboratory

https://doi.org/10.1088/2752-5724/ace3dc
https://orcid.org/0000-0001-7419-3835
https://orcid.org/0000-0002-8093-940X
https://orcid.org/0000-0003-3676-0549
mailto:dianxinzl@qlu.edu.cn
mailto:gechen@iphy.ac.cn
mailto:zhenglm@sdu.edu.cn
http://crossmark.crossref.org/dialog/?doi=10.1088/2752-5724/ace3dc&domain=pdf&date_stamp=2023-7-26
https://creativecommons.org/licenses/by/4.0/


Mater. Futures 2 (2023) 035302 F Nie et al

reports a multi-functional synaptic emulator with advanced computing capability based on a
simple heterostructure, showing great application potential for a compact and low-power
neuromorphic computing system.

Supplementary material for this article is available online

Keywords: memristor, artificial synapse, synaptic plasticity, associative learning,
learning-experience

1. Introduction

Traditional computing based on the von Neumann architec-
ture faces great challenges in achieving low power consump-
tion, high efficiency, scalability, and highly parallel computing
[1]. Inspired by the human brain with high computational effi-
ciency and low energy consumption, great efforts have been
paid to develop brain-inspired computing systems to simulate
the functions of human brain [2]. The human brain is com-
posed of highly interconnected neurons and synapses, where
synapses are the connections between neurons and play a key
role in the process of transmitting and processing information
[3]. Synaptic plasticity is considered to underlie the learn-
ing and memory capability of the human brain [4]. Therefore,
preparing artificial synapses that fully simulate the functions
of biological synapses is crucial for realizing brain-inspired
computing systems.

Memristors are an ideal choice for fabricating artificial syn-
apses because their continuously adjustable conductance nat-
urally resembles biological synaptic plasticity [5]. Recently,
many kinds of memristors with different resistive switching
mechanisms, including ferroelectric type [6], phase change
type [7], metal oxides [5, 8], sulfides [9, 10], etc have
been developed to mimic synaptic plasticity characteristics,
such as long-term potentiation/depression [7, 11] (LTP/LTD),
spike time dependent plasticity [5] and spike rate dependent
plasticity [12]. However, most of the reported artificial syn-
apses demonstrate single dynamic features and provide only
static or complete volatile resistive switching character, which
greatly limits their application in neuromorphic systems. For
example, drift memristors, which are generally prepared from
oxide dielectric materials, have non-volatile resistance switch-
ing and are suitable for application in the readout layer of
neural networks where a good retention is necessary [13]. In
contrast, the diffusive memristors, which are generally built by
embedding metallic clusters within a dielectric matrix [14],
exhibit short-term volatility due to the spontaneous relaxa-
tion of the metallic ions, and are expected to participate in the
dynamic behaviors of neural networks [15], such as reservoir
computing, information filtering, and adapting the neural net-
work to the environment. To satisfy diverse functional require-
ments of brain-inspired neural networks, different types of
memristors are usually combined on a monolithic circuit,
which will inevitably increase the complexity, the volume, as
well as the energy consumption of the circuit. Moreover, dif-
ferent memristors cannot always be combined together due

to the incompatibility of the fabrication process. Therefore,
preparing versatile memristors with multiple dynamic mech-
anisms and capable of realizing diverse synaptic functions in
a single device is of great significance for achieving advanced
functionality in an electronic neuronal network with both high
energy efficiency and miniaturization.

In this work, we proposed a memristor based on a simple
epitaxial heterostructure SrTiO3/Nb: SrTiO3 with Au/Cr
used as the top electrode (abbreviated Au/Cr/STO/NSTO),
in which both oxygen vacancy drift and diffusion coex-
ist, giving multiple inherent dynamics. In this memristor-
based artificial synapse, diverse synaptic functions,
including long-/short-term plasticity (LTP/STP) and the trans-
ition from STP to LTP can be realistically simulated and
advanced synaptic functions, such as learning–forgetting–
relearning behaviors, associative learning and dynamic fil-
tering are further achieved. Our work lays the foundation
for realizing compact yet fully functional and low-energy
artificial synapses.

2. Methods

Epitaxial STO thin films with a thickness of 4 nm were depos-
ited on (001)-oriented Nb: SrTiO3 (Nb: 0.7 wt%) single-
crystalline substrates by pulsed laser deposition using a KrF
excimer laser (λ = 248 nm). The STO layer was depos-
ited with a laser energy of 350 mJ with a repetition rate
of 2 Hz. Meanwhile, the substrate was kept at a temper-
ature of 780 ◦C under an O2 pressure of 0.04 Torr. Au
and Cr top electrodes with thicknesses of 50 and 5 nm
and dimensions of 30 × 30 µm2 were deposited on the
surface of the STO/NSTO heterostructures by laser direct-
writing and vacuum thermal evaporation, and the conduct-
ive NSTO substrate services as the bottom electrode. Then,
the two-terminal Au/Cr/STO/NSTO memristor is obtained, as
illustrated in figure 1(a).

The electrical properties of an STO-based memristor were
measured using a probe station at ambient conditions by a
Keithley 2410 source meter with homemade programs and an
ArC ONE system (ArC Instruments). The sample was placed
in a probe station with 1 µmWG probes. The test pulses were
applied to theAu top electrodes, and theNSTO substrates were
grounded, where positive voltage means current flow from
the Au/Cr metal electrodes to the NSTO substrates. The read
voltage was fixed at 0.1 V during all the measurements.
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Figure 1. Device structure and the basic electrical characterization. (a) Schematic diagram of Au/Cr/STO/NSTO device. (b) I–V
characteristic under positive and negative bias. (c) R–V loops measured with different pulse width. (d) Measured and fitted I–V curves of
HRS and LRS for the device. (e) LRS resistance as a function of electrode sizes. (f) Schematic diagram of oxygen vacancy migration and
the corresponding energy band diagrams for LRS and HRS. (g) Endurance behavior.

3. Results and discussion

First, the nonlinear transport characteristics of the memristor
were evaluated under consecutive positive and negative
voltage sweeps. The current–voltage (I–V) curves are shown
in figure 1(b), the gradual current increase and decrease under
positive and negative voltages confirm the memristive char-
acteristics of the device. To further understand its memrist-
ive behavior, the resistance–voltage (R–V) loops were tested.
In each loop, the pulse sequence 0 → V+

max → V−
max → 0 was

applied, the lowest resistance state (ON state) is set by +3 V,
where the highest resistance state (OFF state) is set by −3 V
(figure 1(c)). Multilevel resistance states are achieved by chan-
ging the width of the applied pulse sequences. The wide range
of intermediate resistance states confirms that our device can
achieve multi-level resistance modulation. The I–V curves
under low resistance state (LRS) and high resistance state
(HRS) are shown in figure 1(d). For the HRS, the thermionic
emission (TE) model fits well with the experimental result
(figure 1(d), upper panel), thus the TE mode should be the
main conduction mechanism, and the height of the Schottky

barrier is calculated to be 0.505 eV (supporting information
note 1). In contrast, the local I–V curve of the LRS fits well
with the direct tunnel (DT) model at the low voltage range
(|V|< 0.1 V), and the Fowler–Nordheim tunneling (FNT)
model at high voltage range (|V|> 0.1 V) (supporting informa-
tion note 2). The barrier heights of the DTmodel at the Cr/STO
and STO/NSTO interfaces were 0.36 and 0.47 eV, respect-
ively, and the FNT barrier height was 0.071 eV.

For oxides without ferroelectricity, the resistive switching
of the STO/NSTO heterostructure should originate from the
oxygen vacancy V··

O migration. Two mechanisms based on the
V··
O migration may be responsible for the resistive switching,

the forming/deforming of V··
O conductive filaments, and the

Schottky barrier variation. In filament-type devices, it should
be noted that only one conductive filament channel can be
formed under each electrode, so the low-resistance state of
the filament-type device is independent of electrode area. In
interfacial-type devices, the change in resistance due to the
change in the potential barrier at the interface is inversely pro-
portional to the area. To distinguish the two mechanisms, the
LRS was tested by varying the top electrode area, results are
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Figure 2. Short-term plasticity of the Au/Cr/STO/NSTO artificial synapse. (a) EPSC triggered by a single pulse of 0.9 V, 100 µs. (b) The
EPSCs triggered by a pair of positive pulses of 1 V, 100 µs. (c) The varying of PPF as a function of the relative pulse interval∆t. (d) The
EPSCs triggered by a pair of negative pulses of −1.2 V, 1 ms. (e) The variation of PPD as a function of ∆t. (f) PTP as a function of ∆t, and
(g) EPSC under ten pulse stimulations with different pulse frequencies.

shown in figure 1(e). It is found that the resistance decreases
with increasing electrode area, which confirms the domin-
ant role of the interfacial-type conduction mechanism and
excludes the filamentary conduction mechanism [16]. The
energy band diagrams of LRS and HRS for Au/Cr/STO/NSTO
are shown in figure 1(f). When the positive pulse is applied
to the top electrode, the positively charged V··

Os migrate to
the STO/NSTO interface, an electron accumulation layer is
formed at the NSTO side, and the energy barrier at the
STO/NSTO interface is reduced. Thus, the average tunnel-
ing barrier is decreased, forming the LRS. When a negative
voltage is applied, the V··

Os moves toward the top electrode and
accumulates at the Cr/STO interface, resulting in an enhanced
energy barrier at the STO/NSTO interface and forming the
electron depletion layer in the NSTO. Thus, both tunneling
barrier height and width are increased, causing the HRS. In
addition, endurance is an important indicator to assess the reli-
ability of the device. Figure 1(g) shows the endurance of the
device by alternatively applying +1.8 V and −1.8 V with a
pulse width of 100 µs. The schematic diagram of the test pulse
is shown in figure S1. The results demonstrate the excellent
durability of the Au/Cr/STO/NSTO memristor without resist-
ance decline up to 104 cycles.

Depending on the retention time, synaptic plasticity can be
divided into two types: STP and LTP. STP acts on a timescale
of tens of milliseconds to a few minutes, it allows the synapse
to perform some critical functions, such as fast response and
information filtering [17]. Figure 2(a) shows the excitatory
postsynaptic current (EPSC) obtained by applying a single
pulse of 0.9 V, 100 µs. It shows an abrupt increase, followed
by a decay to the initial state within 10 s, which is a typ-
ical STP phenomenon. The memristor undergoes the follow-
ing dynamic process to form STP: under the stimulus of a
small positive pulse, a handful of V··

Os drift toward the NSTO
side to form a concentration gradient in the STO layer, which
would decrease the average energy barrier, giving rise to the
abruptly enhanced EPSC. After the pulse is removed, V··

Os
diffuse gradually back to the initial state under the driven
concentration gradient; correspondingly, the EPSC decays to
the initial value. There are also three other important forms
of STP, paired-pulse facilitation (PPF), paired-pulse depres-
sion (PPD) and post-tetanic potentiation (PTP). PPF and PPD
describe the synaptic weight enhancement and suppression
caused by the second pulse relative to that caused by the first
one, respectively. Simulations of PPF and PPD are shown in
figures 2(b)–(e). PPF and PPD are defined by the equation
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[18]: PPF/PPD = (A2 − A1)/A1 × 100%, where A1 and A2 are
the peak EPSCs of the first and the second spikes, respectively.
Both the PPF and PPD index exhibit exponential changes with
pulse interval∆t [19] (figures 2(c) and (e)):

PPF/PPD= 1+C1e
−∆t
τ1 +C2e

−∆t
τ2 (1)

where C1 and C2 are the initial facilitation magnitudes, and τ 1
and τ 2 are the characteristic relaxation times. By fitting PPF,
τ 1 = 32ms, τ 2 = 439mswere obtained. For PPDs, we achieve
τ 1 = 31 ms τ 2 = 416 ms. The relaxation time of our devices
is comparable to that of biological synapses, where relaxation
can be divided into a rapid phase lasting tens of milliseconds
and a slower phase lasting hundreds of milliseconds [20].

PTP describes the enhancement of the synaptic weight
caused by the tenth pulse relative to that caused by the first one.
PTP happens when a relatively long high-frequency stimuli
train is applied to the presynaptic neuron, where the enhance-
ment of EPSC persists for tens of minutes [17]. The EPSC
versus stimulation number is shown in figure 2(g). The tenth
pulse caused significantly higher EPSC than the first pulse,
which is similar to the biological synapse. The PTP can be
calculated by the formula PTP = (A10 − A1)/A1 × 100%,
where A1 and A10 are the peak EPSCs of the first and the
tenth spikes, respectively. Moreover, the peak value of EPSC
increases with the decrease of the pulse interval∆t of the stim-
ulus sequence. As ∆t increases, the enhancement capacity of
the synaptic weight gradually weakens, being consistent with
the biological synapses [21]. The relationship between the PTP
and the pulse interval ∆t can also be fitted by equation (1),
and the results are shown in figure 2(f). Fitting of PTP gives
τ 1 = 32 ms, τ 2 = 526 ms.

LTP lasts from hours to a lifetime and is considered to be
the foundation of learning and memory in the human brain.
By increasing the amplitude, width, frequency, or number of
the pulse stimuli, the persistence of synaptic weights is greatly
prolonged, and LTP can be achieved. Figures 3(a) and (b)
demonstrate two typical kinds of LTP, LTP and LTD, respect-
ively. For the LTP, 50 positive pulses of 1.5 V, 1 ms are applied
to the device to form a weight potentiation, and after the spon-
taneous relaxation process, the weight is retained at 176 µs,
higher than the initial state, forming a transition from STP to
LTP. In contrast, 50 negative pulses of −1.2 V, 100 µs induce
synaptic depression in the device, after the relaxation process,
the final conductance is lower than the initial one, giving LTD
(figure 3(b)). Figures 3(c)–(f) show the dependence of the
EPSC response on the pulse amplitude, width, time interval,
and number of pulses after repeated stimulation. The EPSC
increases rapidly after each stimulation and decays gradually
with time. With the increase in the pulse amplitude, width and
number or the decrease in the pulse interval, larger EPSCs and
higher final states are obtained. All final states are higher than
the initial state, showing LTP characteristics.

In biological synapses, the release of neurotransmitters dur-
ing information transmission is mainly determined by the fre-
quency of the stimulus signal. Synaptic vesicles with low

release probability can respond to high-frequency signals and
release neurotransmitters, giving rise to the high pass filtering
function of biological synapses [22]. Figure 3(g) shows the
EPSC caused by 30 consecutive pulses with frequency vari-
ation from 0.2 to 5 Hz. The increase of the EPSC during the
stimulation at a specific frequency is evaluated by using gain
A30/A1, which is the ratio of the peak EPSC evoked by the 30th
spike (A30) to that evoked by the first one (A1). Figure 3(h)
shows that the gain A30/A1 at various frequencies. The fre-
quency dependence of EPSC gain g( f ) can be well fitted by a
sigmoidal-shaped function g( f )= (a1 − a2)/(1+ ( f /f c)p)+ a2
[23], where p = 1 is the order of the function, f c is the cut-
off frequency, a1 and a2 are respectively the initial and final
peak EPSC amplitude. The cut-off frequency f c is determined
to be 0.82 Hz. This indicates the dynamic filtering capabil-
ity of our artificial synapse, that is to say when input signals
with a frequency lower than f c, the signal is weakened at the
output, while the frequency is higher than f c, the signal is
strengthened. Therefore, our device can be used as a high-pass
filter for signal processing.

The learning–forgetting–relearning process is an important
adaptive function of the brain. It describes the phenomenon
that relearning is easier than the initial learning, and how
each subsequent relearning can reduce the forgetting rate
and strengthen the memory. When performing relearning ses-
sions, the subsequent forgetting rate depends on the repeti-
tion order [18] (learning history). The higher the degree of
primitive learning, the slower the forgetting rate. In our work,
the learning–forgetting–relearning process was simulated by
stimulating the memristor with voltage pulses. We define the
conductance increase process with stimulus pulse as ‘learn-
ing’; the current decay process after removing the electrical
pulses is defined as ‘forgetting’. As shown in figure 4, after
being stimulated by 50 consecutive voltage pulses, the first
learning stage is finished with conductance increases from
485 µs to 645 µs (figure 4(a)). Then, a forgetting process
happens, where the conductance decayed spontaneously to
541 µs within 10 s (figure 4(b)). In the second learning state,
it takes only 17 stimulations to recover to the level of the
first learning stage (figure 4(c)), indicating that the relearn-
ing process becomes much easier [24]. During the following
second forgetting process, the conductance reduced to 560 µs
within 10 s, and remains at a higher value than the former one
(figure 4(d)). In the third learning stage, eight stimuli were
enough to restore the previous memory level (figure 4(e)). The
third forgetting stage (figure 4(f)) shows the slowest conduct-
ivity relaxation and stays at 583 µs after 10 s. The results show
that our memristor vividly mimics the learning–forgetting–
relearning processes of a biological system. It is noteworthy
that the learning–forgetting–relearning process is performed
by complex neural networks in the brain, but is reproduced
in our work by only one nano-electronic device, verifying the
powerful function of the Au/Cr/STO/NSTO memristor due to
its multi-inherent dynamics.

Associative learning is another important function that is
responsible for cognition and adaptability of the brain that
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Figure 3. Long-term plasticity of the Au/Cr/STO/NSTO artificial synapse. (a) and (b) Long-term potentiation and long-term depression,
respectively. EPSC response to the pulse sequence with different (c) pulse amplitude, (d) pulse width, (e) pulse interval, and (f) pulse
number. (g) The EPSC triggered by 30 consecutive pulses with different frequencies. (h) Frequency dependence of EPSC gain A30/A1 and
the fitting results by the sigmoidal-shaped function.

prepares biological bodies for possible or anticipated events
[25]. The famous Pavlov’ dog experiment is a classic form of
associative learning. The experiment established the associ-
ation between implicit memory (a kind of long-term memory)
and unconscious memory achieved by training neural net-
works. In Pavlovian experiments, the bone and the bell were
called unconditional stimulus (US) and neutral stimuli (NS),
respectively. Before training, the dogs salivated in response to
unconditioned stimuli, but not to NS. During training, the dogs
were trained to salivate with the continuous triggering of NS
before US, which established the association between NS and

US. Finally, NS can also trigger salivation in dogs alone like
unconditioned stimuli, called acquisition. This Pavlov’ dog
experiment is implemented in our device, results are shown
in figure 5. First, the EPSC value of 12.5 µA was defined as
the threshold current of the dog’s salivation response (the red
dotted line in figure 5). Here, the bone is simulated by a pulse
of 1.1 V, 100 µs, while the bell is simulated by a pulse of 1 V,
100 µs. When the bell ‘rung’ alone, the current stays below
the threshold value (stage 1), suggesting that the bell failed
to activate salivation. On the contrary, when feeding the dog
alone, the current rises above the threshold value (stage 2), thus
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Figure 4. The learning–forgetting–relearning process achieved within a single Au/Cr/STO/NSTO memristor. (a), (c) and (e) Demonstrate
the first, second and third learning stage, while (b), (d) and (f) give the first, second and third forgetting process. The amplitude and duration
of the voltage pulses are 0.8 V and 100 µs, respectively. The conductance responses are monitored with a small voltage of 0.1 V.

Figure 5. Schematic diagram of Pavlov’s dog experiment, where the ‘bone’ and ‘bell’ stimuli are simulated by the pulses of 1.1 V, 100 µs
and 1 V, 100 µs, respectively. The displayed current values were obtained under the reading voltage of 0.1 V.

triggers ‘salivation’. In order to establish associative learning,
the dog was trained by simultaneously ‘feeding’ and ‘ringing
the bell’ (stage 3). After training, salivation can be induced
by the bell stimuli alone (stage 4), forming the ‘acquisition’.
Later, the value of the EPSC with only the ringing stimulus is
reduced to below the threshold value, mimicking the disassoci-
ation process due to the forgetting behavior of biological brain
(stage 5). Based on the above experimental results, Pavlov’s
classical conditioning is successfully simulated.

4. Conclusion

In summary, we proposed an Au/Cr/STO/NSTO memristor,
which incorporates multiple internal dynamics, including the
drift and back-diffusion, enabling the device with diverse
synaptic plasticity functions and highly adaptive properties.
Our device can not only bio-realistically simulate basic syn-
aptic functions, such as STP, LTP, and dynamic filtering, but
also realize the adaptive learning and memory functions of
biological neural network in a single device, such as the
learning–forgetting–relearning process and associative learn-
ing. These results suggest that our artificial synapses with
diverse synaptic functions but simple structure are potential
candidates for versatile neuromorphic computing devices.

5. Future perspectives

Brain-inspired neuromorphic systems provide a promising
approach for confronting the speed and energy consump-
tion bottlenecks of von Neumann architectures. Many neur-
omorphic systems demand electronic devices with mul-
tiple dynamics to achieve the desired functions. However,
diverse requirements, such as the co-existence of volat-
ile and non-volatile switching dynamics can hardly be
achieved in individual memristive devices. Hence, the real-
ization of targeted applications usually relies on tailored
neural circuit designs composed of memristors with vari-
ous dynamic properties, limiting the development of com-
pact and low-power neuromorphic systems. It is of great
importance to integrate multiple inherent dynamics in an
individual device and develop multi-functional neuromorphic
devices, such as a versatile synaptic emulator that can
fully simulate the functions of biological synapses at single
device level. The universality of the device can increase
the computational complexity of the system without escal-
ating the material and area budget and achieve highly effi-
cient computing in biological nervous systems. The devel-
opment of devices with more complex dynamic proper-
ties is a crucial approach toward realizing a brain-like
computing system.
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