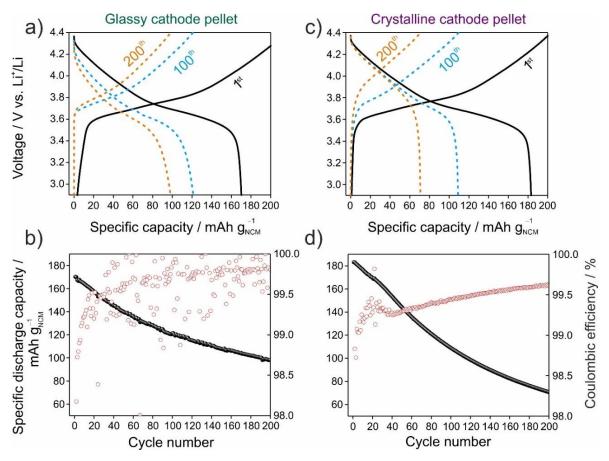
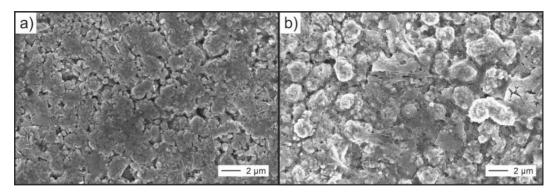
Supporting information

The Interplay between (Electro)chemical and (Chemo)mechanical Effects in the Cycling Performance of Thiophosphate-based Solid-State Batteries

Jun Hao Teo,¹ Florian Strauss,¹ Felix Walther,² Yuan Ma,¹ Seyedhosein Payandeh,¹ Torsten Scherer,³ Matteo Bianchini,^{1,4} Jürgen Janek^{1,2,*} and Torsten Brezesinski^{1,*}


¹Battery and Electrochemistry Laboratory, Institute of Nanotechnology, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany.

²Institute of Physical Chemistry & Center for Materials Research, Justus-Liebig-University Giessen, Heinrich-Buff-Ring 17, 35392 Giessen, Germany.


³KNMF Laboratory for Micro- and Nanostructuring, Institute of Nanotechnology, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany.

⁴BASF SE, Carl-Bosch-Str. 38, 67056 Ludwigshafen, Germany.

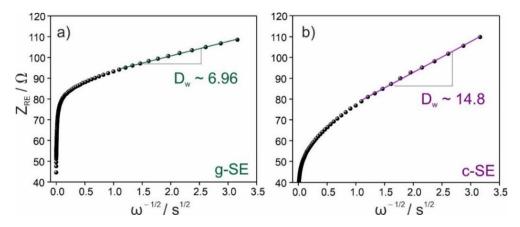
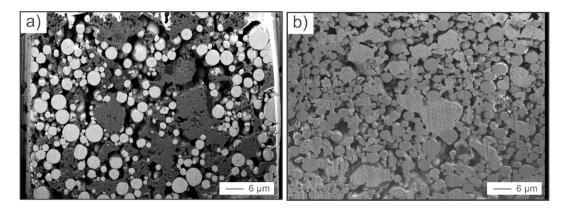

*E-mail: juergen.janek@kit.edu, torsten.brezesinski@kit.edu

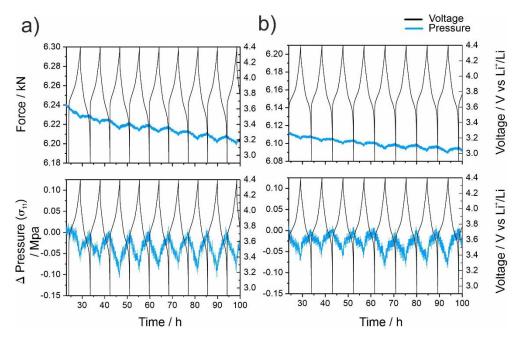
Figure S1. Representative 1st, 100th, and 200th cycle charge/discharge curves at a rate of C/5 and 45 °C of pelletized SSB cells with (a) glassy SE (1.5Li₂S-0.5P₂S₅-LiI) and (c) crystalline SE (Li₆PS₅CI) and (b, d) corresponding specific discharge capacities and Coulombic efficiencies over 200 cycles.

Figure S2. Top-view SEM images of the cathode of SSB cells in (a) pelletized and (b) slurry-cast setups.

Figure S3. The real part of impedance data plotted versus the $(frequency)^{-1/2}$ and corresponding linear fit at low frequencies for (a) the g-SE cell and (b) the c-SE cell after 200 cycles at a rate of C/5 and 45 °C.


The following equations correlate the Warburg coefficient to the contact area at the CAM/SE interface:^[1-3]

$$Z_{\text{RE}}(\omega) = R_{\text{SE}} + R_{\text{CT}} + D_{\text{W}} \cdot \frac{1}{\sqrt{\omega}}$$
 (Eq. S1),


with $Z_{\text{RE}}(\omega)$ being the real part of the impedance, R_{SE} the SE bulk resistance, R_{CT} the charge-transfer resistance, D_{W} the Warburg coefficient, and ω the frequency.

$$D_{\rm w} = \frac{RT}{n^2 F^2 A \sqrt{2}} \left(\frac{1}{c_{\rm i} \sqrt{D_{\rm i}}} \right) \tag{Eq. S2}$$

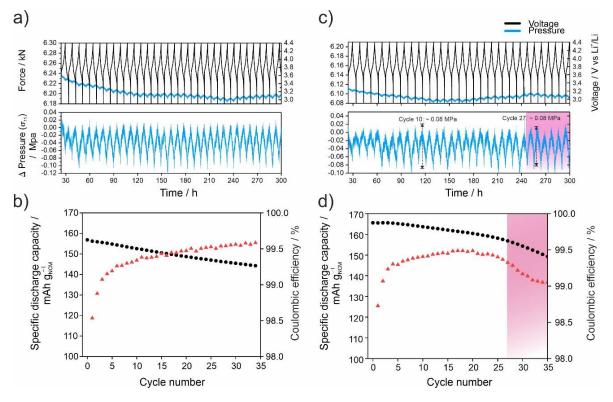

R is the gas constant, *T* the absolute temperature, *n* the number of electrons exchanged in the redox process, *F* the Faraday constant, *A* the contact area, D_i the lithium-diffusion coefficient in the bulk electrode material, and c_i represents the concentration of lithium ions in the bulk electrode material.

Figure S4. Cross-sectional FIB-SEM slice images of slurry-cast cathodes with (a) glassy SE (1.5Li₂S-0.5P₂S₅-LiI) and (b) crystalline SE (Li₆PS₅CI). Note that the cathode was not cold-pressed prior to the measurement. More pores within the SE particles are observed for the c-SE cell than the g-SE cell. Panel (a) shows a backscattered electron image and panel (b) is a secondary electron image.

Figure S5. Raw data of the uniaxial force of slurry-cast cathodes with (a) glassy SE (1.5Li₂S-0.5P₂S₅-Lil) and (b) crystalline SE (Li₆PS₅Cl) recorded during cycling and the corresponding change in uniaxial stress (σ_{11}) after baseline correction. SSB cells tested at 45 °C, C/5, 2.9-4.4 V vs Li⁺/Li.

Figure S6. Force and pressure response during cycling of slurry-cast cathodes with (a) glassy SE ($1.5Li_2S-0.5P_2S_5-LiI$) and (c) crystalline SE (Li_6PS_5CI) and (b, d) corresponding specific discharge capacities and Coulombic efficiencies over 35 cycles. SSB cells tested at 45 °C, C/5, 2.9-4.4 V vs Li⁺/Li.

Electrochemical decomposition of Li₂CO₃ impurities:

 $2\text{Li}_2\text{CO}_3 \rightarrow 4\text{Li}^+ + 4\text{e}^- + 2\text{CO}_2 \uparrow + \text{O}_2 \uparrow \qquad (\text{Eq. S3})$

References

[1] Wang S, Zhang W, Chen X, Das D, Reuss R, Gautam A, Walther F, Ohno S, Koerver R, Zhang Q, Zeier W G, F H Richter, Nan C-W and Janek J. 2021 *Adv. Energy Mater.* **11** 2100654.

[2] Wang P-P, Xu C-Y, Li W-D, Wang L and Zhen L. 2015 *Electrochim. Acta* **169** 440-446.

[3] Xiao P, Lv T, Chen X and Chang C. 2017 Sci. Rep. 7 1408.