Supporting Information

Intrinsic Vacancy in 2D Defective Semiconductor In₂S₃ for Artificial Photonic Nociceptor

Peng Wang, Wuhong Xue*, Wenjuan Ci, Ruilong Yang, Xiaohong Xu*

Key Laboratory of Magnetic Molecules and Magnetic Information Materials of Ministry of Education & School of Chemistry and Materials Science of Shanxi Normal University, Taiyuan, 030031, China

*E-mail: <u>xuewuhong@sxnu.edu.cn</u>; <u>xuxh@sxnu.edu.cn</u>

Keywords: defective semiconductor, In₂S₃, intrinsic vacancy, artificial photonic nociceptors

Figure S1. XPS spectrums of as-grown In₂S₃ nanosheet.

Figure S2. (a) The SAED pattern and (b) the EDS spectrum of the In₂S₃ nanosheet.

Figure S3. (a) Low-resolution TEM, (b) In-K and (c) S-K edges mapping images of the In_2S_3 triangular nanosheet (Scale bar: 1 µm). In and S elements have good uniformity, indicating a uniform distribution of defects.

Figure S4. HRTEM images of different positions of In_2S_3 nanosheet with the lattice spacing of 0.38 nm corresponds to the (220) crystal planes. The vacancy-defects highlighted by white circles.

Figure S5. (a) Schematic diagram of In_2S_3 device. (b) The thickness of the In_2S_3 in the device (Scale bar: 0.5 µm).

Figure S6. The transfer curves of In₂S₃ devices.

From the transfer curves of the In_2S_3 nanosheet, when sweeping V_g from -30 V to 30 V with different V_{ds} , I_{ds} in the channel increases significantly, when applying more positive gate voltages to inject electrons into the In_2S_3 crystals, which indicates a typical n-type semiconducting behavior.

Figure S7. Threshold characteristics of the device under 532 nm and 457 nm optical pulses.

Figure S8. The photoresponse characteristics of the In_2S_3 device after the different light intensity illuminations.