Volume 2 Issue 3
August  2023
Turn off MathJax
Article Contents
Yuxuan Yao, Houyi Cheng, Boyu Zhang, Jialiang Yin, Daoqian Zhu, Wenlong Cai, Sai Li, Weisheng Zhao. Tunneling magnetoresistance materials and devices for neuromorphic computing[J]. Materials Futures, 2023, 2(3): 032302. doi: 10.1088/2752-5724/ace3af
Citation: Yuxuan Yao, Houyi Cheng, Boyu Zhang, Jialiang Yin, Daoqian Zhu, Wenlong Cai, Sai Li, Weisheng Zhao. Tunneling magnetoresistance materials and devices for neuromorphic computing[J]. Materials Futures, 2023, 2(3): 032302. doi: 10.1088/2752-5724/ace3af
Topical Review •
OPEN ACCESS

Tunneling magnetoresistance materials and devices for neuromorphic computing

© 2023 The Author(s). Published by IOP Publishing Ltd on behalf of the Songshan Lake Materials Laboratory
Materials Futures, Volume 2, Number 3
  • Received Date: 2023-04-15
  • Accepted Date: 2023-06-28
  • Publish Date: 2023-08-04
  • Artificial intelligence has become indispensable in modern life, but its energy consumption has become a significant concern due to its huge storage and computational demands. Artificial intelligence algorithms are mainly based on deep learning algorithms, relying on the backpropagation of convolutional neural networks or binary neural networks. While these algorithms aim to simulate the learning process of the human brain, their low bio-fidelity and the separation of storage and computing units lead to significant energy consumption. The human brain is a remarkable computing machine with extraordinary capabilities for recognizing and processing complex information while consuming very low power. Tunneling magnetoresistance (TMR)-based devices, namely magnetic tunnel junctions (MTJs), have great advantages in simulating the behavior of biological synapses and neurons. This is not only because MTJs can simulate biological behavior such as spike-timing dependence plasticity and leaky integrate-fire, but also because MTJs have intrinsic stochastic and oscillatory properties. These characteristics improve MTJs' bio-fidelity and reduce their power consumption. MTJs also possess advantages such as ultrafast dynamics and non-volatile properties, making them widely utilized in the field of neuromorphic computing in recent years. We conducted a comprehensive review of the development history and underlying principles of TMR, including a detailed introduction to the material and magnetic properties of MTJs and their temperature dependence. We also explored various writing methods of MTJs and their potential applications. Furthermore, we provided a thorough analysis of the characteristics and potential applications of different types of MTJs for neuromorphic computing. TMR-based devices have demonstrated promising potential for broad application in neuromorphic computing, particularly in the development of spiking neural networks. Their ability to perform on-chip learning with ultra-low power consumption makes them an exciting prospect for future advances in the era of the internet of things.

  • loading
  • [1]
    Versace M and Chandler B 2010 The brain of a new machine IEEE Spectr. 47 30–37
    [2]
    Snider G et al 2011 From synapses to circuitry: using memristive memory to explore the electronic brain Computer 44 21–28
    [3]
    Modha D S, Ananthanarayanan R, Esser S K, Ndirango A, Sherbondy A J and Singh R 2011 Cognitive computing Commun. ACM 54 62–71
    [4]
    Biswas A and Chandrakasan A P 2019 CONV-SRAM: an energy-efficient SRAM with in-memory dot-product computation for low-power convolutional neural networks IEEE J. Solid-State Circuits 54 217–30
    [5]
    Yin S, Jiang Z, Seo J S and Seok M 2020 XNOR-SRAM: in-memory computing SRAM macro for binary/ternary deep neural networks IEEE J. Solid-State Circuits 55 1733–43
    [6]
    Schemmel J, Brüderle D, Grübl A, Hock M, Meier K and Millner S 2010 A wafer-scale neuromorphic hardware system for large-scale neural modeling IEEE Int. Symp. Circuits Syst. ISCAS pp 1947–50
    [7]
    Raoux S, Xiong F, Wuttig M and Pop E 2014 Phase change materials and phase change memory MRS Bull. 39 703–10
    [8]
    Burr G W, Kurdi B N, Scott J C, Lam C H, Gopalakrishnan K and Shenoy R S 2008 Overview of candidate device technologies for storage-class memory IBM J. Res. Dev. 52 449–64
    [9]
    Zhao W, Agnus G, Derycke V, Filoramo A, Bourgoin J-P and Gamrat C 2010 Nanotube devices based crossbar architecture: toward neuromorphic computing Nanotechnology 21 175202
    [10]
    Alibart F, Pleutin S, Guérin D, Novembre C, Lenfant S, Lmimouni K, Gamrat C and Vuillaume D 2010 An organic nanoparticle transistor behaving as a biological spiking synapse Adv. Funct. Mater. 20 330–7
    [11]
    Diao Z, Li Z, Wang S, Ding Y, Panchula A, Chen E, Wang L-C and Huai Y 2007 Spin-transfer torque switching in magnetic tunnel junctions and spin-transfer torque random access memory J. Phys.: Condens. Matter 19 165209
    [12]
    Sengupta A and Roy K 2017 Encoding neural and synaptic functionalities in electron spin: a pathway to efficient neuromorphic computing Appl. Phys. Rev. 4 041105
    [13]
    Grollier J, Querlioz D, Camsari K Y, Everschor-Sitte K, Fukami S and Stiles M D 2020 Neuromorphic spintronics Nat. Electron. 3 360–70
    [14]
    Cai W, Huang Y, Zhang X, Wang S, Pan Y, Yin J, Shi K and Zhao W 2023 Spintronics intelligent devices Sci. China: Phys. Mech. Astron. 66 117503
    [15]
    Jhuria K et al 2020 Spin–orbit torque switching of a ferromagnet with picosecond electrical pulses Nat. Electron. 3 680–6
    [16]
    Julliere M 1975 Tunneling between ferromagnetic films Phys. Lett. A 54 225–6
    [17]
    Baibich M N, Broto J M, Fert A, van Dau F N, Petroff F, Etienne P, Creuzet G, Friederich A and Chazelas J 1988 Giant magnetoresistance of (001)Fe/(001)Cr magnetic superlattices Phys. Rev. Lett. 61 2472–5
    [18]
    Binasch G, Grünberg P, Saurenbach F and Zinn W 1989 Enhanced magnetoresistance in layered magnetic structures with antiferromagnetic interlayer exchange Phys. Rev. B 39 4828–30
    [19]
    Miyazaki T and Tezuka N 1995 Giant magnetic tunneling effect in Fe/Al2O3/Fe junction J. Magn. Magn. Mater. 139 L231–4
    [20]
    Moodera J S, Kinder L R, Wong T M and Meservey R 1995 Large magnetoresistance at room temperature in ferromagnetic thin film tunnel junctions Phys. Rev. Lett. 74 3273–6
    [21]
    Wei H, Qin Q, Ma M, Sharif R and Han X 2007 80% tunneling magnetoresistance at room temperature for thin Al-O barrier magnetic tunnel junction with CoFeB as free and reference layers J. Appl. Phys. 101 09B501
    [22]
    Mathon J and Umerski A 2001 Theory of tunneling magnetoresistance of an epitaxial Fe/MgO/Fe(001) junction Phys. Rev. B 63 220403
    [23]
    Butler W H, Zhang X-G, Schulthess T C and MacLaren J M 2001 Spin-dependent tunneling conductance of Fe/MgO/Fe sandwiches Phys. Rev. B 63 054416
    [24]
    Yuasa S, Nagahama T, Fukushima A, Suzuki Y and Ando K 2004 Giant room-temperature magnetoresistance in single-crystal Fe/MgO/Fe magnetic tunnel junctions Nat. Mater. 3 868–71
    [25]
    Parkin S S P, Kaiser C, Panchula A, Rice P M, Hughes B, Samant M and Yang S-H 2004 Giant tunnelling magnetoresistance at room temperature with MgO (100) tunnel barriers Nat. Mater. 3 862–7
    [26]
    Ikeda S, Hayakawa J, Ashizawa Y, Lee Y M, Miura K, Hasegawa H, Tsunoda M, Matsukura F and Ohno H 2008 Tunnel magnetoresistance of 604% at 300 K by suppression of Ta diffusion in CoFeBMgOCoFeB pseudo-spin-valves annealed at high temperature Appl. Phys. Lett. 93 082508
    [27]
    Scheike T, Wen Z, Sukegawa H and Mitani S 2023 631% room temperature tunnel magnetoresistance with large oscillation effect in CoFe/MgO/CoFe(001) junctions Appl. Phys. Lett. 122 112404
    [28]
    Guo Z, Yin J, Bai Y, Zhu D, Shi K, Wang G, Cao K and Zhao W 2021 Spintronics for energy-efficient computing: an overview and outlook Proc. IEEE 109 1398–417
    [29]
    Yuasa S, Nagahama T and Suzuki Y 2002 Spin-polarized resonant tunneling in magnetic tunnel junctions Science 297 234–7
    [30]
    Nagahama T, Yuasa S, Tamura E and Suzuki Y 2005 Spin-dependent tunneling in magnetic tunnel junctions with a layered antiferromagnetic Cr(001) spacer: role of band structure and interface scattering Phys. Rev. Lett. 95 086602
    [31]
    Sakuraba Y, Hattori M, Oogane M, Ando Y, Kato H, Sakuma A, Miyazaki T and Kubota H 2006 Giant tunneling magnetoresistance in Co2MnSi/Al-O/Co2MnSi magnetic tunnel junctions Appl. Phys. Lett. 88 192508
    [32]
    Yuasa S, Hono K, Hu G and Worledge D C 2018 Materials for spin-transfer-torque magnetoresistive random-access memory MRS Bull. 43 352–7
    [33]
    Meservey R and Tedrow P M 1994 Spin-polarized electron tunneling Phys. Rep. 238 173–243
    [34]
    Parkin S, Jiang X, Kaiser C, Panchula A, Roche K and Samant M 2003 Magnetically engineered spintronic sensors and memory Proc. IEEE 91 661–79
    [35]
    Bowen M et al 2001 Large magnetoresistance in Fe/MgO/FeCo(001) epitaxial tunnel junctions on GaAs(001) Appl. Phys. Lett. 79 1655–7
    [36]
    Yuasa S, Fukushima A, Kubota H, Suzuki Y and Ando K 2006 Giant tunneling magnetoresistance up to 410% at room temperature in fully epitaxial Co/MgO/Co magnetic tunnel junctions with bcc Co(001) electrodes Appl. Phys. Lett. 89 042502
    [37]
    Yuasa S, Suzuki Y, Katayama T and Ando K 2005 Characterization of growth and crystallization processes in CoFeBMgOCoFeB magnetic tunnel junction structure by reflective high-energy electron diffraction Appl. Phys. Lett. 87 242503
    [38]
    Choi Y S, Tsunekawa K and Nagamine Y 2007 Transmission electron microscopy study on the polycrystalline CoFeBMgOCoFeB based magnetic tunnel junction showing a high tunneling magnetoresistance, predicted in single crystal magnetic tunnel junction J. Appl. Phys. 101 013907
    [39]
    Fullerton E E and Childress J R 2016 Spintronics, magnetoresistive heads, and the emergence of the digital world Proc. IEEE 104 1787–95
    [40]
    Worledge D C 2022 Spin-transfer-torque MRAM: the next revolution in memory IEEE Int. Memory Workshop (IEEE) pp 13–16
    [41]
    Garello K, Yasin F and Kar G S 2019 Spin-orbit torque MRAM for ultrafast embedded memories: from fundamentals to large scale technology integration IEEE 11th Int. Memory Workshop (IEEE) pp 15–18
    [42]
    Yuasa S and Djayaprawira D D 2007 Giant tunnel magnetoresistance in magnetic tunnel junctions with a crystalline MgO(0 0 1) barrier J. Phys. D: Appl. Phys. 40 R337–54
    [43]
    Carcia P F, Meinhaldt A D and Suna A 1985 Perpendicular magnetic anisotropy in Pd/Co thin film layered structures Appl. Phys. Lett. 47 178–80
    [44]
    Park J-H, Park C, Jeong T, Moneck M T, Nufer N T and Zhu J-G 2008 CoPt multilayer based magnetic tunnel junctions using perpendicular magnetic anisotropy J. Appl. Phys. 103 07A917
    [45]
    Lim D, Kim K, Kim S and Jeung W Y 2009 Study on exchange-biased perpendicular magnetic tunnel junction based on Pd/Co multilayers IEEE Trans. Magn. 45 2407–9
    [46]
    Nishimura N, Hirai T, Koganei A, Ikeda T, Okano K, Sekiguchi Y and Osada Y 2002 Magnetic tunnel junction device with perpendicular magnetization films for high-density magnetic random access memory J. Appl. Phys. 91 5246–9
    [47]
    Nakayama M, Kai T, Shimomura N, Amano M, Kitagawa E, Nagase T, Yoshikawa M, Kishi T, Ikegawa S and Yoda H 2008 Spin transfer switching in TbCoFeCoFeBMgOCoFeBTbCoFe magnetic tunnel junctions with perpendicular magnetic anisotropy J. Appl. Phys. 103 07A710
    [48]
    Ikeda S, Miura K, Yamamoto H, Mizunuma K, Gan H D, Endo M, Kanai S, Hayakawa J, Matsukura F and Ohno H 2010 A perpendicular-anisotropy CoFeB-MgO magnetic tunnel junction Nat. Mater. 9 721–4
    [49]
    Yang H, Chshiev M, Dieny B, Lee J H and Manchon A 2011 First-principles investigation of the very large perpendicular magnetic anisotropy at Fe|MgO and Co|MgO interfaces Phys. Rev. B 84 054401
    [50]
    An G, Lee J, Yang S, Kim J, Chung W and Hong J-P 2015 Highly stable perpendicular magnetic anisotropies of CoFeB/MgO frames employing W buffer and capping layers Acta Mater. 87 259–65
    [51]
    Liu T, Cai J W and Sun L 2012 Large enhanced perpendicular magnetic anisotropy in CoFeB/MgO system with the typical Ta buffer replaced by an Hf layer AIP Adv. 2 032151
    [52]
    Cheng H et al 2020 Giant perpendicular magnetic anisotropy in Mo-based double-interface free layer structure for advanced magnetic tunnel junctions Adv. Electron. Mater. 6 2000271
    [53]
    Peng S et al 2015 Origin of interfacial perpendicular magnetic anisotropy in MgO/CoFe/metallic capping layer structures Sci. Rep. 5 18173
    [54]
    Sato H, Yamanouchi M, Ikeda S, Fukami S, Matsukura F and Ohno H 2012 Perpendicular-anisotropy CoFeB-MgO magnetic tunnel junctions with a MgO/CoFeB/Ta/CoFeB/MgO recording structure Appl. Phys. Lett. 101 022414
    [55]
    Sato H, Enobio E C I, Yamanouchi M, Ikeda S, Fukami S, Kanai S, Matsukura F and Ohno H 2014 Properties of magnetic tunnel junctions with a MgO/CoFeB/Ta/CoFeB/MgO recording structure down to junction diameter of 11 nm Appl. Phys. Lett. 105 062403
    [56]
    Wang M et al 2018 Current-induced magnetization switching in atom-thick tungsten engineered perpendicular magnetic tunnel junctions with large tunnel magnetoresistance Nat. Commun. 9 671
    [57]
    Jan G, Wang Y, Moriyama T, Lee Y-J, Lin M, Zhong T, Tong R, Torng T and Wang P 2012 High spin torque efficiency of magnetic tunnel junctions with MgO/CoFeB/MgO free layer Appl. Phys. Express 5 093008
    [58]
    Nishioka K, Honjo H, Naganuma H, Nguyen T V A, Yasuhira M, Ikeda S and Endoh T 2021 Enhancement of magnetic coupling and magnetic anisotropy in MTJs with multiple CoFeB/MgO interfaces for high thermal stability AIP Adv. 11 025231
    [59]
    Sabino M P R, Lim S T and Tran M 2014 Influence of Ta insertions on the magnetic properties of MgO/CoFeB/MgO films probed by ferromagnetic resonance Appl. Phys. Express 7 093002
    [60]
    Zhu D et al 2021 First demonstration of three terminal MRAM devices with immunity to magnetic fields and 10 ns field free switching by electrical manipulation of exchange bias Int. Electron Devices Meeting, IEDM pp 17.5.1–4
    [61]
    Qin P et al 2023 Room-temperature magnetoresistance in an all-antiferromagnetic tunnel junction Nature 613 485–9
    [62]
    Chen X et al 2023 Octupole-driven magnetoresistance in an antiferromagnetic tunnel junction Nature 613 490–5
    [63]
    Jinnai B, Igarashi J, Watanabe K, Funatsu T, Sato H, Fukami S and Ohno H 2020 High-performance shape-anisotropy magnetic tunnel junctions down to 2.3 nm Int. Electron Devices Meeting, IEDM pp 24.6.1–4
    [64]
    Wang S, Ward R C C, Du G, Han X, Wang C and Kohn A 2008 Temperature dependence of giant tunnel magnetoresistance in epitaxial Fe/MgO/Fe magnetic tunnel junctions Phys. Rev. B 78 180411
    [65]
    Butler W H, Zhang X, Chshiev M, Vutukuri S and Schulthess T C 2005 Theory of tunneling magnetoresistance for epitaxial systems INTERMAG ASIA 2005: Digests of the IEEE Int. Magnetics Conf. vol 41 pp 2645–8
    [66]
    Karthik S V, Takahashi Y K, Ohkubo T, Hono K, Ikeda S and Ohno H 2009 Transmission electron microscopy investigation of CoFeB/MgO/CoFeB pseudospin valves annealed at different temperatures J. Appl. Phys. 106 023920
    [67]
    Yun S J, Lim S H and Lee S-R 2016 Strong interlayer exchange coupling and high post-annealing stability in perpendicularly magnetized [Pt/Co]/Ru/[Co/Pt] structures AIP Adv. 6 025112
    [68]
    Hayakawa J, Ikeda S, Lee Y M, Matsukura F and Ohno H 2006 Effect of high annealing temperature on giant tunnel magnetoresistance ratio of CoFeB/MgO/CoFeB magnetic tunnel junctions Appl. Phys. Lett. 89 232510
    [69]
    Gan H D, Sato H, Yamanouchi M, Ikeda S, Miura K, Koizumi R, Matsukura F and Ohno H 2011 Origin of the collapse of tunnel magnetoresistance at high annealing temperature in CoFeB/MgO perpendicular magnetic tunnel junctions Appl. Phys. Lett. 99 252507
    [70]
    Tsou Y J et al 2021 First demonstration of interface-enhanced SAF enabling 400oC-robust 42 nm p-SOT-MTJ cells with STT-assisted field-free switching and composite channels Symp. on VLSI Technology (June 2021) pp 5–6 (available at: https://ieeexplore.ieee.org/ abstract/document/9508741)
    [71]
    Swerts J et al 2018 Solving the BEOL compatibility challenge of top-pinned magnetic tunnel junction stacks Int. Electron Devices Meeting, IEDM pp 38.6.1–4
    [72]
    Honjo H, Naganuma H, Nguyen T V A, Inoue H, Yasuhira M, Ikeda S and Endoh T 2021 Effect of surface modification treatment on top-pinned MTJ with perpendicular easy axis AIP Adv. 11 025211
    [73]
    Qiu X, Deorani P, Narayanapillai K, Lee K-S, Lee K-J, Lee H-W and Yang H 2014 Angular and temperature dependence of current induced spin-orbit effective fields in Ta/CoFeB/MgO nanowires Sci. Rep. 4 4491
    [74]
    Takeuchi Y, Enobio E C I, Jinnai B, Sato H, Fukami S and Ohno H 2021 Temperature dependence of intrinsic critical current in perpendicular easy axis CoFeB/MgO magnetic tunnel junctions Appl. Phys. Lett. 119 242403
    [75]
    Engel B N et al 2005 A 4-Mb toggle MRAM based on a novel bit and switching method IEEE Trans. Magn. 41 132–6
    [76]
    Berger L Emission of spin waves by a magnetic multilayer traversed by a current 1996 Phys. Rev. B 54 9353–8
    [77]
    Slonczewski J C Current-driven excitation of magnetic multilayers 1996 J. Magn. Magn. Mater. 159 L1–7
    [78]
    Myers E B, Ralph D C, Katine J A, Louie R N and Buhrman R 1999 A current-induced switching of domains in magnetic multilayer devices Science 285 867–70
    [79]
    Huai Y, Albert F, Nguyen P, Pakala M and Valet T 2004 Observation of spin-transfer switching in deep submicron-sized and low-resistance magnetic tunnel junctions Appl. Phys. Lett. 84 3118–20
    [80]
    Sun J J et al 2021 Commercialization of 1Gb standalone spin-transfer torque MRAM IEEE Int. Memory Workshop pp 1–4
    [81]
    Zhao W et al 2016 Failure analysis in magnetic tunnel junction nanopillar with interfacial perpendicular magnetic anisotropy Materials 9 41
    [82]
    Honjo H et al 2019 First demonstration of field-free SOT-MRAM with 0.35 ns write speed and 70 thermal stability under 400 ◦C thermal tolerance by canted SOT structure and its advanced patterning/SOT channel technology Int. Electron Devices Meeting, IEDM pp 28.5.1–4
    [83]
    Garello K et al 2019 Manufacturable 300 mm platform solution for field-free switching SOT-MRAM IEEE Symp. on VLSI Circuits pp T194–5
    [84]
    Zhu D and Zhao W 2020 Threshold current density for perpendicular magnetization switching through spin-orbit torque Phys. Rev. Appl. 13 044078
    [85]
    Zhuo Y, Cai W, Zhu D, Zhang H, Du A, Cao K, Yin J, Huang Y, Shi K and Zhao W 2022 Mechanism of field-like torque in spin-orbit torque switching of perpendicular magnetic tunnel junction Sci. China: Phys. Mech. Astron. 65 107511
    [86]
    Lee K-S, Lee S-W, Min B-C and Lee K-J 2013 Threshold current for switching of a perpendicular magnetic layer induced by spin Hall effect Appl. Phys. Lett. 102 112410
    [87]
    Taniguchi T Theoretical condition for switching the magnetization in a perpendicularly magnetized ferromagnet via the spin Hall effect 2019 Phys. Rev. B 100 174419
    [88]
    Pai C-F, Liu L, Li Y, Tseng H W, Ralph D C and Buhrman R 2012 A spin transfer torque devices utilizing the giant spin Hall effect of tungsten Appl. Phys. Lett. 101 122404
    [89]
    Sui X, Wang C, Kim J, Wang J, Rhim S H, Duan W and Kioussis N 2017 Giant enhancement of the intrinsic spin Hall conductivity in β-tungsten via substitutional doping Phys. Rev. B 96 241105(R)
    [90]
    Sethu K K V, Ghosh S, Couet S, Swerts J, Sorée B, de Boeck J, Kar G S and Garello K 2021 Optimization of tungsten β-phase window for spin-orbit-torque magnetic random-access memory Phys. Rev. Appl. 16 064009
    [91]
    Chen T-Y, Chan H-I, Liao W-B and Pai C-F 2018 Current-induced spin-orbit torque and field-free switching in Mo-based magnetic heterostructures Phys. Rev. Appl. 10 044038
    [92]
    Wu H, Razavi S A, Shao Q, Li X, Wong K L, Liu Y, Yin G and Wang K L 2019 Spin-orbit torque from a ferromagnetic metal Phys. Rev. B 99 184403
    [93]
    Xiong D et al 2020 Modulation of thermal stability and spin-orbit torque in IrMn/CoFeB/MgO structures through atom thick W insertion Appl. Phys. Lett. 117 212401
    [94]
    Wu H et al 2021 Magnetic memory driven by topological insulators Nat. Commun. 12 6251
    [95]
    Shi S et al 2019 All-electric magnetization switching and Dzyaloshinskii–Moriya interaction in WTe2/ferromagnet heterostructures Nat. Nanotechnol. 14 945–9
    [96]
    Safranski C et al 2022 Reliable sub-nanosecond switching in magnetic tunnel junctions for MRAM applications IEEE Trans. Electron Devices 69 7180–3
    [97]
    Yu G et al 2014 Switching of perpendicular magnetization by spin-orbit torques in the absence of external magnetic fields Nat. Nanotechnol. 9 548–54
    [98]
    You L, Lee O J, Bhowmik D, Labanowski D, Hong J, Bokor J and Salahuddin S 2015 Switching of perpendicularly polarized nanomagnets with spin orbit torque without an external magnetic field by engineering a tilted anisotropy Proc. Natl Acad. Sci. USA 112 10310–5
    [99]
    Fukami S, Zhang C, Duttagupta S, Kurenkov A and Ohno H 2016 Magnetization switching by spin-orbit torque in an antiferromagnet-ferromagnet bilayer system Nat. Mater. 15 535–41
    [100]
    You Y et al 2021 Cluster magnetic octupole induced out-of-plane spin polarization in antiperovskite antiferromagnet Nat. Commun. 12 6524
    [101]
    Liu L et al 2021 Symmetry-dependent field-free switching of perpendicular magnetization Nat. Nanotechnol. 16 277–82
    [102]
    Wang M et al 2018 Field-free switching of a perpendicular magnetic tunnel junction through the interplay of spin–orbit and spin-transfer torques Nat. Electron. 1 582–8
    [103]
    Fukami S, Anekawa T, Zhang C and Ohno H 2016 A spin-orbit torque switching scheme with collinear magnetic easy axis and current configuration Nat. Nanotechnol. 11 621–5
    [104]
    Du A et al 2023 Electrical manipulation and detection of antiferromagnetism in magnetic tunnel junctions Nat. Electron. 6 425–33
    [105]
    Hu G et al 2023 Double spin-torque magnetic tunnel junction devices for last-level cache applications Int. Electron Devices Meeting, IEDM pp 10.2.1–4
    [106]
    Yan S, Zhou Z, Yang Y, Leng Q and Zhao W 2022 Developments and applications of tunneling magnetoresistance sensors Tsinghua Sci. Technol. 27 443–54
    [107]
    Ferreira R, Paz E, Freitas P P, Wang J and Xue S 2012 Large area and low aspect ratio linear magnetic tunnel junctions with a soft-pinned sensing layer IEEE Trans. Magn. 48 3719–22
    [108]
    Nakano T, Oogane M, Furuichi T and Ando Y 2017 Magnetic tunnel junctions using perpendicularly magnetized synthetic antiferromagnetic reference layer for wide-dynamic-range magnetic sensors Appl. Phys. Lett. 110 012401
    [109]
    Cao Z, Chen W, Lu S, Yan S, Zhang Y, Zhou Z, Yang Y, Li Z, Zhao W and Leng Q 2021 Tuning the linear field range of tunnel magnetoresistive sensor with MgO capping in perpendicular pinned double-interface CoFeB/MgO structure Appl. Phys. Lett. 118 122402
    [110]
    Asifuzzaman K, Fernandez M, Radojkovi´c P, Abella J and Cazorla F J 2019 STT-MRAM for real-time embedded systems: performance and WCET implications Proc. Int. Symp. on Memory Systems pp 195–205
    [111]
    Wang Z, Peng S, Wang M, Zhang X, Cai W, Zhou J, Cao K and Zhao W 2018 Advanced nanoscale magnetic tunnel junctions for low power computing IEEE 13th Nanotechnology Materials and Devices Conf., NMDC (IEEE) pp 1–4
    [112]
    Chowdhury A P, Kulkarni P and Bojnordi M N 2018 MB-CNN: memristive binary convolutional neural networks for embedded mobile devices J. Low Power Electron. Appl. 8 38
    [113]
    Sengupta A and Roy K 2015 Spin-transfer torque magnetic neuron for low power neuromorphic computing Int. Joint Conf. on Neural Networks (IEEE) pp 1–7
    [114]
    McKee S A 2004 Reflections on the memory wall Computing Frontiers Conf. pp 162–7
    [115]
    Sengupta A, Choday S H, Kim Y and Roy K 2015 Spin orbit torque based electronic neuron Appl. Phys. Lett. 106 143701
    [116]
    Chang L, Ma X, Wang Z, Zhang Y, Xie Y and Zhao W 2019 PXNOR-BNN: in/with spin-orbit torque MRAM preset-XNOR operation-based binary neural networks IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 27 2668–79
    [117]
    Legrand W, Ramaswamy R, Mishra R and Yang H 2015 Coherent subnanosecond switching of perpendicular magnetization by the fieldlike spin-orbit torque without an external magnetic field Phys. Rev. Appl. 3 064012
    [118]
    Shreya S, Verma G, Piramanayagam S N and Kaushik B K 2021 Energy-efficient all-spin BNN using voltage-controlled spin-orbit torque device for digit recognition IEEE Trans. Electron Devices 68 385–92
    [119]
    Chua L O 1971 Memristor-the missing circuit element IEEE Trans. Circuit Theory 18 507–19
    [120]
    Strukov D B, Snider G S, Stewart D R and Williams R S 2008 The missing memristor found Nature 453 80–83
    [121]
    Wang X, Chen Y, Xi H, Li H and Dimitrov D 2009 Spintronic memristor through spin-thorque-induced magnetization motion IEEE Electron Device Lett. 30 294–7
    [122]
    Zhang X et al 2021 Spin-torque memristors based on perpendicular magnetic tunnel junctions for neuromorphic computing Adv. Sci. 8 2004645
    [123]
    Hamamoto K and Nagaosa N 2018 Electrical detection of a skyrmion in a magnetic tunneling junction (arXiv:1803. 04588)
    [124]
    Ma X, Yu G, Tang C, Li X, He C, Shi J, Wang K L and Li X 2018 Interfacial Dzyaloshinskii-Moriya interaction: effect of 5d band filling and correlation with spin mixing conductance Phys. Rev. Lett. 120 157204
    [125]
    Wang X, Cao A, Li S, Tang J, Du A, Cheng H, Sun Y, Du H, Zhang X and Zhao W 2021 Manipulating density of magnetic skyrmions via multilayer repetition and thermal annealing Phys. Rev. B 104 064421
    [126]
    Li S et al 2022 Experimental demonstration of skyrmionic magnetic tunnel junction at room temperature Sci. Bull. 67 691–9
    [127]
    Li S, Kang W, Huang Y, Zhang X, Zhou Y and Zhao W 2017 Magnetic skyrmion-based artificial neuron device Nanotechnology 28 31LT01
    [128]
    Pan B, Zhang D, Zhang X, Wang H, Bai J, Yang J, Zhang Y, Kang W and Zhao W 2019 Skyrmion-induced memristive magnetic tunnel junction for ternary neural network IEEE J. Electron Devices Soc. 7 529–33
    [129]
    Prychynenko D, Sitte M, Litzius K, Krüger B, Bourianoff G, Kläui M, Sinova J and Everschor-Sitte K 2018 Magnetic skyrmion as a nonlinear resistive element: a potential building block for reservoir computing Phys. Rev. Appl. 9 014034
    [130]
    Chen T et al 2016 Spin-torque and spin-Hall nano-oscillators Proc. IEEE 104 1919–45
    [131]
    Zahedinejad M, Awad A A, Muralidhar S, Khymyn R, Fulara H, Mazraati H, Dvornik M and Åkerman J 2020 Two-dimensional mutually synchronized spin Hall nano-oscillator arrays for neuromorphic computing Nat. Nanotechnol. 15 47–52
    [132]
    Zeng Z, Finocchio G and Jiang H 2013 Spin transfer nano-oscillators Nanoscale 5 2219–31
    [133]
    Locatelli N, Cros V and Grollier J 2014 Spin-torque building blocks Nat. Mater. 13 11–20
    [134]
    Kiselev S I, Sankey J C, Krivorotov I N, Emley N C, Schoelkopf R J, Buhrman R A and Ralph D C 2003 Microwave oscillations of a nanomagnet driven by a spin-polarized current Nature 425 380–3
    [135]
    Rippard W, Pufall M, Kaka S, Russek S and Silva T 2004 Direct-current induced dynamics in CoFe/NiFe point contacts Phys. Rev. Lett. 92 027201
    [136]
    Zhu K et al 2023 Nonlinear amplification of microwave signals in spin-torque oscillators Nat. Commun. 14 2183
    [137]
    Maehara H et al 2013 Large emission power over 2 µW with high Q factor obtained from nanocontact magnetic-tunnel-junction-based spin torque oscillator Appl. Phys. Express 6 113005
    [138]
    Liu L, Pai C-F, Ralph D C and Buhrman R A 2012 Magnetic oscillations driven by the spin Hall effect in 3-terminal magnetic tunnel junction devices Phys. Rev. Lett. 109 186602
    [139]
    Albertsson D I, Zahedinejad M, Akerman J, Rodriguez S and Rusu A 2019 Compact macrospin-based model of three-terminal spin-Hall nano oscillators IEEE Trans. Magn. 55 1–8
    [140]
    Cai W, Kumar A, Du A, Shi K, Xiao R, Cao K, Yin J, Akerman J and Zhao W 2023 Angular dependent auto-oscillations by spin-transfer and spin-orbit torques in three-terminal magnetic tunnel junctions IEEE Electron Device Lett. 44 861–4
    [141]
    Houssameddine D et al 2007 Spin-torque oscillator using a perpendicular polarizer and a planar free layer Nat. Mater. 6 447–53
    [142]
    Tsunegi S, Yakushiji K, Fukushima A, Yuasa S and Kubota H 2016 Microwave emission power exceeding 10 µW in spin torque vortex oscillator Appl. Phys. Lett. 109 252402
    [143]
    Torrejon J et al 2017 Neuromorphic computing with nanoscale spintronic oscillators Nature 547 428–31
    [144]
    Romera M et al 2018 Vowel recognition with four coupled spin-torque nano-oscillators Nature 563 230–4
    [145]
    Stein R B, Gossen E R and Jones K E 2005 Neuronal variability: noise or part of the signal? Nat. Rev. Neurosci. 6 389–97
    [146]
    Devolder T, Hayakawa J, Ito K, Takahashi H, Ikeda S, Crozat P, Zerounian N, Kim J-V, Chappert C and Ohno H 2008 Single-shot time-resolved measurements of nanosecond-scale spin-transfer induced switching: stochastic versus deterministic aspects Phys. Rev. Lett. 100 057206
    [147]
    Qu Y, Cockburn B F, Huang Z, Cai H, Zhang Y, Zhao W and Han J 2018 Variation-resilient true random number generators based on multiple STT-MTJs IEEE Trans. Nanotechnol. 17 1270–81
    [148]
    Vincent A F, Larroque J, Locatelli N, Romdhane N B, Bichler O, Zhao C, Galdin-Retailleau S and Querlioz D Spin-transfer torque magnetic memory as a stochastic memristive synapse for neuromorphic systems 2015 IEEE Trans. Biomed. Circuits Syst. 9 166–74
    [149]
    Borders W A, Pervaiz A Z, Fukami S, Camsari K Y, Ohno H and Datta S 2019 Integer factorization using stochastic magnetic tunnel junctions Nature 573 390–3
    [150]
    McMahon P L et al 2016 A fully programmable 100-spin coherent ising machine with all-to-all connections Science 354 614–7
    [151]
    Patel S, Canoza P and Salahuddin S 2022 Logically synthesized and hardware-accelerated restricted Boltzmann machines for combinatorial optimization and integer factorization Nat. Electron. 5 92–101
    [152]
    Moy W, Ahmed I, Chiu P-W, Moy J, Sapatnekar S S and Kim C H 2022 A 1,968-node coupled ring oscillator circuit for combinatorial optimization problem solving Nat. Electron. 5 310–7
    [153]
    Kaiser J and Datta S 2021 Probabilistic computing with p-bits Appl. Phys. Lett. 119 150503
    [154]
    Aadit N A, Grimaldi A, Carpentieri M, Theogarajan L, Martinis J M, Finocchio G and Camsari K Y 2022 Massively parallel probabilistic computing with sparse ising machines Nat. Electron. 5 460–8
    [155]
    Yin J et al 2022 Scalable ising computer based on ultra-fast field-free spin orbit torque stochastic device with extreme 1-bit quantization Int. Electron Devices Meeting, IEDM pp 3611–4
    [156]
    Mizrahi A, Locatelli N, Lebrun R, Cros V, Fukushima A, Kubota H, Yuasa S, Querlioz D and Grollier J 2016 Controlling the phase locking of stochastic magnetic bits for ultra-low power computation Sci. Rep. 6 30535
    [157]
    Yang H et al 2022 Two-dimensional materials prospects for non-volatile spintronic memories Nature 606 663–73
    [158]
    Wang X et al 2023 Room temperature field-free switching of CoFeB/MgO heterostructure based on large-scale few-layer WTe2 Cell Rep. Phys. Sci. 4 101468
    [159]
    Yin Y and Li Q 2017 A review on all-perovskite multiferroic tunnel junctions J. Mater. 3 245–54
    [160]
    Blasing R, Khan A A, Filippou P C, Garg C, Hameed F, Castrillon J and Parkin S S P 2020 Magnetic racetrack memory: from physics to the cusp of applications within a decade Proc. IEEE 108 1303–21
  • 加载中

Catalog

    Figures(1)

    Article Metrics

    Article Views(479) PDF downloads(99)
    Article Statistics
    Related articles from

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return