Volume 2 Issue 3
August  2023
Turn off MathJax
Article Contents
Peng Wang, Wuhong Xue, Wenjuan Ci, Ruilong Yang, Xiaohong Xu. Intrinsic vacancy in 2D defective semiconductor In2S3 for artificial photonic nociceptor[J]. Materials Futures, 2023, 2(3): 035301. doi: 10.1088/2752-5724/acdd87
Citation: Peng Wang, Wuhong Xue, Wenjuan Ci, Ruilong Yang, Xiaohong Xu. Intrinsic vacancy in 2D defective semiconductor In2S3 for artificial photonic nociceptor[J]. Materials Futures, 2023, 2(3): 035301. doi: 10.1088/2752-5724/acdd87
Paper •
OPEN ACCESS

Intrinsic vacancy in 2D defective semiconductor In2S3 for artificial photonic nociceptor

© 2023 The Author(s). Published by IOP Publishing Ltd on behalf of the Songshan Lake Materials Laboratory
Materials Futures, Volume 2, Number 3
  • Received Date: 2023-03-30
  • Accepted Date: 2023-06-05
  • Publish Date: 2023-07-06
  • It is crucial to develop an advanced artificially intelligent optoelectronic information system that accurately simulates photonic nociceptors like the activation process of a human visual nociceptive pathway. Visible light reaches the retina for human visual perception, but its excessive exposure can damage nearby tissues. However, there are relatively few reports on visible light–triggered nociceptors. Here, we introduce a two-dimensional natural defective III–VI semiconductor β-In2S3 and utilize its broad spectral response, including visible light brought by intrinsic defects, for visible light–triggered artificial photonic nociceptors. The response mode of the device, under visible light excitation, is very similar to that of the human eye. It perfectly reproduces the pain perception characteristics of the human visual system, such as 'threshold,' 'relaxation,' 'no adaptation', and 'sensitization'. Its working principle is attributed to the mechanism of charge trapping associated with the intrinsic vacancies in In2S3 nanosheets. This work provides an attractive material system (intrinsic defective semiconductors) for broadband artificial photonic nociceptors.

  • loading
  • [1]
    Basbaum A I, Bautista D M, Scherrer G and Julius D 2009 Cellular and molecular mechanisms of pain Cell 139 267–84
    [2]
    Dubin A E and Patapoutian A 2010 Nociceptors: the sensors of the pain pathway J. Clin. Invest. 120 3760–72
    [3]
    Julius D and Basbaum A I 2001 Molecular mechanisms of nociception Nature 413 203–10
    [4]
    Yoon J H, Wang Z, Kim K M, Wu H, Ravichandran V, Xia Q, Hwang C S and Yang J J 2018 An artificial nociceptor based on a diffusive memristor Nat. Commun. 9 417
    [5]
    Xue W, Gao C, Zhang Z, Han T, Hou N, Yin W, Shi L, Wang X, Liu G and Xu X 2022 Native drift and Mott nanochannel in layered V2O 5 film for synaptic and nociceptive simulation Sci. China Mater. 66 764–71
    [6]
    Kumar M, Kim H S and Kim J 2019 A highly transparent artificial photonic nociceptor Adv. Mater. 31 1900021
    [7]
    Zhou L, Zhang S R, Yang J Q, Mao J Y, Ren Y, Shan H, Xu Z, Zhou Y and Han S T 2020 A UV damage-sensing nociceptive device for bionic applications Nanoscale 12 1484–94
    [8]
    Feng G D et al 2020 A Sub-10 nm vertical organic/inorganic hybrid transistor for pain-perceptual and sensitization-regulated nociceptor emulation Adv. Mater. 32 e1906171
    [9]
    Wei H H, Ni Y, Sun L, Yu H, Gong J D, Du Y, Ma M, Han H and Xu W 2021 Flexible electro-optical neuromorphic transistors with tunable synaptic plasticity and nociceptive behavior Nano Energy 81 105648
    [10]
    Sliney D H 2002 How light reaches the eye and its components Int. J. Toxicol. 21 501–9
    [11]
    Sliney D H 2001 Photoprotection of the eye—UV radiation and sunglasses J. Photochem. Photobiol. B 64 166–75
    [12]
    Rozanowska M and Sarna T 2005 Light-induced damage to the retina: role of rhodopsin chromophore revisited Photochem. Photobiol. 81 1305–30
    [13]
    Okamoto K, Tashiro A, Chang Z and Bereiter D A 2010 Bright light activates a trigeminal nociceptive pathway Pain 149 235–42
    [14]
    Gong G D, Gao S, Xie Z L, Ye X Y, Lu Y, Yang H L, Zhu X J and Li R W 2021 A visible light-triggered artificial photonic nociceptor with adaptive tunability of threshold Nanoscale 13 1029–37
    [15]
    Xu H, Karbalaei Akbari M, Verpoort F and Zhuiykov S 2020 Nano-engineering and functionalization of hybrid Au-MexOy-TiO2 (Me = W, Ga) hetero-interfaces for optoelectronic receptors and nociceptors Nanoscale 12 20177–88
    [16]
    Choi C et al 2020 Curved neuromorphic image sensor array using a MoS2-organic heterostructure inspired by the human visual recognition system Nat. Commun. 11 5934
    [17]
    Zhou F C et al 2019 Optoelectronic resistive random access memory for neuromorphic vision sensors Nat. Nanotechnol. 14 776–82
    [18]
    Karbalaei Akbari M, Hu J, Verpoort F, Lu H and Zhuiykov S 2020 Nanoscale all-oxide-heterostructured bio-inspired optoresponsive nociceptor Nano-Micro Lett. 12 83
    [19]
    Xiao M, Shen D, Futscher M H, Ehrler B, Musselman K P, Duley W W and Zhou Y N 2019 Threshold switching in single metal-oxide nanobelt devices emulating an artificial nociceptor Adv. Electron. Mater. 6 1900595
    [20]
    Zhao Y et al 2021 An artificial optoelectronic nociceptor based on In2S3 memristor J. Appl. Phys. 55 125401
    [21]
    Kambas K, Spyridelis J and Balkanski M J P S S 2010 Far infrared and Raman optical study of α- and β-In2S3 compounds Phys. Status Solidi 105 291–6
    [22]
    Lu J et al 2018 Graphene/In2S3 van der Waals heterostructure for ultrasensitive photodetection ACS Photonics 5 4912–9
    [23]
    Huang W, Gan L, Yang H, Zhou N, Wang R, Wu W, Li H, Ma Y, Zeng H and Zhai T 2017 Controlled synthesis of ultrathin 2D β-In2S3 with broadband photoresponse by chemical vapor deposition Adv. Funct. Mater. 27 1702448
    [24]
    Xiong X, Zhang Q, Gan L, Zhou X, Xing X, Li H Q and Zhai T Y 2016 Geometry dependent photoconductivity of In2S3 kinks synthesized by kinetically controlled thermal deposition Nano Res. 9 3848–57
    [25]
    Zhao Y et al 2019 Thickness-dependent optical properties and in-plane anisotropic Raman response of the 2D β-In2S3 Adv. Opt. Mater. 7 1901085
    [26]
    Lin M et al 2013 Controlled growth of atomically thin In2Se3 flakes by van der Waals epitaxy J. Am. Chem. Soc. 135 13274–7
    [27]
    Hu C, Wang Q, Bai S, Xu M, He D, Lyu D and Qi J 2017 The effect of oxygen vacancy on switching mechanism of ZnO resistive switching memory Appl. Phys. Lett. 110 073501
    [28]
    Ho C-H 2010 Growth and characterization of near-band-edge transitions in β-In2S3 single crystals J. Cryst. Growth 312 2718–23
    [29]
    Ghorbani E and Albe K 2018 Intrinsic point defects in β-In2S3 studied by means of hybrid density-functional theory J. Appl. Phys. 123 103103
    [30]
    Zhou N, Gan L, Yang R, Wang F, Li L, Chen Y C, Li D and Zhai T 2019 Nonlayered two-dimensional defective semiconductor γ-Ga2S3 toward broadband photodetection ACS Nano 13 6297–307
    [31]
    Singh A, Senapati K, Satpati B, Kumar M and Sahoo P K 2015 Nanoscale interface engineering in ZnO twin nanorods for proposed phonon tunnel devices Phys. Chem. Chem. Phys. 17 4277–82
    [32]
    Kumar M, Basu T and Som T 2015 Ultra-violet absorption induced modifications in bulk and nanoscale electrical transport properties of Al-doped ZnO thin films J. Appl. Phys. 118 055102
    [33]
    Ghosh A, Guha P, Thapa R, Selvaraj S, Kumar M, Rakshit B, Dash T, Bar R, Ray S K and Satyam P V 2016 Tuning the work function of randomly oriented ZnO nanostructures by capping with faceted Au nanostructure and oxygen defects: enhanced field emission experiments and DFT studies Nanotechnology 27 125701
    [34]
    Marsillac S, Mangale N S, Gade V and Khare S V 2011 Structural and electronic properties of β-In2X3 (X = O, S, Se, Te) using ab initio calculations Thin Solid Films 519 5679–83
    [35]
    Yuan X Z, Jiang L B, Liang J, Pan Y, Zhang J, Wang H, Leng L J, Wu Z, Guan R and Zeng G M 2019 In-situ synthesis of 3D microsphere-like In2S3/InVO4 heterojunction with efficient photocatalytic activity for tetracycline degradation under visible light irradiation Chem. Eng. J. 356 371–81
    [36]
    Gopinath G R, Miles R W and Reddy K T R 2013 Influence of bath temperature on the properties of In2S3 films grown by chemical bath deposition Energy Proc. 34 399–406
    [37]
    Warrier A R, Bingi J and Vijayan C 2015 Plasmon-assisted enhancement and tuning of optical properties in β-In2S3 quantum dots Plasmonics 11 953–61
    [38]
    Kim Y et al 2018 Nociceptive memristor Adv. Mater. 30 1704320
    [39]
    Gold M S and Gebhart G F 2010 Nociceptor sensitization in pain pathogenesis Nat. Med. 16 1248–57
  • mfacdd87supp1.pdf
  • 加载中

Catalog

    Figures(1)

    Article Metrics

    Article Views(205) PDF downloads(71)
    Article Statistics
    Related articles from

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return