Volume 2 Issue 3
August  2023
Turn off MathJax
Article Contents
Chengzhai Lv, Fanqing Zhang, Chunyang Li, Zhongyi Li, Jing Zhao. Low-dimensional optoelectronic synaptic devices for neuromorphic vision sensors[J]. Materials Futures, 2023, 2(3): 032301. doi: 10.1088/2752-5724/acda4d
Citation: Chengzhai Lv, Fanqing Zhang, Chunyang Li, Zhongyi Li, Jing Zhao. Low-dimensional optoelectronic synaptic devices for neuromorphic vision sensors[J]. Materials Futures, 2023, 2(3): 032301. doi: 10.1088/2752-5724/acda4d
Topical Review •
OPEN ACCESS

Low-dimensional optoelectronic synaptic devices for neuromorphic vision sensors

© 2023 The Author(s). Published by IOP Publishing Ltd on behalf of the Songshan Lake Materials Laboratory
Materials Futures, Volume 2, Number 3
  • Received Date: 2023-04-04
  • Accepted Date: 2023-05-30
  • Publish Date: 2023-06-21
  • Neuromorphic systems represent a promising avenue for the development of the next generation of artificial intelligence hardware. Machine vision, one of the cores in artificial intelligence, requires system-level support with low power consumption, low latency, and parallel computing. Neuromorphic vision sensors provide an efficient solution for machine vision by simulating the structure and function of the biological retina. Optoelectronic synapses, which use light as the main means to achieve the dual functions of photosensitivity and synapse, are the basic units of the neuromorphic vision sensor. Therefore, it is necessary to develop various optoelectronic synaptic devices to expand the application scenarios of neuromorphic vision systems. This review compares the structure and function for both biological and artificial retina systems, and introduces various optoelectronic synaptic devices based on low-dimensional materials and working mechanisms. In addition, advanced applications of optoelectronic synapses as neuromorphic vision sensors are comprehensively summarized. Finally, the challenges and prospects in this field are briefly discussed.

  • loading
  • [1]
    von Neumann J 1993 First draft of a report on the EDVAC IEEE Ann. Hist. Comput. 15 27–75
    [2]
    Kuzum D, Yu S and Wong H P 2013 Synaptic electronics: materials, devices and applications Nanotechnology 24 382001
    [3]
    Zidan M A, Strachan J P and Lu W D 2018 The future of electronics based on memristive systems Nat. Electron. 1 22–29
    [4]
    Merolla P A, Arthur J V, Alvarez-Icaza R, Cassidy A S, Sawada J, Akopyan F, Jackson B L, Imam N, Guo C and Nakamura Y 2014 A million spiking-neuron integrated circuit with a scalable communication network and interface Science 345 668–73
    [5]
    Wang C Y, Wang C, Meng F, Wang P, Wang S, Liang S J and Miao F 2020 2D layered materials for memristive and neuromorphic applications Adv. Electron. Mater. 6 1901107
    [6]
    Waldrop M M 2016 The chips are down for Moore’s law Nat. News 530 144
    [7]
    Machens C K 2012 Building the human brain Science 338 1156–7
    [8]
    van de Burgt Y, Lubberman E, Fuller E J, Keene S T, Faria G C, Agarwal S, Marinella M J, Alec Talin A and Salleo A 2017 A non-volatile organic electrochemical device as a low-voltage artificial synapse for neuromorphic computing Nat. Mater. 16 414–8
    [9]
    Zhu J, Zhang T, Yang Y and Huang R 2020 A comprehensive review on emerging artificial neuromorphic devices Appl. Phys. Rev. 7 011312
    [10]
    Choi S, Tan S H, Li Z, Kim Y, Choi C, Chen P-Y, Yeon H, Yu S and Kim J 2018 SiGe epitaxial memory for neuromorphic computing with reproducible high performance based on engineered dislocations Nat. Mater. 17 335–40
    [11]
    Sun L, Zhang Y, Hwang G, Jiang J, Kim D, Eshete Y A, Zhao R and Yang H 2018 Synaptic computation enabled by joule heating of single-layered semiconductors for sound localization Nano Lett. 18 3229–34
    [12]
    Kim S, Yoon J, Kim H-D and Choi S-J 2015 Carbon nanotube synaptic transistor network for pattern recognition ACS Appl. Mater. Interfaces 7 25479–86
    [13]
    Sun L, Wang Z, Jiang J, Kim Y, Joo B, Zheng S, Lee S, Yu W J, Kong B-S and Yang H 2021 In-sensor reservoir computing for language learning via two-dimensional memristors Sci. Adv. 7 eabg1455
    [14]
    Mennel L, Symonowicz J, Wachter S, Polyushkin D K, Molina-Mendoza A J and Mueller T 2020 Ultrafast machine vision with 2D material neural network image sensors Nature 579 62–66
    [15]
    Liao F, Zhou F and Chai Y 2021 Neuromorphic vision sensors: principle, progress and perspectives J. Semicond. 42 013105
    [16]
    Gollisch T and Meister M 2010 Eye smarter than scientists believed: neural computations in circuits of the retina Neuron 65 150–64
    [17]
    Wang G, Wang R, Kong W and Zhang J 2018 Simulation of retinal ganglion cell response using fast independent component analysis Cogn. Neurodyn. 12 615–24
    [18]
    Mead C 1990 Neuromorphic electronic systems Proc. IEEE 78 1629–36
    [19]
    Yang R, Huang H M and Guo X 2019 Memristive synapses and neurons for bioinspired computing Adv. Electron. Mater. 5 1900287
    [20]
    Sun W, Gao B, Chi M, Xia Q, Yang J J, Qian H and Wu H 2019 Understanding memristive switching via in situ characterization and device modeling Nat. Commun. 10 3453
    [21]
    Tan H, Liu G, Zhu X, Yang H, Chen B, Chen X, Shang J, Lu W D, Wu Y and Li R W 2015 An optoelectronic resistive switching memory with integrated demodulating and arithmetic functions Adv. Mater. 27 2797–803
    [22]
    Tan H, Liu G, Yang H, Yi X, Pan L, Shang J, Long S, Liu M, Wu Y and Li R-W 2017 Light-gated memristor with integrated logic and memory functions ACS Nano 11 11298–305
    [23]
    Fang L, Dai S, Zhao Y, Liu D and Huang J 2020 Light-stimulated artificial synapses based on 2D organic field-effect transistors Adv. Electron. Mater. 6 1901217
    [24]
    Zhou F, Liu Y, Shen X, Wang M, Yuan F and Chai Y 2018 Low-voltage, optoelectronic CH3NH3PbI3-xClx memory with integrated sensing and logic operations Adv. Funct. Mater. 28 1800080
    [25]
    Nau S, Wolf C, Sax S and List-Kratochvil E J 2015 Organic non-volatile resistive photo-switches for flexible image detector arrays Adv. Mater. 27 1048–52
    [26]
    Zhu X, Lee J and Lu W D 2017 Iodine vacancy redistribution in organic–inorganic halide perovskite films and resistive switching effects Adv. Mater. 29 1700527
    [27]
    Burr G W, Shelby R M, Sidler S, di Nolfo C, Jang J, Boybat I, Shenoy R S, Narayanan P, Virwani K and Giacometti E U 2015 Experimental demonstration and tolerancing of a large-scale neural network (165 000 synapses) using phase-change memory as the synaptic weight element IEEE Trans. Electron Devices 62 3498–507
    [28]
    Tuma T, Pantazi A, Le Gallo M, Sebastian A and Eleftheriou E 2016 Stochastic phase-change neurons Nat. Nanotechnol. 11 693–9
    [29]
    Pantazi A, Wo´zniak S, Tuma T and Eleftheriou E 2016 All-memristive neuromorphic computing with level-tuned neurons Nanotechnology 27 355205
    [30]
    Hong S-H, Jeong J-H, Kim K-I and Lee H 2011 High density phase change data on flexible substrates by thermal curing type nanoimprint lithography Microelectron. Eng. 88 2013–6
    [31]
    Mun B H, You B K, Yang S R, Yoo H G, Kim J M, Park W I, Yin Y, Byun M, Jung Y S and Lee K J 2015 Flexible one diode-one phase change memory array enabled by block copolymer self-assembly ACS Nano 9 4120–8
    [32]
    Ohno T, Hasegawa T, Tsuruoka T, Terabe K, Gimzewski J K and Aono M 2011 Short-term plasticity and long-term potentiation mimicked in single inorganic synapses Nat. Mater. 10 591–5
    [33]
    Nayak A, Ohno T, Tsuruoka T, Terabe K, Hasegawa T, Gimzewski J K and Aono M 2012 Controlling the synaptic plasticity of a Cu2S gap-type atomic switch Adv. Funct. Mater. 22 3606–13
    [34]
    Ishiwara H I H 1993 Proposal of adaptive-learning neuron circuits with ferroelectric analog-memory weights Jpn. J. Appl. Phys. 32 442
    [35]
    Tian B, Liu L, Yan M, Wang J, Zhao Q, Zhong N, Xiang P, Sun L, Peng H and Shen H 2019 A robust artificial synapse based on organic ferroelectric polymer Adv. Electron. Mater. 5 1800600
    [36]
    Tang B, Hussain S, Xu R, Cheng Z, Liao J and Chen Q 2020 Novel type of synaptic transistors based on a ferroelectric semiconductor channel ACS Appl. Mater. Interfaces 12 24920–8
    [37]
    Wang X, Zong Y, Liu D, Yang J and Wei Z 2023 Advanced optoelectronic devices for neuromorphic analog based on low-dimensional semiconductors Adv. Funct. Mater. 33 2213894
    [38]
    Han X, Xu Z, Wu W, Liu X, Yan P and Pan C 2020 Recent progress in optoelectronic synapses for artificial visual-perception system Small Struct. 1 2000029
    [39]
    Liu K, Zhang T, Dang B, Bao L, Xu L, Cheng C, Yang Z, Huang R and Yang Y 2022 An optoelectronic synapse based on α-In2Se3 with controllable temporal dynamics for multimode and multiscale reservoir computing Nat. Electron. 5 761–73
    [40]
    Islam M M et al 2022 Multiwavelength optoelectronic synapse with 2D materials for mixed-color pattern recognition ACS Nano 16 10188–98
    [41]
    Song J K et al 2022 Stretchable colour-sensitive quantum dot nanocomposites for shape-tunable multiplexed phototransistor arrays Nat. Nanotechnol. 17 849–56
    [42]
    Pi L et al 2022 Broadband convolutional processing using band-alignment-tunable heterostructures Nat. Electron. 5 248–54
    [43]
    Huang X, Li Q, Shi W, Liu K, Zhang Y, Liu Y, Wei X, Zhao Z, Guo Y and Liu Y 2021 Dual-mode learning of ambipolar synaptic phototransistor based on 2D perovskite/organic heterojunction for flexible color recognizable visual system Small 17 e2102820
    [44]
    Seo S et al 2018 Artificial optic-neural synapse for colored and color-mixed pattern recognition Nat. Commun. 9 5106
    [45]
    Li Y, Wang J, Yang Q and Shen G 2022 Flexible artificial optoelectronic synapse based on lead-free metal halide nanocrystals for neuromorphic computing and color recognition Adv. Sci. 9 2202123
    [46]
    Cai Y, Wang F, Wang X, Li S, Wang Y, Yang J, Yan T, Zhan X, Wang F and Cheng R 2023 Broadband visual adaption and image recognition in a monolithic neuromorphic machine vision system Adv. Funct. Mater. 33 2212917
    [47]
    Meng Y, Li F, Lan C, Bu X, Kang X, Wei R, Yip S, Li D, Wang F and Takahashi T 2020 Artificial visual systems enabled by quasi–two-dimensional electron gases in oxide superlattice nanowires Sci. Adv. 6 eabc6389
    [48]
    Xie D, Jiang J, Hu W, He Y, Yang J, He J, Gao Y and Wan Q 2018 Coplanar multigate MoS2 electric-double-layer transistors for neuromorphic visual recognition ACS Appl. Mater. Interfaces 10 25943–8
    [49]
    Kumar M, Lim J, Kim S and Seo H 2020 Environment-adaptable photonic–electronic-coupled neuromorphic angular visual system ACS Nano 14 14108–17
    [50]
    Gkoupidenis P, Koutsouras D A, Lonjaret T, Fairfield J A and Malliaras G G 2016 Orientation selectivity in a multi-gated organic electrochemical transistor Sci. Rep. 6 27007
    [51]
    Shan X, Zhao C, Wang X, Wang Z, Fu S, Lin Y, Zeng T, Zhao X, Xu H and Zhang X 2022 Plasmonic optoelectronic memristor enabling fully light-modulated synaptic plasticity for neuromorphic vision Adv. Sci. 9 2104632
    [52]
    Zhou F et al 2019 Optoelectronic resistive random access memory for neuromorphic vision sensors Nat. Nanotechnol. 14 776–82
    [53]
    Dodda A et al 2022 Active pixel sensor matrix based on monolayer MoS2 phototransistor array Nat. Mater. 21 1379–87
    [54]
    Ma S, Wu T, Chen X, Wang Y, Ma J, Chen H, Riaud A, Wan J, Xu Z and Chen L 2022 A 619-pixel machine vision enhancement chip based on two-dimensional semiconductors Sci. Adv. 8 eabn9328
    [55]
    Wang C-Y, Liang S-J, Wang S, Wang P, Li Z A, Wang Z, Gao A, Pan C, Liu C and Liu J 2020 Gate-tunable van der Waals heterostructure for reconfigurable neural network vision sensor Sci. Adv. 6 eaba6173
    [56]
    Sun Y, Li Q, Zhu X, Liao C, Wang Y, Li Z, Liu S, Xu H and Wang W 2023 In-sensor reservoir computing based on optoelectronic synapse Adv. Intell. Syst. 5 2200196
    [57]
    Lao J, Yan M, Tian B, Jiang C, Luo C, Xie Z, Zhu Q, Bao Z, Zhong N and Tang X 2022 Ultralow-power machine vision with self-powered sensor reservoir Adv. Sci. 9 2106092
    [58]
    Chen G, Yu X, Gao C, Dai Y, Hao Y, Yu R, Chen H and Guo T 2023 Temperature-controlled multisensory neuromorphic devices for artificial visual dynamic capture enhancement Nano Res. 16 7661–70
    [59]
    Zhang Z, Wang S, Liu C, Xie R, Hu W and Zhou P 2022 All-in-one two-dimensional retinomorphic hardware device for motion detection and recognition Nat. Nanotechnol. 17 27–32
    [60]
    Wang S et al 2021 Networking retinomorphic sensor with memristive crossbar for brain-inspired visual perception Natl Sci. Rev. 8 nwaa172
    [61]
    Chen J, Zhou Z, Kim B J, Zhou Y, Wang Z, Wan T, Yan J, Kang J, Ahn J-H and Chai Y 2023 Optoelectronic graded neurons for bioinspired in-sensor motion perception Nat. Nanotechnol. 18 1–7
    [62]
    Kwon S M, Cho S W, Kim M, Heo J S, Kim Y H and Park S K 2019 Environment-adaptable artificial visual perception behaviors using a light-adjustable optoelectronic neuromorphic device array Adv. Mater. 31 e1906433
    [63]
    Meng J, Wang T, Zhu H, Ji L, Bao W, Zhou P, Chen L, Sun Q Q and Zhang D W 2022 Integrated in-sensor computing optoelectronic device for environment-adaptable artificial retina perception application Nano Lett. 22 81–89
    [64]
    Jin C et al 2022 Artificial vision adaption mimicked by an optoelectrical In2O3 transistor array Nano Lett. 22 3372–9
    [65]
    Liao F et al 2022 Bioinspired in-sensor visual adaptation for accurate perception Nat. Electron. 5 84–91
    [66]
    Hong S, Choi S H, Park J, Yoo H, Oh J Y, Hwang E, Yoon D H and Kim S 2020 Sensory adaptation and neuromorphic phototransistors based on CsPb(Br1-xIx)3 perovskite and MoS2 hybrid structure ACS Nano 14 9796–806
    [67]
    Xie D, Wei L, Xie M, Jiang L, Yang J, He J and Jiang J 2021 Photoelectric visual adaptation based on 0D-CsPbBr3-quantum-dots/2D-MoS2 mixed-dimensional heterojunction transistor Adv. Funct. Mater. 31 2010655
    [68]
    Thorpe S, Fize D and Marlot C 1996 Speed of processing in the human visual system Nature 381 520–2
    [69]
    Watamaniuk S N and Duchon A 1992 The human visual system averages speed information Vis. Res. 32 931–41
    [70]
    Wang Y, Zhu Y, Li Y, Zhang Y, Yang D and Pi X 2022 Dual-modal optoelectronic synaptic devices with versatile synaptic plasticity Adv. Funct. Mater. 32 2107973
    [71]
    Sun Y, Ding Y, Xie D, Xu J, Sun M, Yang P and Zhang Y 2021 Optogenetics-inspired neuromorphic optoelectronic synaptic transistors with optically modulated plasticity Adv. Opt. Mater. 9 2002232
    [72]
    Pocock D C D 1981 Sight and knowledge Trans. Inst. Br. Geogr. 6 385–93
    [73]
    Grill-Spector K and Malach R 2004 The human visual cortex Annu. Rev. Neurosci. 27 649–77
    [74]
    Abr`amoff M D, Garvin M K and Sonka M 2010 Retinal imaging and image analysis IEEE Rev. Biomed. Eng. 3 169–208
    [75]
    Hageman G S and Johnson L V 1991 Structure, composition and function of the retinal interphotoreceptor matrix Prog. Retin. Res. 10 207–49
    [76]
    Masland R H 2001 The fundamental plan of the retina Nat. Neurosci. 4 877–86
    [77]
    Euler T, Haverkamp S, Schubert T and Baden T 2014 Retinal bipolar cells: elementary building blocks of vision Nat. Rev. Neurosci. 15 507–19
    [78]
    Indiveri G and Douglas R 2000 Neuromorphic vision sensors Science 288 1189–90
    [79]
    Barbour B, Brunel N, Hakim V and Nadal J-P 2007 What can we learn from synaptic weight distributions? Trends Neurosci. 30 622–9
    [80]
    Royer S and Paré D 2003 Conservation of total synaptic weight through balanced synaptic depression and potentiation Nature 422 518–22
    [81]
    Wang T-Y, Meng J-L, Li Q-X, He Z-Y, Zhu H, Ji L, Sun Q-Q, Chen L and Zhang D W 2021 Reconfigurable optoelectronic memristor for in-sensor computing applications Nano Energy 89 106291
    [82]
    Hou Y X et al 2021 Large-scale and flexible optical synapses for neuromorphic computing and integrated visible information sensing memory processing ACS Nano 15 1497–508
    [83]
    Wang S et al 2022 Nonvolatile van der Waals heterostructure phototransistor for encrypted optoelectronic logic circuit ACS Nano 16 4528–35
    [84]
    Hong S, Cho H, Kang B H, Park K, Akinwande D, Kim H J and Kim S 2021 Neuromorphic active pixel image sensor array for visual memory ACS Nano 15 15362–70
    [85]
    Bian J, Cao Z and Zhou P 2021 Neuromorphic computing: devices, hardware, and system application facilitated by two-dimensional materials Appl. Phys. Rev. 8 041313
    [86]
    Caporale N and Dan Y 2008 Spike timing–dependent plasticity: a Hebbian learning rule Annu. Rev. Neurosci. 31 25–46
    [87]
    Munakata Y and Pfaffly J 2004 Hebbian learning and development Dev. Sci. 7 141–8
    [88]
    Lei S, Wen F, Li B, Wang Q, Huang Y, Gong Y, He Y, Dong P, Bellah J and George A 2015 Optoelectronic memory using two-dimensional materials Nano Lett. 15 259–65
    [89]
    Star A, Lu Y, Bradley K and Grüner G 2004 Nanotube optoelectronic memory devices Nano Lett. 4 1587–91
    [90]
    Borisenko K B, Shanmugam J, Williams B A, Ewart P, Gholipour B, Hewak D W, Hussain R, Jávorfi T, Siligardi G and Kirkland A I 2015 Photo-induced optical activity in phase-change memory materials Sci. Rep. 5 1–5
    [91]
    Wang S, Dong X, Xiong Y, Sha J, Cao Y, Wu Y, Li W, Yin Y and Wang Y 2021 CsFAMAPbIBr photoelectric memristor based on ion-migration induced memristive behavior Adv. Electron. Mater. 7 2100014
    [92]
    Park H L, Kim H, Lim D, Zhou H, Kim Y H, Lee Y, Park S and Lee T W 2020 Retina-inspired carbon nitride-based photonic synapses for selective detection of UV light Adv. Mater. 32 1906899
    [93]
    Yang Q, Luo Z-D, Zhang D, Zhang M, Gan X, Seidel J, Liu Y, Hao Y and Han G 2022 Controlled optoelectronic response in van der Waals heterostructures for in-sensor computing Adv. Funct. Mater. 32 202207290
    [94]
    Zhang E, Wang W, Zhang C, Jin Y, Zhu G, Sun Q, Zhang D W, Zhou P and Xiu F 2015 Tunable charge-trap memory based on few-layer MoS2 ACS Nano 9 612–9
    [95]
    Lee J-S, Cho J, Lee C, Kim I, Park J, Kim Y-M, Shin H, Lee J and Caruso F 2007 Layer-by-layer assembled charge-trap memory devices with adjustable electronic properties Nat. Nanotechnol. 2 790–5
    [96]
    Han T H, Tan S, Xue J, Meng L, Lee J W and Yang Y 2019 Interface and defect engineering for metal halide perovskite optoelectronic devices Adv. Mater. 31 1803515
    [97]
    Sun Y, Ding Y and Xie D 2021 Mixed-dimensional van der Waals heterostructures enabled optoelectronic synaptic devices for neuromorphic applications Adv. Funct. Mater. 31 2105625
    [98]
    Ni Y, Zhang S, Sun L, Liu L, Wei H, Xu Z, Xu W and Xu W 2021 A low-dimensional hybrid p-i-n heterojunction neuromorphic transistor with ultra-high UV sensitivity and immediate switchable plasticity Appl. Mater. Today 25 101223
    [99]
    Mu H, Yu W, Yuan J, Lin S and Zhang G 2022 Interface and surface engineering of black phosphorus: a review for optoelectronic and photonic applications Mater. Futures 1 012301
    [100]
    Cho S W, Kwon S M, Kim Y-H and Park S K 2021 Recent progress in transistor-based optoelectronic synapses: from neuromorphic computing to artificial sensory system Adv. Intell. Syst. 3 2000162
    [101]
    Ma J W, Lee W-J, Bae J M, Jeong K-S, Oh S H, Kim J H, Kim S-H, Seo J-H, Ahn J-P and Kim H 2015 Carrier mobility enhancement of tensile strained Si and SiGe nanowires via surface defect engineering Nano Lett. 15 7204–10
    [102]
    Abebe B, Murthy H A and Amare E 2020 Enhancing the photocatalytic efficiency of ZnO: defects, heterojunction, and optimization Environ. Nanotechnol. Monitor. Manage. 14 100336
    [103]
    Panda D and Tseng T-Y 2013 One-dimensional ZnO nanostructures: fabrication, optoelectronic properties, and device applications J. Mater. Sci. 48 6849–77
    [104]
    St Laurent B, Dey D, Yu L and Hollen S 2021 Atomic-scale investigation of oxidation at the black phosphorus surface ACS Appl. Electron. Mater. 3 4066–72
    [105]
    Ahmed T, Kuriakose S, Abbas S, Spencer M J, Rahman M A, Tahir M, Lu Y, Sonar P, Bansal V and Bhaskaran M 2019 Multifunctional optoelectronics via harnessing defects in layered black phosphorus Adv. Funct. Mater. 29 1901991
    [106]
    Schwidtal K 1978 SiO2 surface defect centers studied by AES Surf. Sci. 77 523–36
    [107]
    Farronato M, Mannocci P, Melegari M, Ricci S, Compagnoni C M and Ielmini D 2022 Reservoir computing with charge-trap memory based on a MoS2 channel for neuromorphic engineering Adv. Mater. 34 2205381
    [108]
    Illarionov Y Y, Rzepa G, Waltl M, Knobloch T, Grill A, Furchi M M, Mueller T and Grasser T 2016 The role of charge trapping in MoS2/SiO2 and MoS2/hBN field-effect transistors 2D Mater. 3 035004
    [109]
    Guo Y, Wei X, Shu J, Liu B, Yin J, Guan C, Han Y, Gao S and Chen Q 2015 Charge trapping at the MoS2-SiO2 interface and its effects on the characteristics of MoS2 metal-oxide-semiconductor field effect transistors Appl. Phys. Lett. 106 103109
    [110]
    Padgaonkar S, Olding J N, Lauhon L J, Hersam M C and Weiss E A 2020 Emergent optoelectronic properties of mixed-dimensional heterojunctions Acc. Chem. Res. 53 763–72
    [111]
    Shim J, Kang D-H, Kim Y, Kum H, Kong W, Bae S-H, Almansouri I, Lee K, Park J-H and Kim J 2018 Recent progress in van der Waals (vdW) heterojunction-based electronic and optoelectronic devices Carbon 133 78–89
    [112]
    Lan S, Zhong J, Chen J, He W, He L, Yu R, Chen G and Chen H 2021 An optoelectronic synaptic transistor with efficient dual modulation by light illumination J. Mater. Chem. C 9 3412–20
    [113]
    Wang S, Chen C, Yu Z, He Y, Chen X, Wan Q, Shi Y, Zhang D W, Zhou H and Wang X 2019 A MoS2/PTCDA hybrid heterojunction synapse with efficient photoelectric dual modulation and versatility Adv. Mater. 31 1806227
    [114]
    Gao S, Liu G, Yang H, Hu C, Chen Q, Gong G, Xue W, Yi X, Shang J and Li R-W 2019 An oxide Schottky junction artificial optoelectronic synapse ACS Nano 13 2634–42
    [115]
    Allain A, Kang J, Banerjee K and Kis A 2015 Electrical contacts to two-dimensional semiconductors Nat. Mater. 14 1195–205
    [116]
    Schulman D S, Arnold A J and Das S 2018 Contact engineering for 2D materials and devices Chem. Soc. Rev. 47 3037–58
    [117]
    Wang H, Jiang S, Hao Z, Xu X, Pei M, Guo J, Wang Q, Li Y, Chen J and Xu J 2022 Molecular-layer-defined asymmetric Schottky contacts in organic planar diodes for self-powered optoelectronic synapses J. Phys. Chem. Lett. 13 2338–47
    [118]
    Yang C, Qian J, Jiang S, Wang H, Wang Q, Wan Q, Chan P K L, Shi Y and Li Y 2020 An optically modulated organic Schottky-barrier planar-diode-based artificial synapse Adv. Opt. Mater. 8 2000153
    [119]
    Liang K, Ren H, Wang Y, Li D, Tang Y, Song C, Chen Y, Li F, Wang H and Zhu B 2022 Tunable plasticity in printed optoelectronic synaptic transistors by contact engineering IEEE Electron Device Lett. 43 882–5
    [120]
    Pham P V, Bodepudi S C, Shehzad K, Liu Y, Xu Y, Yu B and Duan X 2022 2D heterostructures for ubiquitous electronics and optoelectronics: principles, opportunities, and challenges Chem. Rev. 122 6514–613
    [121]
    Liao W, Huang Y, Wang H and Zhang H 2019 Van der Waals heterostructures for optoelectronics: progress and prospects Appl. Mater. Today 16 435–55
    [122]
    Zhang F, Li C, Li Z, Dong L and Zhao J 2023 Recent progress in three-terminal artificial synapses based on 2D materials: from mechanisms to applications Microsyst. Nanoeng. 9 16
    [123]
    Duan H, Liang L, Wu Z, Zhang H, Huang L and Cao H 2021 IGZO/CsPbBr3-nanoparticles/IGZO neuromorphic phototransistors and their optoelectronic coupling applications ACS Appl. Mater. Interfaces 13 30165–73
    [124]
    Lv Z, Chen M, Qian F, Roy V A, Ye W, She D, Wang Y, Xu Z X, Zhou Y and Han S T 2019 Mimicking neuroplasticity in a hybrid biopolymer transistor by dual modes modulation Adv. Funct. Mater. 29 1902374
    [125]
    Han C, Han X, Han J, He M, Peng S, Zhang C, Liu X, Gou J and Wang J 2022 Light-stimulated synaptic transistor with high PPF feature for artificial visual perception system application Adv. Funct. Mater. 32 2113053
    [126]
    Wang Y, Lv Z, Chen J, Wang Z, Zhou Y, Zhou L, Chen X and Han S T 2018 Photonic synapses based on inorganic perovskite quantum dots for neuromorphic computing Adv. Mater. 30 e1802883
    [127]
    Tan H et al 2018 Broadband optoelectronic synaptic devices based on silicon nanocrystals for neuromorphic computing Nano Energy 52 422–30
    [128]
    Yin L, Han C, Zhang Q, Ni Z, Zhao S, Wang K, Li D, Xu M, Wu H and Pi X 2019 Synaptic silicon-nanocrystal phototransistors for neuromorphic computing Nano Energy 63 103859
    [129]
    Shao L et al 2019 Optoelectronic properties of printed photogating carbon nanotube thin film transistors and their application for light-stimulated neuromorphic devices ACS Appl. Mater. Interfaces 11 12161–9
    [130]
    Pilarczyk K, Podborska A, Lis M, Kawa M, Migdal D and Szaciłowski K 2016 Synaptic behavior in an optoelectronic device based on semiconductor-nanotube hybrid Adv. Electron. Mater. 2 1500471
    [131]
    Chen Y, Qiu W, Wang X, Liu W, Wang J, Dai G, Yuan Y, Gao Y and Sun J 2019 Solar-blind SnO2 nanowire photo-synapses for associative learning and coincidence detection Nano Energy 62 393–400
    [132]
    Li B, Wei W, Yan X, Zhang X, Liu P, Luo Y, Zheng J, Lu Q, Lin Q and Ren X 2018 Mimicking synaptic functionality with an InAs nanowire phototransistor Nanotechnology 29 464004
    [133]
    Xie P, Huang Y, Wang W, Meng Y, Lai Z, Wang F, Yip S, Bu X, Wang W and Li D 2022 Ferroelectric P (VDF-TrFE) wrapped InGaAs nanowires for ultralow-power artificial synapses Nano Energy 91 106654
    [134]
    Li X, Yu B, Wang B, Bi R, Li H, Tu K, Chen G, Li Z, Huang R and Li M 2021 Complementary photo-synapses based on light-stimulated porphyrin-coated silicon nanowires field-effect transistors (LPSNFET) Small 17 e2101434
    [135]
    Abnavi A, Ahmadi R, Hasani A, Fawzy M, Mohammadzadeh M R, de Silva T, Yu N and Adachi M M 2021 Free-standing multilayer molybdenum disulfide memristor for brain-inspired neuromorphic applications ACS Appl. Mater. Interfaces 13 45843–53
    [136]
    Luo Z-D, Xia X, Yang M-M, Wilson N R, Gruverman A and Alexe M 2019 Artificial optoelectronic synapses based on ferroelectric field-effect enabled 2D transition metal dichalcogenide memristive transistors ACS Nano 14 746–54
    [137]
    Li J, Li N, Wang Q, Wei Z, He C, Shang D, Guo Y, Zhang W, Tang J and Liu J 2022 Highly stretchable MoS2-based transistors with opto-synaptic functionalities Adv. Electron. Mater. 8 2200238
    [138]
    John R A, Liu F, Chien N A, Kulkarni M R, Zhu C, Fu Q, Basu A, Liu Z and Mathews N 2018 Synergistic gating of electro-iono-photoactive 2D chalcogenide neuristors: coexistence of Hebbian and homeostatic synaptic metaplasticity Adv. Mater. 30 e1800220
    [139]
    Seo S et al 2021 An optogenetics-inspired flexible van der Waals optoelectronic synapse and its application to a convolutional neural network Adv. Mater. 33 e2102980
    [140]
    Hu Y et al 2021 Ultralow power optical synapses based on MoS2 layers by indium-induced surface charge doping for biomimetic eyes Adv. Mater. 33 e2104960
    [141]
    Wang X, Wang B, Zhang Q, Sun Y, Wang E, Luo H, Wu Y, Gu L, Li H and Liu K 2021 Grain-boundary engineering of monolayer MoS2 for energy-efficient lateral synaptic devices Adv. Mater. 33 e2102435
    [142]
    Wang X et al 2021 Flexo-photoelectronic effect in n-type/p-type two-dimensional semiconductors and a deriving light-stimulated artificial synapse Mater. Horiz. 8 1985–97
    [143]
    Luo Z et al 2021 Plasmonically engineered light-matter interactions in Au-nanoparticle/MoS2 heterostructures for artificial optoelectronic synapse Nano Res. 15 3539–47
    [144]
    Hao D, Zhang J, Dai S, Zhang J and Huang J 2020 Perovskite/organic semiconductor-based photonic synaptic transistor for artificial visual system ACS Appl. Mater. Interfaces 12 39487–95
    [145]
    Pei Y, Yan L, Wu Z, Lu J, Zhao J, Chen J, Liu Q and Yan X 2021 Artificial visual perception nervous system based on low-dimensional material photoelectric memristors ACS Nano 15 17319–26
    [146]
    Liang K et al 2022 Fully printed optoelectronic synaptic transistors based on quantum dot-metal oxide semiconductor heterojunctions ACS Nano 16 8651–61
    [147]
    Guo F, Song M, Wong M C, Ding R, Io W F, Pang S Y, Jie W and Hao J 2022 Multifunctional optoelectronic synapse based on ferroelectric van der Waals heterostructure for emulating the entire human visual system Adv. Funct. Mater. 32 2108014
    [148]
    Li X, Li S, Tang B, Liao J and Chen Q 2022 A vis-SWIR photonic synapse with low power consumption based on WSe2/In2Se3 ferroelectric heterostructure Adv. Electron. Mater. 8 2200343
    [149]
    Wang W, Gao S, Li Y, Yue W, Kan H, Zhang C, Lou Z, Wang L and Shen G 2021 Artificial optoelectronic synapses based on TiNxO2-x/MoS2 heterojunction for neuromorphic computing and visual system Adv. Funct. Mater. 31 2101201
    [150]
    Sun Y, Li M, Ding Y, Wang H, Wang H, Chen Z and Xie D 2022 Programmable van-der-Waals heterostructure-enabled optoelectronic synaptic floating-gate transistors with ultra-low energy consumption InfoMat 4 e12317
    [151]
    Wang Y, Yang J, Wang Z, Chen J, Yang Q, Lv Z, Zhou Y, Zhai Y, Li Z and Han S T 2019 Near-infrared annihilation of conductive filaments in quasiplane MoSe2/Bi2Se3 nanosheets for mimicking heterosynaptic plasticity Small 15 e1805431
    [152]
    Zhou J et al 2022 Multi-stimuli-responsive synapse based on vertical van der Waals heterostructures ACS Appl. Mater. Interfaces 14 35917–26
    [153]
    Hu Y et al 2022 Flexible optical synapses based on In2Se3/MoS2 heterojunctions for artificial vision systems in the near-infrared range ACS Appl. Mater. Interfaces 14 55839–49
    [154]
    Gou G, Sun J, Qian C, He Y, Kong L-A, Fu Y, Dai G, Yang J and Gao Y 2016 Artificial synapses based on biopolymer electrolyte-coupled SnO2 nanowire transistors J. Mater. Chem. C 4 11110–7
    [155]
    Zhou W, Yang R, He H-K, Huang H-M, Xiong J and Guo X 2018 Optically modulated electric synapses realized with memristors based on ZnO nanorods Appl. Phys. Lett. 113 061107
    [156]
    Hu G, An H, Xi J, Lu J, Hua Q and Peng Z 2021 A ZnO micro/nanowire-based photonic synapse with piezo-phototronic modulation Nano Energy 89 106282
    [157]
    Shen C, Gao X, Chen C, Ren S, Xu J-L, Xia Y-D and Wang S-D 2021 ZnO nanowire optoelectronic synapse for neuromorphic computing Nanotechnology 33 065205
    [158]
    O’kelly C J, Fairfield J A, Mccloskey D, Manning H G, Donegan J F and Boland J J 2016 Associative enhancement of time correlated response to heterogeneous stimuli in a neuromorphic nanowire device Adv. Electron. Mater. 2 1500458
    [159]
    Ahmed T, Tahir M, Low M X, Ren Y, Tawfik S A, Mayes E L, Kuriakose S, Nawaz S, Spencer M J and Chen H 2021 Fully light-controlled memory and neuromorphic computation in layered black phosphorus Adv. Mater. 33 2004207
    [160]
    Ahmed T, Kuriakose S, Mayes E L, Ramanathan R, Bansal V, Bhaskaran M, Sriram S and Walia S 2019 Optically stimulated artificial synapse based on layered black phosphorus Small 15 1900966
    [161]
    Lv Z, Wang Y, Chen J, Wang J, Zhou Y and Han S-T 2020 Semiconductor quantum dots for memories and neuromorphic computing systems Chem. Rev. 120 3941–4006
    [162]
    García de Arquer F P, Talapin D V, Klimov V I, Arakawa Y, Bayer M and Sargent E H 2021 Semiconductor quantum dots: technological progress and future challenges Science 373 eaaz8541
    [163]
    Gidwani B, Sahu V, Shukla S S, Pandey R, Joshi V, Jain V K and Vyas A 2021 Quantum dots: prospectives, toxicity, advances and applications J. Drug Deliv. Sci. Technol. 61 102308
    [164]
    Huang W, Hang P, Wang Y, Wang K, Han S, Chen Z, Peng W, Zhu Y, Xu M and Zhang Y 2020 Zero-power optoelectronic synaptic devices Nano Energy 73 104790
    [165]
    Schroeder V, Savagatrup S, He M, Lin S and Swager T M 2018 Carbon nanotube chemical sensors Chem. Rev. 119 599–663
    [166]
    Chen X, Chen B, Jiang B, Gao T, Shang G, Han S T, Kuo C C, Roy V A and Zhou Y 2023 Nanowires for UV–vis–IR optoelectronic synaptic devices Adv. Funct. Mater. 33 2208807
    [167]
    Zhang D, Zhang Q, Zhu Y, Poddar S, Zhang Y, Gu L, Zeng H and Fan Z 2022 Metal halide perovskite nanowires: synthesis, integration, properties, and applications in optoelectronics Adv. Energy Mater. 12 2201735
    [168]
    Chen X, Chen B, Zhao P, Roy V A, Han S-T and Zhou Y 2023 Nanowires based synaptic devices for neuromorphic computing Mater. Futures 2 023501
    [169]
    Kadantsev E S and Hawrylak P 2012 Electronic structure of a single MoS2 monolayer Solid State Commun. 152 909–13
    [170]
    Liu L, Sun Y, Huang X, Liu C, Tang Z, Zeng S, Zhang D W, Deng S and Zhou P 2022 Ultrafast flash memory with large self-rectifying ratio based on atomically thin MoS2-channel transistor Mater. Futures 1 025301
    [171]
    Li C, Li L, Zhang F, Li Z, Zhu W, Dong L and Zhao J 2023 High-performance C60 coupled ferroelectric enhanced MoS2 nonvolatile memory ACS Appl. Mater. Interfaces 15 16910–7
    [172]
    Novoselov K S, Mishchenko A, Carvalho O A and Castro Neto A 2016 2D materials and van der Waals heterostructures Science 353 aac9439
  • 加载中

Catalog

    Figures(1)

    Article Metrics

    Article Views(427) PDF downloads(173)
    Article Statistics
    Related articles from

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return