Volume 2 Issue 3
August  2023
Turn off MathJax
Article Contents
Bingcheng Yu, Shan Tan, Dongmei Li, Qingbo Meng. The stability of inorganic perovskite solar cells: from materials to devices[J]. Materials Futures, 2023, 2(3): 032101. doi: 10.1088/2752-5724/acd56c
Citation: Bingcheng Yu, Shan Tan, Dongmei Li, Qingbo Meng. The stability of inorganic perovskite solar cells: from materials to devices[J]. Materials Futures, 2023, 2(3): 032101. doi: 10.1088/2752-5724/acd56c
Topical Review •
OPEN ACCESS

The stability of inorganic perovskite solar cells: from materials to devices

© 2023 The Author(s). Published by IOP Publishing Ltd on behalf of the Songshan Lake Materials Laboratory
Materials Futures, Volume 2, Number 3
  • Received Date: 2023-03-22
  • Accepted Date: 2023-05-15
  • Publish Date: 2023-06-09
  • Inorganic halide perovskite solar cells (IHPSCs) have become one of the most promising research hotspots due to to the excellent light and thermal stabilities of inorganic halide perovskites (IHPs). Despite rapid progress in cell performance in very recent years, the phase instability of IHPs easily occurs, which will remarkably influence the cell efficiency and stability. Much effort has been devoted to solving this issue. In this review, we focus on representative progress in the stability from IHPs to IHPSCs, including (i) a brief introduction of inorganic perovskite materials and devices, (ii) some new additives and fabrication methods, (iii) thermal and light stabilities, (iv) tailoring phase stability, (v) optimization of the stability of inorganic perovskite solar cells and (vi) interfacial engineering for stability enhancement. Finally, perspectives will be given regarding future work on highly efficient and stable IHPSCs. This review aims to provide a thorough understanding of the key influential factors on the stability of materials to highly efficient and stable IHPSCs.

  • loading
  • [1]
    Sun S, Salim T, Mathews N, Duchamp M, Boothroyd C, Xing G, Sum T C and Lam Y M 2014 The origin of high efficiency in low-temperature solution-processable bilayer organometal halide hybrid solar cells Energy Environ. Sci. 7 399–407
    [2]
    Stranks S D, Eperon G E, Grancini G, Menelaou C, Alcocer M J, Leijtens T, Herz L M, Petrozza A and Snaith H J 2013 Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber Science 342 341–4
    [3]
    Ponseca C S et al 2014 Organometal halide perovskite solar cell materials rationalized: ultrafast charge generation, high and microsecond-long balanced mobilities, and slow recombination J. Am. Chem. Soc. 136 5189–92
    [4]
    D’Innocenzo V, Grancini G, Alcocer M J, Kandada A R, Stranks S D, Lee M M, Lanzani G, Snaith H J and Petrozza A 2014 Excitons versus free charges in organo-lead tri-halide perovskites Nat. Commun. 5 3586
    [5]
    NREL 2023 Best research-cell efficiency chart: NREL (available at: www.nrel.gov/pv/cell-efficiency.html) (Accessed 1 December 2023)
    [6]
    Kojima A, Teshima K, Shirai Y and Miyasaka T 2009 Organometal halide perovskites as visible-light sensitizers for photovoltaic cells J. Am. Chem. Soc. 131 6050–1
    [7]
    Kim H-S et al 2012 Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9% Sci. Rep. 2 591
    [8]
    Lee M M, Teuscher J, Miyasaka T, Murakami T N and Snaith H J 2012 Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites Science 338 643–7
    [9]
    Burschka J, Pellet N, Moon S J, Humphry-Baker R, Gao P, Nazeeruddin M K and Gratzel M 2013 Sequential deposition as a route to high-performance perovskite-sensitized solar cells Nature 499 316–9
    [10]
    Jeon N J, Noh J H, Yang W S, Kim Y C, Ryu S, Seo J and Seok S I 2015 Compositional engineering of perovskite materials for high-performance solar cells Nature 517 476–80
    [11]
    Yang W S, Noh J H, Jeon N J, Kim Y C, Ryu S, Seo J and Seok S I 2015 High-performance photovoltaic perovskite layers fabricated through intramolecular exchange Science 348 1234–7
    [12]
    Zhao Y et al 2022 Inactive (PbI2)2RbCl stabilizes perovskite films for efficient solar cells Science 377 531–4
    [13]
    Park J, Kim J, Yun H-S, Paik M J, Noh E, Mun H J, Kim M G, Shin T J and Seok S I 2023 Controlled growth of perovskite layers with volatile alkylammonium chlorides Nature 616 724–30
    [14]
    Green M A, Ho-Baillie A and Snaith H J 2014 The emergence of perovskite solar cells Nat. Photon. 8 506–14
    [15]
    Frost J M, Butler K T, Brivio F, Hendon C H, van Schilfgaarde M and Walsh A 2014 Atomistic origins of high-performance in hybrid halide perovskite solar cells Nano Lett. 14 2584–90
    [16]
    Boyd C C, Cheacharoen R, Leijtens T and McGehee M D 2019 Understanding degradation mechanisms and improving stability of perovskite photovoltaics Chem. Rev. 119 3418–51
    [17]
    Turren-Cruz S H, Hagfeldt A and Saliba M 2018 Methylammonium-free, high-performance, and stable perovskite solar cells on a planar architecture Science 362 449–53
    [18]
    Yang Y and You J 2017 Make perovskite solar cells stable Nature 5 155–6
    [19]
    Kim M et al 2019 Methylammonium chloride induces intermediate phase stabilization for efficient perovskite solar cells Joule 3 2179–92
    [20]
    Bu T et al 2022 Modulating crystal growth of formamidinium–caesium perovskites for over 200 cm2 photovoltaic sub-modules Nat. Energy 7 528–36
    [21]
    Jiang Q, Zhao Y, Zhang X, Yang X, Chen Y, Chu Z, Ye Q F, Li X, Yin Z and You J 2019 Surface passivation of perovskite film for efficient solar cells Nat. Photon. 13 460–6
    [22]
    Wu G, Liang R, Ge M, Sun G, Zhang Y and Xing G 2022 Surface passivation using 2D perovskites toward efficient and stable perovskite solar cells Adv. Mater. 34 e2105635
    [23]
    Zhou N, Shen Y, Li L, Tan S, Liu N, Zheng G, Chen Q and Zhou H 2018 Exploration of crystallization kinetics in quasi two-dimensional perovskite and high performance solar cells J. Am. Chem. Soc. 140 459–65
    [24]
    Wang T et al 2022 Transporting holes stably under iodide invasion in efficient perovskite solar cells Science 377 1227–31
    [25]
    Jung E H, Jeon N J, Park E Y, Moon C S, Shin T J, Yang T Y and Noh J H 2019 Efficient, stable and scalable perovskite solar cells using poly(3-hexylthiophene) Nature 567 511–5
    [26]
    Zhang H, Xiao J, Shi J, Su H, Luo Y, Li D, Wu H, Chen Y and Meng Q 2018 Self-adhesive macroporous carbon electrodes for efficient and stable perovskite solar cells Adv. Funct. Mater. 28 1802985
    [27]
    Zhang C et al 2021 Ti1–graphene single-atom material for improved energy level alignment in perovskite solar cells Nat. Energy 6 1154–63
    [28]
    Lin Y et al 2017 π-Conjugated Lewis base: efficient trap-passivation and charge-extraction for hybrid perovskite solar cells Adv. Mater. 29 1604545
    [29]
    Liu K, Chen S, Wu J, Zhang H, Qin M, Lu X, Tu X, Meng Q and Zhan X 2018 Fullerene derivative anchored SnO2 for high-performance perovskite solar cells Energy Environ. Sci. 11 3463–71
    [30]
    Jiang Y et al 2022 Reducing energy disorder in perovskite solar cells by chelation J. Am. Chem. Soc. 144 5400–10
    [31]
    Zhang M, Dai S, Chandrabose S, Chen K, Liu K, Qin M, Lu X, Hodgkiss J M, Zhou H and Zhan X 2018 High-performance fused ring electron acceptor-perovskite hybrid J. Am. Chem. Soc. 140 14938–44
    [32]
    Eperon G E, Patern`o G M, Sutton R J, Zampetti A, Haghighirad A A, Cacialli F and Snaith H J 2015 Inorganic caesium lead iodide perovskite solar cells J. Mater. Chem. A 3 19688–95
    [33]
    Faheem M B, Khan B, Feng C, Farooq M U, Raziq F, Xiao Y and Li Y 2019 All-inorganic perovskite solar cells: energetics, key challenges, and strategies toward commercialization ACS Energy Lett. 5 290–320
    [34]
    Jiang Y, Yuan J, Ni Y, Yang J, Wang Y, Jiu T, Yuan M and Chen J 2018 Reduced-dimensional α-CsPbX3 perovskites for efficient and stable photovoltaics Joule 2 1356–68
    [35]
    Stoumpos C C, Malliakas C D and Kanatzidis M G 2013 Semiconducting tin and lead iodide perovskites with organic cations: phase transitions, high mobilities, and near-infrared photoluminescent properties Inorg. Chem. 52 9019–38
    [36]
    Sutton R J et al 2016 Bandgap-tunable cesium lead halide perovskites with high thermal stability for efficient solar cells Adv. Energy Mater. 6 1502458
    [37]
    Zhou Y and Zhao Y 2019 Chemical stability and instability of inorganic halide perovskites Energy Environ. Sci. 12 1495–511
    [38]
    Zhou W, Zhao Y, Zhou X, Fu R, Li Q, Zhao Y, Liu K, Yu D and Zhao Q 2017 Light-independent ionic transport in inorganic perovskite and ultrastable Cs-based perovskite solar cells J. Phys. Chem. Lett. 8 4122–8
    [39]
    Wang P, Zhang X, Zhou Y, Jiang Q, Ye Q, Chu Z, Li X, Yang X, Yin Z and You J 2018 Solvent-controlled growth of inorganic perovskite films in dry environment for efficient and stable solar cells Nat. Commun. 9 2225
    [40]
    Kulbak M, Cahen D and Hodes G 2015 How important is the organic part of lead halide perovskite photovoltaic cells? Efficient CsPbBr3 cells J. Phys. Chem. Lett. 6 2452–6
    [41]
    Wang Y et al 2019 Thermodynamically stabilized beta-CsPbI3–based perovskite solar cells with efficiencies >18% Science 365 591–5
    [42]
    Yu B, Shi J, Tan S, Cui Y, Zhao W, Wu H, Luo Y, Li D and Meng Q 2021 Efficient (>20%) and stable all-inorganic cesium lead triiodide solar cell enabled by thiocyanate molten salts Angew. Chem, Int. Ed. 60 13436–43
    [43]
    Yoon S M, Min H, Kim J B, Kim G, Lee K S and Seok S I 2020 Surface engineering of ambient-air-processed cesium lead triiodide layers for efficient solar cells Joule 5 183–96
    [44]
    Wang Y, Zhang T, Kan M and Zhao Y 2018 Bifunctional stabilization of all-inorganic alpha-CsPbI3 perovskite for 17% efficiency photovoltaics J. Am. Chem. Soc. 140 12345–8
    [45]
    Wang Y, Liu X, Zhang T, Wang X, Kan M, Shi J and Zhao Y X 2019 The role of dimethylammonium iodide in CsPbI3 perovskite fabrication: additive or dopant? Angew. Chem., Int. Ed. 58 16691–6
    [46]
    Cui Y et al 2022 A versatile molten-salt induction strategy to achieve efficient CsPbI3 perovskite solar cells with a high open-circuit voltage >1.2V Adv. Mater. 34 e2205028
    [47]
    Wang J, Che Y, Duan Y, Liu Z, Yang S, Xu D, Fang Z, Lei X, Li Y and Liu S Z 2023 21.15%-efficiency and stable gamma-CsPbI3 perovskite solar cells enabled by an acyloin ligand Adv. Mater. 35 e2210223
    [48]
    Chen H, Xiang S, Li W, Liu H, Zhu L and Yang S 2018 Inorganic perovskite solar cells: a rapidly growing field Solar RRL 2 1700188
    [49]
    Byranvand M M, Zuo W, Imani R, Pazoki M and Saliba M 2022 Tin-based halide perovskite materials: properties and applications Chem. Sci. 13 6766–81
    [50]
    Correa-Baena J-P, Saliba M, Buonassisi T, Graetzel M, Abate A, Tress W and Hagfeldt A 2017 Promises and challenges of perovskite solar cells Science 358 739–44
    [51]
    Sun Q and Yin W J 2017 Thermodynamic stability trend of cubic perovskites J. Am. Chem. Soc. 139 14905–8
    [52]
    Steele J A et al 2019 Thermal unequilibrium of strained black CsPbI3 thin films Science 365 679–84
    [53]
    Li X, Wu Y, Zhang S, Cai B, Gu Y, Song J and Zeng H 2016 CsPbX3 quantum dots for lighting and displays: room-temperature synthesis, photoluminescence superiorities, underlying origins and white light-emitting diodes Adv. Funct. Mater. 26 2435–45
    [54]
    Yang Z et al 2017 Impact of the halide cage on the electronic properties of fully inorganic cesium lead halide perovskites ACS Energy Lett. 2 1621–7
    [55]
    Girisun T C S and Dhanuskodi S 2009 Linear and nonlinear optical properties of tris thiourea zinc sulphate single crystals Cryst. Res. Technol. 44 1297–302
    [56]
    Elbaz G A, Straus D B, Semonin O E, Hull T D, Paley D W, Kim P, Owen J S, Kagan C R and Roy X 2017 Unbalanced hole and electron diffusion in lead bromide perovskites Nano Lett. 17 1727–32
    [57]
    Song J et al 2017 Ultralarge all-inorganic perovskite bulk single crystal for high-performance visible-infrared dual-modal photodetectors Adv. Opt. Mater. 5 1700157
    [58]
    Ye T et al 2021 Ambient-air-stable lead-free CsSnI3 solar cells with greater than 7.5% efficiency J. Am. Chem. Soc. 143 4319–28
    [59]
    Stoumpos C C, Frazer L, Clark D J, Kim Y S, Rhim S H, Freeman A J, Ketterson J B, Jang J I and Kanatzidis M G 2015 Hybrid germanium iodide perovskite semiconductors: active lone pairs, structural distortions, direct and indirect energy gaps, and strong nonlinear optical properties J. Am. Chem. Soc. 137 6804–19
    [60]
    Huang L Y and Lambrecht W R L 2016 Electronic band structure trends of perovskite halides: beyond Pb and Sn to Ge and Si Phys. Rev. B 93 195211
    [61]
    Jena A K, Kulkarni A and Miyasaka T 2019 Halide perovskite photovoltaics: background, status, and future prospects Chem. Rev. 119 3036–103
    [62]
    Han X et al 2019 Lead-free double perovskite Cs2SnX6: facile solution synthesis and excellent stability Small 15 e1901650
    [63]
    Giustino F and Snaith H J 2016 Toward lead-free perovskite solar cells ACS Energy Lett. 1 1233–40
    [64]
    Slavney A H, Hu T, Lindenberg A M and Karunadasa H I 2016 A bismuth-halide double perovskite with long carrier recombination lifetime for photovoltaic applications J. Am. Chem. Soc. 138 2138–41
    [65]
    Igbari F, Wang Z K and Liao L S 2019 Progress of lead-free halide double perovskites Adv. Energy Mater. 9 1803150
    [66]
    Ma C, Grätzel M and Park N-G 2022 Facet engineering for stable, efficient perovskite solar cells ACS Energy Lett. 7 3120–8
    [67]
    Pradhan N 2021 Why do perovskite nanocrystals form nanocubes and how can their facets be tuned? A perspective from synthetic prospects ACS Energy Lett. 7 92–99
    [68]
    Dong S, Hu Z Y, Wei P, Han J, Wang Z, Liu J, Su B-L, Zhao D and Liu Y 2022 All-inorganic perovskite single-crystal photoelectric anisotropy Adv. Mater. 34 e2204342
    [69]
    Tan S et al 2022 Temperature-reliable low-dimensional perovskites passivated black-phase CsPbI3 toward stable and efficient photovoltaics Angew. Chem., Int. Ed. 61 e202201300
    [70]
    Zhang H et al 2023 Tailored cysteine-derived molecular structures towards efficient and stable inorganic perovskite solar cells Adv. Mater. e2301140
    [71]
    Liu C, Li W Z, Zhang C L, Ma Y P, Fan J D and Mai Y H 2018 All-inorganic CsPbI2Br perovskite solar cells with high efficiency exceeding 13% J. Am. Chem. Soc. 140 3825–8
    [72]
    Luo X et al 2023 Efficient perovskite/silicon tandem solar cells on industrially compatible textured silicon Adv. Mater. 35 e2207883
    [73]
    Ho-Baillie A W Y, Zheng J, Mahmud M A, Fa-Jun M, McKenzie D R and Green M A 2021 Recent progress and future prospects of perovskite tandem solar cells Appl. Phys. Rev. 8 041307
    [74]
    Fu S, Le J, Guo X, Sun N, Zhang W, Song W and Fang J F 2022 Polishing the lead-poor surface for efficient inverted CsPbI3 perovskite solar cells Adv. Mater. 34 e2205066
    [75]
    Liang J et al 2016 All-inorganic perovskite solar cells J. Am. Chem. Soc. 138 15829–32
    [76]
    Wang H, Liu H, Dong Z, Wei X, Li W, Zhu L, Zhu C, Bai Y and Chen H N 2023 Dimethyl sulfoxide: a promising solvent for inorganic CsPbI3 perovskite Sci. Bull. 68 192–202
    [77]
    Yu B, Zuo C, Shi J, Meng Q and Ding L 2021 Defect engineering on all-inorganic perovskite solar cells for high efficiency J. Semicond. 42 050203
    [78]
    Shockley W and Queisser H J 1961 Detailed balance limit of efficiency of p-n junction solar cells J. Appl. Phys. 32 510–9
    [79]
    Yuan S, Xian Y, Long Y, Cabot A, Li W and Fan J 2021 Chromium-based metal–organic framework as a-site cation in CsPbI2Br perovskite solar cells Adv. Funct. Mater. 31 2106233
    [80]
    Zhu W, Chai W, Chen D, Ma J, Chen D, Xi H, Zhang J, Zhang C and Hao Y 2021 High-Efficiency (>14%) and air-stable carbon-based, all-inorganic CsPbI2Br perovskite solar cells through a top-seeded growth strategy ACS Energy Lett. 6 1500–10
    [81]
    Zhou Q, Duan J, Du J, Guo Q, Zhang Q, Yang X, Duan J and Tang Q 2021 Tailored lattice “Tape” to confine tensile interface for 11.08%-efficiency all-inorganic CsPbBr3 perovskite solar cell with an ultrahigh voltage of 1.702 V Adv. Sci. 8 e2101418
    [82]
    Liang J et al 2019 Defect-engineering-enabled high-efficiency all-inorganic perovskite solar cells Adv. Mater. 31 e1903448
    [83]
    Uratani H and Yamashita K 2017 Charge carrier trapping at surface defects of perovskite solar cell absorbers: a first-principles study J. Phys. Chem. Lett. 8 742–6
    [84]
    Ball J M and Petrozza A 2016 Defects in perovskite-halides and their effects in solar cells Nat. Energy 1 16149
    [85]
    Li Y, Zhang C, Zhang X, Huang D, Shen Q, Cheng Y and Huang W 2017 Intrinsic point defects in inorganic perovskite CsPbI3 from first-principles prediction Appl. Phys. Lett. 111 162106
    [86]
    Chen W, Chen H, Xu G, Xue R, Wang S, Li Y and Li Y 2019 Precise control of crystal growth for highly efficient CsPbI2Br perovskite solar cells Joule 3 191–204
    [87]
    Yu B et al 2018 Solvent-engineering toward CsPb(IxBr1-x)3 films for high-performance inorganic perovskite solar cells J. Mater. Chem. A 6 19810–6
    [88]
    Chen C Y, Lin H Y, Chiang K M, Tsai W L, Huang Y C, Tsao C S and Lin H W 2017 All-vacuum-deposited stoichiometrically balanced inorganic cesium lead halide perovskite solar cells with stabilized efficiency exceeding 11% Adv. Mater. 29 1605290
    [89]
    Duan J, Zhao Y Y, He B L and Tang Q W 2018 High-purity inorganic perovskite films for solar cells with 9.72% efficiency Angew. Chem., Int. Ed. 57 3787–91
    [90]
    Chen W, Zhang J, Xu G, Xue R, Li Y, Zhou Y, Hou J and Li Y 2018 A semitransparent inorganic perovskite film for overcoming ultraviolet light instability of organic solar cells and achieving 14.03% efficiency Adv. Mater. 30 e1800855
    [91]
    Hutter E M, Sutton R J, Chandrashekar S, Abdi-Jalebi M, Stranks S D, Snaith H J and Sayenije T J 2017 Vapour-deposited cesium lead iodide perovskites: microsecond charge carrier lifetimes and enhanced photovoltaic performance ACS Energy Lett. 2 1901–8
    [92]
    Shi L et al 2020 Gas chromatography-mass spectrometry analyses of encapsulated stable perovskite solar cells Science 368 6497
    [93]
    Kulbak M, Gupta S, Kedem N, Levine I, Bendikov T, Hodes G and Cahen D 2016 Cesium enhances long-term stability of lead bromide perovskite-based solar cells J. Phys. Chem. Lett. 7 167–72
    [94]
    Tian J, Wang J, Xue Q, Niu T, Yan L, Zhu Z, Li N, Brabec C J, Yi H L and Cao Y 2020 Composition engineering of all-inorganic perovskite film for efficient and operationally stable solar cells Adv. Funct. Mater. 30 2001764
    [95]
    Li W et al 2017 Phase segregation enhanced ion movement in efficient inorganic CsPbIBr2 solar cells Adv. Energy Mater. 7 1700946
    [96]
    Tian J et al 2019 Dual interfacial design for efficient CsPbI2Br perovskite solar cells with improved photostability Adv. Mater. 31 e1901152
    [97]
    Zheng K, Ge J, Liu C, Lou Q, Chen X, Meng Y, Yin X, Bu S, Liu C and Ge Z 2021 Improved phase stability of CsPbI2Br perovskite by released microstrain toward highly efficient and stable solar cells InfoMat 3 1431–44
    [98]
    Zeng Q et al 2018 Polymer-passivated inorganic cesium lead mixed-halide perovskites for stable and efficient solar cells with high open-circuit voltage over 1.3 V Adv. Mater. 30 1705393
    [99]
    Xu J et al 2022 Stable high-efficiency CsPbI2Br solar cells by designed passivation using multifunctional 2D perovskite Adv. Funct. Mater. 32 2202829
    [100]
    Swarnkar A, Mir W J and Nag A 2018 Can B-site doping or alloying improve thermal- and phase-stability of all-inorganic CsPbX3 (X = Cl, Br, I) perovskites? ACS Energy Lett. 3 286–9
    [101]
    Wang Q, Zheng X, Deng Y, Zhao J, Chen Z and Huang J 2017 Stabilizing the α-phase of CsPbI3 perovskite by sulfobetaine zwitterions in one-step spin-coating films Joule 1 371–82
    [102]
    Ghosh D, Ali M Y, Chaudhary D K and Bhattacharyya S 2018 Dependence of halide composition on the stability of highly efficient all-inorganic cesium lead halide perovskite quantum dot solar cells Sol. Energy Mater. Sol. Cells 185 28–35
    [103]
    Li W, Li J, Li J, Fan J, Mai Y and Wang L 2016 Addictive-assisted construction of all-inorganic CsSnIBr2 mesoscopic perovskite solar cells with superior thermal stability up to 473 K J. Mater. Chem. A 4 17104–10
    [104]
    Meng F, Yu B, Zhang Q, Cui Y, Tan S, Shi J, Gu L, Li D, Meng Q and Nan C 2022 Ge incorporation to stabilize efficient inorganic CsPbI3 perovskite solar cells Adv. Energy Mater. 12 2103690
    [105]
    Yang F, Hirotani D, Kapil G, Kamarudin M A, Ng C H, Zhang Y, Shen Q and Hayase S 2018 All-inorganic CsPb1-xGexI2Br perovskite with enhanced phase stability and photovoltaic performance Angew. Chem., Int. Ed. 57 12745–9
    [106]
    Hu Y, Bai F, Liu X, Ji Q, Miao X, Qiu T and Zhang S 2017 Bismuth incorporation stabilized α-CsPbI3 for fully inorganic perovskite solar cells ACS Energy Lett. 2 2219–27
    [107]
    Jena A K, Kulkarni A, Sanehira Y, Ikegami M and Miyasaka T 2018 Stabilization of α-CsPbI3 in ambient room temperature conditions by incorporating Eu into CsPbI3 Chem. Mater. 30 6668–74
    [108]
    Guo Z, Zhao S, Liu A, Kamata Y, Teo S, Yang S, Xu Z, Hayase S and Ma T 2019 Niobium incorporation into CsPbI2Br for stable and efficient all-inorganic perovskite solar cells ACS Appl Mater. Interfaces 11 19994–20003
    [109]
    Zhao X, Liu T, Burlingame Q C, Liu T, Holley R, Cheng G, Yao N, Gao F and Loo Y L 2022 Accelerated aging of all-inorganic, interface-stabilized perovskite solar cells Science 377 307–10
    [110]
    Li B, Zhang Y, Fu L, Yu T, Zhou S, Zhang L and Yin L 2018 Surface passivation engineering strategy to fully-inorganic cubic CsPbI3 perovskites for high-performance solar cells Nat. Commun. 9 1076
    [111]
    Zhao B et al 2018 Thermodynamically stable orthorhombic gamma-CsPbI3 thin films for high-performance photovoltaics J. Am. Chem. Soc. 140 11716–25
    [112]
    Zhang J, Fang Y, Zhao W, Han R, Wen J and Liu S Z 2021 Molten-salt-assisted CsPbI3 perovskite crystallization for nearly 20%-efficiency solar cells Adv. Mater. 33 e2103770
    [113]
    Liu C et al 2018 Structurally reconstructed CsPbI2Br perovskite for highly stable and square-centimeter all-inorganic perovskite solar cells Adv. Energy Mater. 9 1803572
    [114]
    Jiang Q, Zhang L, Wang H, Yang X, Meng J, Liu H, Yin Z, Wu J, Zhang X and You J 2016 Enhanced electron extraction using SnO2 for high-efficiency planar-structure HC(NH2)2PbI3-based perovskite solar cells Nat. Energy 2 1–7
    [115]
    Jiang Q, Zhang X and You J 2018 SnO2: a wonderful electron transport layer for perovskite solar cells Small 14 e1801154
    [116]
    Ye Q, Zhao Y, Mu S, Ma F, Gao F, Chu Z, Yin Z, Gao P, Zhang X and You J 2019 Cesium lead inorganic solar cell with efficiency beyond 18% via reduced charge recombination Adv. Mater. 31 e1905143
    [117]
    Zhang T et al 2022 Ion-modulated radical doping of spiro-OMeTAD for more efficient and stable perovskite solar cells Science 377 495–501
    [118]
    Yuan J et al 2018 Band-aligned polymeric hole transport materials for extremely low energy loss α-CsPbI3 perovskite nanocrystal solar cells Joule 2 2450–63
    [119]
    Li M H et al 2021 Electrical loss management by molecularly manipulating dopant-free poly(3-hexylthiophene) towards 16.93% CsPbI2Br solar cells Angew. Chem., Int. Ed. 60 16388–93
    [120]
    Liang J, Zhao P, Wang C, Wang Y, Hu Y, Zhu G, Ma L, Liu J and Jin Z 2017 CsPb0.9Sn0.1IBr2 based all-inorganic perovskite solar cells with exceptional efficiency and stability J. Am. Chem. Soc. 139 14009–12
    [121]
    Heo J H, Zhang F, Park J K, Joon Lee H, Lee D S, Heo S J, Luther J M, Berry J J, Zhu K and Im S H 2022 Surface engineering with oxidized Ti3C2Tx MXene enables efficient and stable p-i-n-structured CsPbI3 perovskite solar cells Joule 6 1672–88
  • 加载中

Catalog

    Figures(1)

    Article Metrics

    Article Views(313) PDF downloads(147)
    Article Statistics
    Related articles from

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return