Volume 2 Issue 2
May  2023
Turn off MathJax
Article Contents
Renrui Fang, Woyu Zhang, Kuan Ren, Peiwen Zhang, Xiaoxin Xu, Zhongrui Wang, Dashan Shang. In-materio reservoir computing based on nanowire networks: fundamental, progress, and perspective[J]. Materials Futures, 2023, 2(2): 022701. doi: 10.1088/2752-5724/accd87
Citation: Renrui Fang, Woyu Zhang, Kuan Ren, Peiwen Zhang, Xiaoxin Xu, Zhongrui Wang, Dashan Shang. In-materio reservoir computing based on nanowire networks: fundamental, progress, and perspective[J]. Materials Futures, 2023, 2(2): 022701. doi: 10.1088/2752-5724/accd87
Topical Review •
OPEN ACCESS

In-materio reservoir computing based on nanowire networks: fundamental, progress, and perspective

© 2023 The Author(s). Published by IOP Publishing Ltd on behalf of the Songshan Lake Materials Laboratory
Materials Futures, Volume 2, Number 2
  • Received Date: 2023-03-07
  • Accepted Date: 2023-04-10
  • Publish Date: 2023-05-19
  • The reservoir computing (RC) system, known for its ability to seamlessly integrate memory and computing functions, is considered as a promising solution to meet the high demands for time and energy-efficient computing in the current big data landscape, compared with traditional silicon-based computing systems that have a noticeable disadvantage of separate storage and computation. This review focuses on in-materio RC based on nanowire networks (NWs) from the perspective of materials, extending to reservoir devices and applications. The common methods used in preparing nanowires-based reservoirs, including the synthesis of nanowires and the construction of networks, are firstly systematically summarized. The physical principles of memristive and memcapacitive junctions are then explained. Afterwards, the dynamic characteristics of nanowires-based reservoirs and their computing capability, as well as the neuromorphic applications of NWs-based RC systems in recognition, classification, and forecasting tasks, are explicated in detail. Lastly, the current challenges and future opportunities facing NWs-based RC are highlighted, aiming to provide guidance for further research.

  • loading
  • [1]
    Zhang W Q, Gao B, Tang J, Yao P, Yu S, Chang M F, Yoo H J, Qian H and Wu H Q 2020 Neuro-inspired computing chips Nat. Electron. 3 371–82
    [2]
    Tanaka K, Tokudome Y, Minami Y, Honda S, Nakajima T, Takei K and Nakajima K 2022 Self-organization of remote reservoirs: transferring computation to spatially distant locations Adv. Intell. Syst. 4 2100166
    [3]
    Zidan M A, Strachan J P and Lu W D 2018 The future of electronics based on memristive systems Nat. Electron. 1 22–29
    [4]
    Salahuddin S, Ni K and Datta S 2018 The era of hyper-scaling in electronics Nat. Electron. 1 442–50
    [5]
    Onen M, Emond N, Wang B M, Zhang D F, Frances M R, Li J, Yildiz B and Alamo J A 2022 Nanosecond protonic programmable resistors for analog deep learning Science 377 539–43
    [6]
    Tang J S et al 2019 Bridging biological and artificial neural networks with emerging neuromorphic devices: fundamentals, progress, and challenges Adv. Mater. 31 e1902761
    [7]
    Duan Q X, Jing Z K, Zou X L, Wang Y H, Yang K, Zhang T, Wu S, Huang R and Yang Y C 2020 Spiking neurons with spatiotemporal dynamics and gain modulation for monolithically integrated memristive neural networks Nat. Commun. 11 3399
    [8]
    Ham D, Park H, Hwang S and Kim K 2021 Neuromorphic electronics based on copying and pasting the brain Nat. Electron. 4 635–44
    [9]
    Jaeger H 2001 The “Echo State” Approach to Analysing and Training Recurrent Neural Networks with an Erratum Note (Bonn: German National Research Center for Information Technology GMD Technical Report) vol 148 p 13
    [10]
    Maass W, Natschlager T and Markarm H 2002 Real-time computing without stable states a new framework for neural computation based on perturbations Neural Comput. 14 2531–60
    [11]
    Tran D and Teuscher C 2021 Computational capacity of complex memcapacitive networks ACM J. Emerg. Technol. Comput. Syst. 17 1–25
    [12]
    Benjamin S, David V and Jan V C 2007 An overview of reservoir computing: theory, applications and implementations Proc. 15th European Symp. on Artificial Neural Networks pp 471–82
    [13]
    Vlachas P R, Pathak J, Hunt B R, Sapsis T P, Girvan M, Ott E and Koumoutsakos P 2020 Backpropagation algorithms and reservoir computing in recurrent neural networks for the forecasting of complex spatiotemporal dynamics Neural Netw. 126 191
    [14]
    Appeltant L, Soriano M C, Sande V G, Danckaert J, Massar S, Dambre J, Schrauwen B, Mirasso C R and Fischer I 2011 Information processing using a single dynamical node as complex system Nat. Commun. 2 468
    [15]
    Penkovsky B 2017 Theory and modeling of complex nonlinear delay dynamics applied to neuromorphic computing Doctoral Dissertation Université Bourgogne Franche-Comté
    [16]
    Gallicchio C and Micheli A 2022 Architectural richness in deep reservoir computing Neural Comput. Appl. 1–18
    [17]
    Gallicchio C, Micheli A and Pedrelli L 2017 Deep reservoir computing: a critical experimental analysis Neurocomputing 268 87–99
    [18]
    Gauthier D J, Bollt E, Griffith A and Barbosa W A S 2021 Next generation reservoir computing Nat. Commun. 12 5564
    [19]
    Jaurigue L and Ludge K 2022 Connecting reservoir computing with statistical forecasting and deep neural networks Nat. Commun. 13 227
    [20]
    Jang Y H, Kim W, Kim J, Woo K S, Lee H J, Jeon J W, Shim S K, Han J and Hwang C S 2021 Time-varying data processing with nonvolatile memristor-based temporal kernel Nat. Commun. 12 5727
    [21]
    Zhong Y N, Tang J S, Li X Y, Gao B, Qian H and Wu H Q 2021 Dynamic memristor-based reservoir computing for high-efficiency temporal signal processing Nat. Commun. 12 408
    [22]
    Du C, Cai F X, Zidan M A, Ma W, Lee S H and Lu W D 2017 Reservoir computing using dynamic memristors for temporal information processing Nat. Commun. 8 2204
    [23]
    Moon J, Ma W, Shin J H, Cai F X, Du C, Lee S H and Lu W D 2019 Temporal data classification and forecasting using a memristor-based reservoir computing system Nat. Electron. 2 480–7
    [24]
    Nishioka D, Tsuchiya T, Namiki W, Takayanagi M, Imura M, Koide Y, Higuchi T and Terabe K 2022 Edge-of-chaos learning achieved by ion-electron-coupled dynamics in an ion-gating reservoir Sci. Adv. 8 eade1156
    [25]
    Nako E, Toprasertpong K, Nakane R, Takenaka M and Takagi S 2022 Experimental demonstration of novel scheme of HZO/Si FeFET reservoir computing with parallel data processing for speech recognition 2022 IEEE Symp. on VLSI Technology and Circuits pp 220–1
    [26]
    Liu K Q, Zhang T, Dang B J, Bao L, Xu L Y, Cheng C D, Yang Z, Huang R and Yang Y C 2022 An optoelectronic synapse based on α-In2Se3 with controllable temporal dynamics for multimode and multiscale reservoir computing Nat. Electron. 5 761–73
    [27]
    Nako E, Toprasertpong K, Nakane R, Wang Z, Miyatake Y, Takenaka M and Takagi S 2020 Proposal and experimental demonstration of reservoir computing using Hf0.5Zr0.5O2/Si FeFETs for neuromorphic applications 2020 IEEE Symp. on VLSI Technology and Circuits pp 1–2
    [28]
    Torrejon J et al 2017 Neuromorphic computing with nanoscale spintronic oscillators Nature 547 428–31
    [29]
    Prychynenko D, Sitte M, Litzius K, Krüger B, Bourianoff G, Kläui M, Sinova J and Everschor-Sitte K 2018 Magnetic skyrmion as a nonlinear resistive element: a potential building block for reservoir computing Phys. Rev. Appl. 9 014034
    [30]
    Vandoorne K, Mechet P, Van V T, Fiers M, Morthier G, Verstraeten D, Schrauwen B, Dambre J and Bienstman P 2014 Experimental demonstration of reservoir computing on a silicon photonics chip Nat. Commun. 5 3541
    [31]
    Van D S G, Brunner D and Soriano M C 2017 Advances in photonic reservoir computing Nanophotonics 6 561–76
    [32]
    Cucchi M et al 2021 Reservoir computing with biocompatible organic electrochemical networks for brain-inspired biosignal classification Sci. Adv. 7 eabh0693
    [33]
    Usami Y et al 2021 In-materio reservoir computing in a sulfonated polyaniline network Adv. Mater. 33 e2102688
    [34]
    Wakabayashi S, Arie T, Akita S, Nakajima K and Takei K 2022 A multitasking flexible sensor via reservoir computing Adv. Mater. 34 e2201663
    [35]
    Kan S, Nakajima K, Takeshima Y, Asai T, Kuwahara Y and Akai-Kasaya M 2021 Simple reservoir computing capitalizing on the nonlinear response of materials: theory and physical implementations Phys. Rev. Appl. 15 024030
    [36]
    Sun W X et al 2022 3D reservoir computing with high area efficiency (5.12 TOPS/mm2 ) implemented by 3D dynamic memristor array for temporal signal processing 2022 IEEE Symp. on VLSI Technology and Circuits pp 222–3
    [37]
    Yu J et al 2021 Energy efficient and robust reservoir computing system using ultrathin (3.5 nm) ferroelectric tunneling junctions for temporal data learning 2021 IEEE Symp. on VLSI Technology and Circuits pp 1–2
    [38]
    Ren K, Zhang W Y, Wang F, Guo Z Y and Shang D S 2022 Next-generation reservoir computing based on memristor array Acta Phys. Sin. 71 140701
    [39]
    Kaspar C, Ravoo B J, van der Wiel W G, Wegner S V and Pernice W H P 2021 The rise of intelligent matter Nature 594 345–55
    [40]
    Milano G, Pedretti G, Montano K, Ricci S, Hashemkhani S, Boarino L, Ielmini D and Ricciardi C 2022 In materia reservoir computing with a fully memristive architecture based on self-organizing nanowire networks Nat. Mater. 21 195–202
    [41]
    Kuncic Z and Nakayama T 2021 Neuromorphic nanowire networks: principles, progress and future prospects for neuro-inspired information processing Adv. Phys. X 6 1894234
    [42]
    Massey M K, Kotsialos A, Volpati D, Vissol-Gaudin E, Pearson C, Bowen L, Obara B, Zeze D A, Groves C and Petty M C 2016 Evolution of electronic circuits using carbon nanotube composites Sci. Rep. 6 32197
    [43]
    Lilak S, Woods W, Scharnhorst K, Dunham C, Teuscher C, Stieg A Z and Gimzewski J K 2021 Spoken digit classification by in-materio reservoir computing with neuromorphic atomic switch networks Front. Nanotechnol. 3 675792
    [44]
    Kundu M, Terabe K, Hasegawa T and Aono M 2006 Effect of sulfurization conditions and post-deposition annealing treatment on structural and electrical properties of silver sulfide films J. Appl. Phys. 99 103501
    [45]
    Kotooka T, Lilak S, Stieg A Z, Gimzewski J, Sugiyama N, Tanaka Y, Tamukoh H, Usami Y and Tanaka H 2021 Ag2Se nanowire network as an effective in-materio reservoir computing device (https://doi.org/10.21203/ rs.3.rs-322405/v1)
    [46]
    Du H W, Wan T, Qu B, Cao F Y, Lin Q R, Chen N, Lin X and Chu D W 2017 Engineering silver nanowire networks: from transparent electrodes to resistive switching devices ACS Appl. Mater. Interfaces 9 20762–70
    [47]
    Wan T, Pan Y, Du H W, Qu B, Yi J and Chu D W 2018 Threshold switching induced by controllable fragmentation in silver nanowire networks ACS Appl. Mater. Interfaces 10 2716–24
    [48]
    Tanaka H, Akai-Kasaya M, Termeh Y A, Hong L, Fu L, Tamukoh H, Tanaka D, Asai T and Ogawa T 2018 A molecular neuromorphic network device consisting of single-walled carbon nanotubes complexed with polyoxometalate Nat. Commun. 9 2693
    [49]
    Banerjee D, Kotooka T, Azhari S, Usami Y, Ogawa T, Gimzewski J K, Tamukoh H and Tanaka H 2022 Emergence of in-materio intelligence from an incidental structure of a single-walled carbon nanotube–porphyrin polyoxometalate random network Adv. Intell. Syst. 4 2100145
    [50]
    Demis E C, Aguilera R, Sillin H O, Scharnhorst K, Sandouk E J, Aono M, Stieg A Z and Gimzewski J K 2015 Atomic switch networks-nanoarchitectonic design of a complex system for natural computing Nanotechnology 26 204003
    [51]
    Cultrera A et al 2019 Mapping the conductivity of graphene with electrical resistance tomography Sci. Rep. 9 10655
    [52]
    Milano G, Cultrera A, Bejtka K, De L N, Callegaro L, Ricciardi C and Boarino L 2020 Mapping time-dependent conductivity of metallic nanowire networks by electrical resistance tomography toward transparent conductive materials ACS Appl. Nano Mater. 3 11987–97
    [53]
    Wang Z R et al 2018 Capacitive neural network with neuro-transistors Nat. Commun. 9 3208
    [54]
    Zhu J D, Zhang T, Yang Y C and Huang R 2020 A comprehensive review on emerging artificial neuromorphic devices Appl. Phys. Rev. 7 011312
    [55]
    Yang Y C, Gao P, Li L Z, Pan X Q, Tappertzhofen S, Choi S, Waser R, Valov I and Lu W D 2014 Electrochemical dynamics of nanoscale metallic inclusions in dielectrics Nat. Commun. 5 4232
    [56]
    Lee J and Lu W D 2018 On-demand reconfiguration of nanomaterials: when electronics meets ionics Adv. Mater. 30 1702770
    [57]
    Waser R, Dittmann R, Staikov G and Szot K 2009 Redox-based resistive switching memories-nanoionic mechanisms, prospects, and challenges Adv. Mater. 21 2632–63
    [58]
    Valov I, Linn E, Tappertzhofen S, Schmelzer S, van den Hurk J, Lentz F and Waser R 2013 Nanobatteries in redox-based resistive switches require extension of memristor theory Nat. Commun. 4 1771
    [59]
    Wang Z R et al 2017 Memristors with diffusive dynamics as synaptic emulators for neuromorphic computing Nat. Mater. 16 101–8
    [60]
    Waser R and Aono M 2007 Nanoionics-based resistive switching memories Nat. Mater. 6 833–40
    [61]
    Ielmini D and Wong H S P 2018 In-memory computing with resistive switching devices Nat. Electron. 1 333–43
    [62]
    Schwarz F, Kastlunger G, Lissel F, Egler-Lucas C, Semenov S N, Venkatesan K, Berke H, Stadler R and Lortscher E 2016 Field-induced conductance switching by charge-state alternation in organometallic single-molecule junctions Nat. Nanotechnol. 11 170–6
    [63]
    Hong L, Tanaka H and Ogawa T 2013 Rectification direction inversion in a phosphododecamolybdic acid/single-walled carbon nanotube junction J. Mater. Chem. C 1 1137–43
    [64]
    Mahmoud S K, In K S and Mark A B 1996 Ordered array formation and negative differential resistance behavior of cation-exchanged heteropoly acids probed by scanning tunneling microscopy J. Mater. Chem. 100 19577–81
    [65]
    Pantone R D, Kendall J D and Nino J C 2018 Memristive nanowires exhibit small-world connectivity Neural Netw. 106 144–51
    [66]
    Loeffler A, Zhu R, Hochstetter J, Li M, Fu K, Diaz-Alvarez A, Nakayama T, Shine J M and Kuncic Z 2020 Topological properties of neuromorphic nanowire networks Front. Neurosci. 14 184
    [67]
    Bassett D S and Bullmore E 2006 Small-world brain networks Neuroscientist 12 512–23
    [68]
    Muldoon S F, Bridgeford E W and Bassett D S 2016 Small-world propensity and weighted brain networks Sci. Rep. 6 22057
    [69]
    Rodriguez N, Izquierdo E and Ahn Y Y 2019 Optimal modularity and memory capacity of neural reservoirs Netw. Neurosci. 3 551–66
    [70]
    Bertolero M A, Yeo B T and D’Esposito M 2015 The modular and integrative functional architecture of the human brain Proc. Natl Acad. Sci. 112 E6798–807
    [71]
    Milano G, Miranda E and Ricciardi C 2022 Connectome of memristive nanowire networks through graph theory Neural Netw. 150 137–48
    [72]
    Diaz-Alvarez A, Higuchi R, Sanz-Leon P, Marcus I, Shingaya Y, Stieg A Z, Gimzewski J K, Kuncic Z and Nakayama T 2019 Emergent dynamics of neuromorphic nanowire networks Sci. Rep. 9 14920
    [73]
    O’Callaghan C, Rocha C G, Niosi F, Manning H G, Boland J J and Ferreira M S 2018 Collective capacitive and memristive responses in random nanowire networks: emergence of critical connectivity pathways J. Appl. Phys. 124 152118
    [74]
    Manning H G et al 2018 Emergence of winner-takes-all connectivity paths in random nanowire networks Nat. Commun. 9 3219
    [75]
    Pershin Y V and Di V M 2013 Self-organization and solution of shortest-path optimization problems with memristive networks Phys. Rev. E 88 013305
    [76]
    Maass W 2000 On the computational power of winner-take-all Neural Comput. 12 2519–35
    [77]
    Bellew A T, Bell A P, McCarthy E K, Fairfield J A and Boland J J 2014 Programmability of nanowire networks Nanoscale 6 9632–9
    [78]
    Batra N M, Syed A and Costa P 2019 Current-induced restructuring in bent silver nanowires Nanoscale 11 3606–18
    [79]
    Milano G, Pedretti G, Fretto M, Boarino L, Benfenati F, Ielmini D, Valov I and Ricciardi C 2020 Brain-inspired structural plasticity through reweighting and rewiring in multi-terminal self-organizing memristive nanowire networks Adv. Intell. Syst. 2 2000096
    [80]
    Zhu R, Hochstetter J, Loeffler A, Diaz-Alvarez A, Nakayama T, Lizier J T and Kuncic Z 2021 Information dynamics in neuromorphic nanowire networks Sci. Rep. 11 13047
    [81]
    Gouhei T, Yamane T, Heroux J B, Nakane R, Kanazawa N, Takeda S, Numata H, Nakano D and Hirose A 2019 Recent advances in physical reservoir computing: a review Neural Netw. 115 100–23
    [82]
    Tran D T 2019 Memcapacitive reservoir computing architectures Doctoral Dissertation Portland State University
    [83]
    Li Q, Diaz-Alvarez A, Iguchi R, Hochstetter J, Loeffler A, Zhu R, Shingaya Y, Kuncic Z, Uchida K I and Nakayama T 2020 Dynamic electrical pathway tuning in neuromorphic nanowire networks Adv. Funct. Mater. 30 2003679
    [84]
    Wan Q, Rasetto M, Sharbati M T, Erickson J R, Velagala S R, Reilly M T, Li Y, Benosman R and Xiong F 2021 Low-voltage electrochemical LixWO3 synapses with temporal dynamics for spiking neural networks Adv. Intell. Syst. 3 2100021
    [85]
    Yang K, Joshua Y J, Huang R and Yang Y C 2021 Nonlinearity in memristors for neuromorphic dynamic systems Small Sci. 2 2100049
    [86]
    Kumar S, Wang X, Strachan J P, Yang Y and Lu W D 2022 Dynamical memristors for higher-complexity neuromorphic computing Nat. Rev. Mater. 7 575–91
    [87]
    Hochstetter J, Zhu R, Loeffler A, Diaz-Alvarez A, Nakayama T and Kuncic Z 2021 Avalanches and edge-of-chaos learning in neuromorphic nanowire networks Nat. Commun. 12 4008
    [88]
    Verstraeten D, Schrauwen B, D’Haen M and Stroobandt D 2007 An experimental unification of reservoir computing methods Neural Netw. 20 391–403
    [89]
    Liu K Q, Dang B J, Zhang T, Yang Z, Bao L, Xu L Y, Cheng C D, Huang R and Yang Y C 2022 Multilayer reservoir computing based on ferroelectric α-In2Se3 for hierarchical information processing Adv. Mater. 34 e2108826
    [90]
    Gallicchio C, Micheli A and Silvestri L 2018 Local Lyapunov exponents of deep echo state networks Neurocomputing 298 34–45
    [91]
    Fu Y M, Li H, Huang L, Wei T, Hidayati F and Song A 2022 Sputtered electrolyte-gated transistor with modulated metaplasticity behaviors Adv. Electron. Mater. 8 2200463
    [92]
    Scharnhorst K S, Carbajal J P, Aguilera R C, Sandouk E J, Aono M, Stieg A Z and Gimzewski J K 2018 Atomic switch networks as complex adaptive systems Jpn. J. Appl. Phys. 57 03ED02
    [93]
    Hisham A H and Mohamad R A 2012 Geometrical and graphical representations analysis of lissajous figures in rotor dynamic system IOSR J. Eng. 2 971–8
    [94]
    Maass W 2011 Liquid state machines: motivation, theory, and applications Computability in Context: Computation and Logic in the Real World (London: Imperial College Press) pp 275–96
    [95]
    Goudarzi A and Stefanovic D 2014 Towards a calculus of echo state networks Proc. Comput. Sci. 41 176–81
    [96]
    Rostami E N H 2015 Three recurrent neural echo state networks with clustered reservoirs for prediction of nonlinear and chaotic time series Appl. Intell. 43 460–72
    [97]
    Stieg A Z, Avizienis A V, Sillin H O, Martin-Olmos C, Aono M and Gimzewski J K 2012 Emergent criticality in complex turing B-type atomic switch networks Adv. Mater. 24 286–93
    [98]
    Sillin H O, Aguilera R, Shieh H H, Avizienis A V, Aono M, Stieg A Z and Gimzewski J K 2013 A theoretical and experimental study of neuromorphic atomic switch networks for reservoir computing Nanotechnology 24 384004
    [99]
    Stieg A Z, Avizienis A V, Sillin H O, Aguilera R, Shieh H H, Martin-Olmos C, Sandouk E J, Aono M and Gimzewski J K 2014 Self-organization and emergence of dynamical structures in neuromorphic atomic switch networks Memristor Networks (Switzerland: Springer International Publishing) pp 173–209
    [100]
    Stieg A Z, Avizienis A V, Sillin H O, Martin-Olmos C, Lam M L, Aono M and Gimzewski J K 2013 Self-organized atomic switch networks Jpn. J. Appl. Phys. 53 01AA02
    [101]
    Demis E C, Aguilera R, Scharnhorst K, Aono M, Stieg A Z and Gimzewski J K 2016 Nanoarchitectonic atomic switch networks for unconventional computing Jpn. J. Appl. Phys. 55 1102B2
    [102]
    Kan S, Nakajima K, Asai T and Akai-Kasaya M 2022 Physical implementation of reservoir computing through electrochemical reaction Adv. Sci. 9 e2104076
    [103]
    Daniels R K, Mallinson J B, Heywood Z E, Bones P J, Arnold M D and Brown S A 2022 Reservoir computing with 3D nanowire networks Neural Netw. 154 122–30
    [104]
    Petrauskas L, Cucchi M, Grüner C, Ellinger F, Leo K, Matthus C and Kleemann H 2021 Nonlinear behavior of dendritic polymer networks for reservoir computing Adv. Electron. Mater. 8 2100330
    [105]
    Ye F, Kiani F, Huang Y and Xia Q F 2022 Diffusive memristors with uniform and tunable relaxation time for spike generation in event-based pattern recognition Adv. Mater. 2204778
    [106]
    Zhong Y N et al 2022 A memristor-based analogue reservoir computing system for real-time and power-efficient signal processing Nat. Electron. 5 672–81
    [107]
    Editorial 2022 Reservoir computing with memristors Nat. Electron. 5 623
    [108]
    Xia Q F, Yang J J and Midya R 2022 The secret order of disorder Nat. Mater. 21 132–42
  • 加载中

Catalog

    Figures(1)

    Article Metrics

    Article Views(173) PDF downloads(75)
    Article Statistics
    Related articles from

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return