Volume 2 Issue 1
March  2022
Turn off MathJax
Article Contents
Wenguang Liu, Hasan Raza, Xiaodong Hu, Sanwan Liu, Zonghao Liu, Wei Chen. Key bottlenecks and distinct contradictions in fast commercialization of perovskite solar cells[J]. Materials Futures, 2023, 2(1): 012103. doi: 10.1088/2752-5724/acba35
Citation: Wenguang Liu, Hasan Raza, Xiaodong Hu, Sanwan Liu, Zonghao Liu, Wei Chen. Key bottlenecks and distinct contradictions in fast commercialization of perovskite solar cells[J]. Materials Futures, 2023, 2(1): 012103. doi: 10.1088/2752-5724/acba35
Topical Review •
OPEN ACCESS

Key bottlenecks and distinct contradictions in fast commercialization of perovskite solar cells

© 2023 The Author(s). Published by IOP Publishing Ltd on behalf of the Songshan Lake Materials Laboratory
Materials Futures, Volume 2, Number 1
  • Received Date: 2022-12-08
  • Accepted Date: 2023-02-08
  • Publish Date: 2023-03-03
  • Despite significant improvements in photo-electricity conversion efficiency of perovskite solar cells (PSCs) over the past several years, this emerging photovoltaic technology is still years away from large-scale commercial application. In this review, important research progresses on PSCs' 'golden triangle' parameters of efficiency, stability, and cost in literatures were objectively analyzed. We focused on their key bottlenecks and distinct contradictions hindering their fast commercialization. We also proposed the most urgent directions requiring intensive research and development input in the coming years to speed up the commercialization process of PSCs.
  • loading
  • [1]
    Shi L et al 2020 Gas chromatography-mass spectrometry analyses of encapsulated stable perovskite solar cells Science 368 1328
    [2]
    Green M, Dunlop E, Hohl-Ebinger J, Yoshita M, Kopidakis N and Hao X 2021 Solar cell efficiency tables (version 57) Prog. Photovolt., Res. Appl. 29 3–15
    [3]
    National renewable energy laboratory Best research cell efficiency chart (available at: www.nrel.gov/pv/cellefficiency.html)
    [4]
    Green M A, Dunlop E D, Siefer G, Yoshita M, Kopidakis N, Bothe K and Hao X 2023 Solar cell efficiency tables (version 61) Prog. Photovolt., Res. Appl. 31 3–16
    [5]
    Ren G, Han W, Deng Y, Wu W, Li Z, Guo J, Bao H, Liu C and Guo W 2021 Strategies of modifying spiro-OMeTAD materials for perovskite solar cells: a review J. Mater. Chem. A 9 4589–625
    [6]
    Cai Y, Liang L and Gao P 2018 Promise of commercialization: carbon materials for low-cost perovskite solar cells∗ Chin. Phys. B 27 018805
    [7]
    Wang G, Liu D, Xiang J, Zhou D, Alameh K, Ding B and Song Q 2016 Efficient perovskite solar cell fabricated in ambient air using one-step spin-coating RSC Adv. 6 43299–303
    [8]
    Wang Q, Zheng X, Deng Y, Zhao J, Chen Z and Huang J 2017 Stabilizing the α-phase of CsPbI3 perovskite by sulfobetaine zwitterions in one-step spin-coating films Joule 1 371–82
    [9]
    Xiao M, Huang F, Huang W, Dkhissi Y, Zhu Y, Etheridge J, Gray-Weale A, Bach U, Cheng Y-B and Spiccia L 2014 A fast deposition-crystallization procedure for highly efficient lead iodide perovskite thin-film solar cells Angew. Chem. Int. Ed. 53 9898–903
    [10]
    Xiao Z, Bi C, Shao Y, Dong Q, Wang Q, Yuan Y, Wang C, Gao Y and Huang J 2014 Efficient, high yield perovskite photovoltaic devices grown by interdiffusion of solution-processed precursor stacking layers Energy Environ. Sci. 7 2619–23
    [11]
    Lee D-K, Jeong D-N, Ahn T K and Park N-G 2019 Precursor engineering for a large-area perovskite solar cell with >19% efficiency ACS Energy Lett. 4 2393–401
    [12]
    Park N-G and Zhu K 2020 Scalable fabrication and coating methods for perovskite solar cells and solar modules Nat. Rev. Mater. 5 333–50
    [13]
    Yang Z, Zhang S, Li L and Chen W 2017 Research progress on large-area perovskite thin films and solar modules J. Materiomics 3 231–44
    [14]
    Wang B, Wong K Y, Xiao X and Chen T 2015 Elucidating the reaction pathways in the synthesis of organolead trihalide perovskite for high-performance solar cells Sci. Rep. 5 10557
    [15]
    Green M A, Dunlop E D, Hohl-Ebinger J, Yoshita M, Kopidakis N and Hao X 2021 Solar cell efficiency tables (version 58) Prog. Photovolt., Res. Appl. 29 657–67
    [16]
    Green M A, Dunlop E D, Hohl-Ebinger J, Yoshita M, Kopidakis N and Hao X 2022 Solar cell efficiency tables (version 59) Prog. Photovolt., Res. Appl. 30 3–12
    [17]
    Green M A, Dunlop E D, Hohl-Ebinger J, Yoshita M, Kopidakis N, Bothe K, Hinken D, Rauer M and Hao X 2022 Solar cell efficiency tables (version 60) Prog. Photovolt., Res. Appl. 30 687–701
    [18]
    Yang Z, Liu Z, Ahmadi V, Chen W and Qi Y 2022 Recent progress on metal halide perovskite solar minimodules Sol. RRL 6 2100458
    [19]
    Li M, Wang Z-K, Yang Y-G, Hu Y, Feng S-L, Wang J-M, Gao X-Y and Liao L-S 2016 Copper salts doped spiro-OMeTAD for high-performance perovskite solar cells Adv. Energy Mater. 6 1601156
    [20]
    Shen Y, Deng K and Li L 2022 Spiro-OMeTAD-based hole transport layer engineering toward stable perovskite solar cells Small Methods 6 2200757
    [21]
    Song W, Rakocevic L, Thiruvallur Eachambadi R, Qiu W, Bastos J P, Gehlhaar R, Kuang Y, Hadipour A, Aernouts T and Poortmans J 2021 Improving the morphology stability of spiro-OMeTAD films for enhanced thermal stability of perovskite solar cells ACS Appl. Mater. Interfaces 13 44294–301
    [22]
    Tumen-Ulzii G, Matsushima T and Adachi C 2021 Mini-review on efficiency and stability of perovskite solar cells with spiro-OMeTAD hole transport layer: recent progress and perspectives Energy Fuels 35 18915–27
    [23]
    Yoo J J et al 2021 Efficient perovskite solar cells via improved carrier management Nature 590 587–93
    [24]
    Bu T L et al 2021 Lead halide-templated crystallization of methylamine-free perovskite for efficient photovoltaic modules Science 372 1327–32
    [25]
    Juarez-Perez E J and Haro M 2020 Perovskite solar cells take a step forward Science 368 1309
    [26]
    Fu F et al 2019 I-2 vapor-induced degradation of formamidinium lead iodide based perovskite solar cells under heat-light soaking conditions Energy Environ. Sci. 12 3074–88
    [27]
    Zhao X, Liu T, Burlingame Q C, Liu T, Holley R, Cheng G, Yao N, Gao F and Loo Y-L 2022 Accelerated aging of all-inorganic, interface-stabilized perovskite solar cells Science 377 307–10
    [28]
    Zhang H et al 2022 Fluorine-containing passivation layer via surface chelation for inorganic perovskite solar cells Angew. Chem. Int. Ed. 135 e202216634
    [29]
    Lin Y, Fan X, Yang X, Zheng X, Huang W, Shangguan Z, Wang Y, Kuo H-C, Wu T and Chen Z 2021 Remarkable black-phase robustness of CsPbI3 nanocrystals sealed in solid SiO2/AlOx sub-micron particles Small 17 2103510
    [30]
    Wang R, Mujahid M, Duan Y, Wang Z, Xue J and Yang Y 2019 A review of perovskites solar cell stability Adv. Funct. Mater. 29 1808843
    [31]
    Khenkin M V et al 2020 Consensus statement for stability assessment and reporting for perovskite photovoltaics based on ISOS procedures Nat. Energy 5 35–49
    [32]
    Yang D, Zhang X, Hou Y, Wang K, Ye T, Yoon J, Wu C, Sanghadasa M, Liu S F and Priya S 2021 28.3%-efficiency perovskite/silicon tandem solar cell by optimal transparent electrode for high efficient semitransparent top cell Nano Energy 84 105934
    [33]
    Chen B et al 2016 Efficient semitransparent perovskite solar cells for 23.0%-efficiency perovskite/silicon four-terminal tandem cells Adv. Energy Mater. 6 1601128
    [34]
    Lai W-C, Lin K-W, Wang Y-T, Chiang T-Y, Chen P and Guo T-F 2016 Oxidized Ni/Au transparent electrode in efficient CH3NH3PbI3 perovskite/fullerene planar heterojunction hybrid solar cells Adv. Mater. 28 3290–7
    [35]
    Green M A 2019 How did solar cells get so cheap? Joule 3 631–3
    [36]
    Culík P, Brooks K, Momblona C, Adams M, Kinge S, ˇ Maréchal F, Dyson P J and Nazeeruddin M K 2022 Design and cost analysis of 100 MW perovskite solar panel manufacturing process in different locations ACS Energy Lett. 7 3039–44
    [37]
    Li Z, Zhao Y, Wang X, Sun Y, Zhao Z, Li Y, Zhou H and Chen Q 2018 Cost analysis of perovskite tandem photovoltaics Joule 2 1559–72
    [38]
    Song Z, McElvany C L, Phillips A B, Celik I, Krantz P W, Watthage S C, Liyanage G K, Apul D and Heben M J 2017 A technoeconomic analysis of perovskite solar module manufacturing with low-cost materials and techniques Energy Environ. Sci. 10 1297–305
    [39]
    Kajal P, Verma B, Vadaga S G R and Powar S 2022 Costing analysis of scalable carbon-based perovskite modules using bottom up technique Glob. Chall. 6 2100070
    [40]
    Jin X, Yang Y, Zhao T, Wu X, Liu B, Han M, Chen W, Chen T, Hu J-S and Jiang Y 2022 Mitigating potential lead leakage risk of perovskite solar cells by device architecture engineering from exterior to interior ACS Energy Lett. 7 3618–36
    [41]
    Ke W and Kanatzidis M G 2019 Prospects for low-toxicity lead-free perovskite solar cells Nat. Commun. 10 965
    [42]
    Zhu T, Yang Y and Gong X 2020 Recent advancements and challenges for low-toxicity perovskite materials ACS Appl. Mater. Interfaces 12 26776–811
    [43]
    Jiang Y, Qiu L, Juarez-Perez E J, Ono L K, Hu Z, Liu Z, Wu Z, Meng L, Wang Q and Qi Y 2019 Reduction of lead leakage from damaged lead halide perovskite solar modules using self-healing polymer-based encapsulation Nat. Energy 4 585–93
    [44]
    Chen S, Deng Y, Gu H, Xu S, Wang S, Yu Z, Blum V and Huang J 2020 Trapping lead in perovskite solar modules with abundant and low-cost cation-exchange resins Nat. Energy 5 1003–11
    [45]
    Hailegnaw B, Kirmayer S, Edri E, Hodes G and Cahen D 2015 Rain on methylammonium lead iodide based perovskites: possible environmental effects of perovskite solar cells J. Phys. Chem. Lett. 6 1543–7
  • 加载中

Catalog

    Figures(1)

    Article Metrics

    Article Views(392) PDF downloads(100)
    Article Statistics
    Related articles from

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return