Volume 1 Issue 4
December  2022
Turn off MathJax
Article Contents
Jia Tian, Junlai Yu, Qingxuan Tang, Jiangshan Zhang, Danying Ma, Yifei Lei, Zhanting Li. Self-assembled supramolecular materials for photocatalytic H2 production and CO2 reduction[J]. Materials Futures, 2022, 1(4): 042104. doi: 10.1088/2752-5724/aca346
Citation: Jia Tian, Junlai Yu, Qingxuan Tang, Jiangshan Zhang, Danying Ma, Yifei Lei, Zhanting Li. Self-assembled supramolecular materials for photocatalytic H2 production and CO2 reduction[J]. Materials Futures, 2022, 1(4): 042104. doi: 10.1088/2752-5724/aca346
Topical Review •
OPEN ACCESS

Self-assembled supramolecular materials for photocatalytic H2 production and CO2 reduction

© 2022 The Author(s). Published by IOP Publishing Ltd on behalf of the Songshan Lake Materials Laboratory
Materials Futures, Volume 1, Number 4
  • Received Date: 2022-09-07
  • Accepted Date: 2022-11-15
  • Publish Date: 2022-12-08
  • Photosynthetic organisms harness solar radiation to produce energy-rich compounds from water and atmospheric CO2 via exquisite supramolecular assemblies, which offers a design principle for highly efficient artificial photocatalytic systems. As an emerging research field, significant effort has been devoted to self-assembled supramolecular materials for photocatalytic H2 production and CO2 reduction. In this review, we introduce the basic concepts of supramolecular photocatalytic materials. After that, we will discuss recent advances in the preparation of supramolecular photocatalytic materials from zero-dimension to three-dimension which include molecular assemblies, micelles, hybrid nanoparticles, nanofibers, nanosheets, microcrystals, lipid bilayers, supramolecular organic frameworks, supramolecular metal-organic frameworks, gels, and host-guest metal-organic frameworks, etc. Furthermore, we show the recent progress in the photocatalytic properties of supramolecular photocatalytic materials, i.e. photocatalytic proton reduction, water splitting, CO2 to HCOOH, CO2 to CO, CO2 to CH4 conversions, etc. Finally, we provide our perspective for the future research, with a focus on the development of new structures and highly efficient photocatalysis.

  • loading
  • [1]
    NobelPrize.org 2022 Nobel Prize Outreach AB 2022 Press release 30 August 2022 (available at: www.nobelprize.org/ prizes/chemistry/1988/press-release/)
    [2]
    Zhu X G, Long S P and Ort D R 2008 What is the maximum efficiency with which photosynthesis can convert solar energy into biomass? Curr. Opin. Biotechnol. 19 153–9
    [3]
    Kühlbrandt W, Wang D N and Fujiyoshi Y 1994 Atomic model of plant light-harvesting complex by electron crystallography Nature 367 614–21
    [4]
    McDermott G, Prince S M, Freer A A, Hawthornthwaite-Lawless A M, Papiz M Z, Cogdell R J and Isaacs N W 1995 Crystal structure of an integral membrane light-harvesting complex from photosynthetic bacteria Nature 374 517–21
    [5]
    Blankenship R E et al 2011 Comparing photosynthetic and photovoltaic efficiencies and recognizing the potential for improvement Science 332 805
    [6]
    Barber J 2009 Photosynthetic energy conversion: natural and artificial Chem. Soc. Rev. 38 185–96
    [7]
    Pi X, Zhao S, Wang W, Liu D, Xu C, Han G, Kuang T, Sui S-F and Shen J R 2019 The pigment-protein network of a diatom photosystem II–light-harvesting antenna supercomplex Science 365 eaax4406
    [8]
    Chu S, Cui Y and Liu N 2017 The path towards sustainable energy Nat. Mater. 16 16–22
    [9]
    Ben-Shem A, Frolow F and Nelson N 2003 Crystal structure of plant photosystem I Nature 426 630–5
    [10]
    Loll B, Kern J, Saenger W, Zouni A and Biesiadka J 2005 Towards complete cofactor arrangement in the 3.0 Å resolution structure of photosystem II Nature 438 1040–4
    [11]
    Cook T R, Dogutan D K, Reece S Y, Surendranath Y, Teets T S and Nocera D G 2010 Solar energy supply and storage for the legacy and nonlegacy worlds Chem. Rev. 110 6474–502
    [12]
    Scholes G D, Fleming G R, Olaya-Castro A and van Grondelle R 2011 Lessons from nature about solar light harvesting Nat. Chem. 3 763–74
    [13]
    Morris A J, Meyer G J and Fujita E 2009 Molecular approaches to the photocatalytic reduction of carbon dioxide for solar fuels Acc. Chem. Res. 42 1983–94
    [14]
    Esswein A J and Nocera D G 2007 Hydrogen production by molecular photocatalysis Chem. Rev. 107 4022–47
    [15]
    Grätzel M 2001 Photoelectrochemical cells Nature 414 338–44
    [16]
    Rawalekar S and Mokari T 2013 Rational design of hybrid nanostructures for advanced photocatalysis Adv. Energy Mater. 3 12–27
    [17]
    Hou W and Cronin S B 2013 A review of surface plasmon resonance-enhanced photocatalysis Adv. Funct. Mater. 23 1612–9
    [18]
    Wang Z-L et al 2020 Optimizing electron densities of Ni-N-C complexes by hybrid coordination for efficient electrocatalytic CO2 reduction ChemSusChem. 13 929–37
    [19]
    Cai Z X, Wang Z L, Xia Y J, Lim H, Zhou W, Taniguchi A, Ohtani M, Kobiro K, Fujita T and Yamauchi Y 2021 Tailored catalytic nanoframes from metal–organic frameworks by anisotropic surface modification and etching for the hydrogen evolution reaction Angew. Chem., Int. Ed. 60 4747–55
    [20]
    Zhang Z, Bian L, Tian H, Liu Y, Bando Y, Yamauchi Y and Wang Z L 2022 Tailoring the surface and interface structures of copper-based catalysts for electrochemical reduction of CO2 to ethylene and ethanol Small 18 2107450
    [21]
    Tachibana Y, Vayssieres L and Durrant J R 2012 Artificial photosynthesis for solar water-splitting Nat. Photon. 6 511–8
    [22]
    Sachs M et al 2018 Understanding structure-activity relationships in linear polymer photocatalysts for hydrogen evolution Nat. Commun. 9 4968
    [23]
    Dai C and Liu B 2020 Conjugated polymers for visible-light-driven photocatalysis Energy Environ. Sci. 13 24–52
    [24]
    Kosco J et al 2020 Enhanced photocatalytic hydrogen evolution from organic semiconductor heterojunction nanoparticles Nat. Mater. 19 559–65
    [25]
    Yang H, Li X, Sprick R S and Cooper A I 2020 Conjugated polymer donor-molecular acceptor nanohybrids for photocatalytic hydrogen evolution Chem. Commun. 56 6790–3
    [26]
    Bai Y, Wilbraham L, Slater B J, Zwijnenburg M A, Sprick R S and Cooper A I 2019 Accelerated discovery of organic polymer photocatalysts for hydrogen evolution from water through the integration of experiment and theory J. Am. Chem. Soc. 141 9063–71
    [27]
    Hansen M, Troppmann S and König B 2016 Artificial photosynthesis at dynamic self-assembled interfaces in water Chem. Eur. J. 22 58–72
    [28]
    Hansen M, Li F, Sun L and König B 2014 Photocatalytic water oxidation at soft interfaces Chem. Sci. 5 2683–7
    [29]
    Troppmann S and König B 2014 Functionalized membranes for photocatalytic hydrogen production Chem. Eur. J. 20 14570–4
    [30]
    Wang H Y, Wang W-G, Si G, Wang F, Tung C H and Wu L Z 2010 Photocatalytic hydrogen evolution from rhenium(I) complexes to [FeFe] hydrogenase mimics in aqueous SDS micellar systems: a biomimetic pathway Langmuir 26 9766–71
    [31]
    Hu H, Wang Z, Cao L, Zeng L, Zhang C, Lin W and Wang C 2021 Metal–organic frameworks embedded in a liposome facilitate overall photocatalytic water splitting Nat. Chem. 13 358–66
    [32]
    Steinberg-Yfrach G, Liddell P A, Hung S-C, Moore A L, Gust D and Moore T A 1997 Conversion of light energy to proton potential in liposomes by artificial photosynthetic reaction centres Nature 385 239–41
    [33]
    Wang W-G, Wang F, Wang H-Y, Si G, Tung C-H and Wu L-Z 2010 Photocatalytic hydrogen evolution by [FeFe] hydrogenase mimics in homogeneous solution Chem. Asian J. 5 1796–803
    [34]
    Peng H-Q, Chen Y Z, Zhao Y, Yang Q Z, Wu L Z, Tung C-H, Zhang L-P and Tong Q-X 2012 Artificial light-harvesting system based on multifunctional surface-cross-linked micelles Angew. Chem., Int. Ed. 51 2088–92
    [35]
    Parkinson P, Knappke C E I, Kamonsutthipaijit N, Sirithip K, Matichak J D, Anderson H L and Herz L M 2014 Ultrafast energy transfer in biomimetic multistrand nanorings J. Am. Chem. Soc. 136 8217–20
    [36]
    Liu Y, Jin J, Deng H, Li K, Zheng Y, Yu C and Zhou Y 2016 Protein-framed multi-porphyrin micelles for a hybrid natural–artificial light-harvesting nanosystem Angew. Chem., Int. Ed. 55 7952–7
    [37]
    Li W J et al 2020 Rotaxane-branched dendrimers with enhanced photosensitization J. Am. Chem. Soc. 142 16748–56
    [38]
    Lewis N S and Nocera D G 2006 Powering the planet: chemical challenges in solar energy utilization Proc. Natl Acad. Sci. USA 103 15729
    [39]
    Chu S, Cui Y and Liu N 2017 The path towards sustainable energy Nat. Mater. 16 16–22
    [40]
    Abdi F F, Han L, Smets A H M, Zeman M, Dam B and van de Krol R 2013 Efficient solar water splitting by enhanced charge separation in a bismuth vanadate-silicon tandem photoelectrode Nat. Commun. 4 2195
    [41]
    Luo J, Im J H, Mayer M T, Schreier M, Nazeeruddin M K, Park N-G, Tilley S D, Fan H J and Grätzel M 2014 Water photolysis at 12.3% efficiency via perovskite photovoltaics and earth-abundant catalysts Science 345 1593
    [42]
    Liu C, Colón B C, Ziesack M, Silver P A and Nocera D G 2016 Water splitting–biosynthetic system with CO2 reduction efficiencies exceeding photosynthesis Science 352 1210
    [43]
    Li X, Yu J, Jaroniec M and Chen X 2019 Cocatalysts for selective photoreduction of CO2 into solar fuels Chem. Rev. 119 3962–4179
    [44]
    Rao H, Schmidt L C, Bonin J and Robert M 2017 Visible-light-driven methane formation from CO2 with a molecular iron catalyst Nature 548 74–77
    [45]
    Kirch M, Lehn J M and Sauvage J P 1979 Hydrogen generation by visible light irradiation of aqueous solutions of metal complexes. An approach to the photochemical conversion and storage of solar energy Helv. Chim. Acta 62 1345–84
    [46]
    Lehn J-M and Ziessel R 1982 Photochemical generation of carbon monoxide and hydrogen by reduction of carbon dioxide and water under visible light irradiation Proc. Natl Acad. Sci. 79 701–4
    [47]
    Kiwi J and Grätzel M 1979 Hydrogen evolution from water induced by visible light mediated by redox catalysis Nature 281 657–8
    [48]
    Gholamkhass B, Mametsuka H, Koike K, Tanabe T, Furue M and Ishitani O 2005 Architecture of supramolecular metal complexes for photocatalytic CO2 reduction: ruthenium−rhenium Bi- and tetranuclear complexes Inorg. Chem. 44 2326–36
    [49]
    Kimura E, Wada S, Shionoya M and Okazaki Y 1994 New series of multifunctionalized nickel(II)-cyclam (cyclam = 1, 4, 8, 11-Tetraazacyclotetradecane) complexes. Application to the photoreduction of carbon dioxide Inorg. Chem. 33 770–8
    [50]
    Wu L Z, Chen B, Li Z J and Tung C-H 2014 Enhancement of the efficiency of photocatalytic reduction of protons to hydrogen via molecular assembly Acc. Chem. Res. 47 2177–85
    [51]
    Song D, Li B, Li X, Sun X, Li J, Li C, Xu T, Zhu Y, Li F and Wang N 2020 Orthogonal supramolecular assembly triggered by inclusion and exclusion interactions with Cucurbit[7]uril for photocatalytic H2 evolution ChemSusChem 13 394–9
    [52]
    Jing X, He C, Yang Y and Duan C 2015 A metal–organic tetrahedron as a redox vehicle to encapsulate organic dyes for photocatalytic proton reduction J. Am. Chem. Soc. 137 3967–74
    [53]
    Sun N, Qi D, Jin Y, Wang H, Wang C, Qu C, Liu J, Jin Y, Zhang W and Jiang J 2021 Porous pyrene organic cage with unusual absorption bathochromic-shift enables visible light photocatalysis CCS Chemistry 4 2588–96
    [54]
    Jiao Y et al 2021 A donor–acceptor [2] Catenane for visible light photocatalysis J. Am. Chem. Soc. 143 8000–10
    [55]
    Chen G and Jiang M 2011 Cyclodextrin-based inclusion complexation bridging supramolecular chemistry and macromolecular self-assembly Chem. Soc. Rev. 40 2254–66
    [56]
    Mourtzis N, Carballada P C, Felici M, Nolte R J M, Williams R M, de Cola L and Feiters M C 2011 Cyclodextrin-based systems for photoinduced hydrogen evolution Phys. Chem. Chem. Phys. 13 7903–9
    [57]
    Bian T, Shang L, Yu H, Perez M T, Wu L Z, Tung C-H, Nie Z, Tang Z and Zhang T 2014 Spontaneous organization of inorganic nanoparticles into nanovesicles triggered by UV light Adv. Mater. 26 5613–8
    [58]
    Shi R, Cao Y, Bao Y, Zhao Y, Waterhouse G I N, Fang Z, Wu L-Z, Tung C-H, Yin Y and Zhang T 2017 Self-assembled Au/CdSe nanocrystal clusters for plasmon-mediated photocatalytic hydrogen evolution Adv. Mater. 29 1700803
    [59]
    Wang F, Wang W-G, Wang X J, Wang H Y, Tung C-H and Wu L Z 2011 A highly efficient photocatalytic system for hydrogen production by a robust hydrogenase mimic in an aqueous solution Angew. Chem., Int. Ed. 50 3193–7
    [60]
    Li Z J, Wang J J, Li X B, Fan X B, Meng Q Y, Feng K, Chen B, Tung C H and Wu L Z 2013 An exceptional artificial photocatalyst, Nih-CdSe/CdS Core/Shell hybrid, made in situ from CdSe quantum dots and nickel salts for efficient hydrogen evolution Adv. Mater. 25 6613–8
    [61]
    Jian J-X et al 2013 Chitosan confinement enhances hydrogen photogeneration from a mimic of the diiron subsite of [FeFe]-hydrogenase Nat. Commun. 4 2695
    [62]
    Wang F, Liang W J, Jian J X, Li C-B, Chen B, Tung C H and Wu L Z 2013 Exceptional poly(acrylic acid)-based artificial [FeFe]-hydrogenases for photocatalytic H2 production in water Angew. Chem., Int. Ed. 52 8134–8
    [63]
    Li C B, Li Z J, Yu S, Wang G X, Wang F, Meng Q Y, Chen B, Feng K, Tung C H and Wu L Z 2013 Interface-directed assembly of a simple precursor of [FeFe]–H2ase mimics on CdSe QDs for photosynthetic hydrogen evolution in water Energy Environ. Sci. 6 2597–602
    [64]
    Wen M, Li X B, Jian J X, Wang X Z, Wu H L, Chen B, Tung C-H and Wu L Z 2016 Secondary coordination sphere accelerates hole transfer for enhanced hydrogen photogeneration from [FeFe]-hydrogenase mimic and CdSe QDs in water Sci. Rep. 6 29851
    [65]
    Li Z J, Li X B, Wang J J, Yu S, Li C B, Tung C H and Wu L Z 2013 A robust “artificial catalyst” in situ formed from CdTe QDs and inorganic cobalt salts for photocatalytic hydrogen evolution Energy Environ. Sci. 6 465–9
    [66]
    Li X-B, Jian J X, Wang X Z, Wang Y, Xia S G, Tung C H and Wu L Z 2021 Per-6-thiol-cyclodextrin engineered [FeFe]-hydrogenase mimic/CdSe quantum dot assembly for photocatalytic hydrogen production Solar RRL 5 2000474
    [67]
    Qin L, Wang R, Xin X, Zhang M, Liu T, Lv H and Yang G Y 2022 A dual-functional supramolecular assembly for enhanced photocatalytic hydrogen evolution Appl. Catal. B 312 121386
    [68]
    Cheung P L, Kapper S C, Zeng T, Thompson M E and Kubiak C P 2019 Improving photocatalysis for the reduction of CO2 through non-covalent supramolecular assembly J. Am. Chem. Soc. 141 14961–5
    [69]
    Nasrallah H, Lyu P, Maurin G and El-Roz M 2021 Highly efficient CO2 reduction under visible-light on non-covalent Ru···Re assembled photocatalyst: evidence on the electron transfer mechanism J. Catal. 404 46–55
    [70]
    Arcudi F, Ðord¯evi´c L, Nagasing B, Stupp S I and Weiss E A 2021 Quantum dot-sensitized photoreduction of CO2 in water with turnover number >80,000 J. Am. Chem. Soc. 143 18131–8
    [71]
    Grossman A R, Schaefer M R, Chiang G G and Collier J L 1993 The phycobilisome, a light-harvesting complex responsive to environmental conditions Microbiol. Rev. 57 725–49
    [72]
    Weingarten A S, Kazantsev R V, Palmer L C, McClendon M, Koltonow A R, Samuel A P S, Kiebala D J, Wasielewski M R and Stupp S I 2014 Self-assembling hydrogel scaffolds for photocatalytic hydrogen production Nat. Chem. 6 964–70
    [73]
    Tian J et al 2020 Tailored self-assembled photocatalytic nanofibres for visible-light-driven hydrogen production Nat. Chem. 12 1150–6
    [74]
    Dumele O, Ðord¯evi´c L, Sai H, Cotey T J, Sangji M H, Sato K, Dannenhoffer A J and Stupp S I 2022 Photocatalytic aqueous CO2 reduction to CO and CH4 sensitized by ullazine supramolecular polymers J. Am. Chem. Soc. 144 3127–36
    [75]
    Spano F C 2010 The spectral signatures of Frenkel polarons in H- and J-aggregates Acc. Chem. Res. 43 429–39
    [76]
    Wilson A D, Shoemaker R K, Miedaner A, Muckerman J T, DuBois D L and DuBois M R 2007 Nature of hydrogen interactions with Ni(II) complexes containing cyclic phosphine ligands with pendant nitrogen bases Proc. Natl Acad. Sci. 104 6951–6
    [77]
    Weingarten A S, Kazantsev R V, Palmer L C, Fairfield D J, Koltonow A R and Stupp S I 2015 Supramolecular packing controls H2 photocatalysis in chromophore amphiphile hydrogels J. Am. Chem. Soc. 137 15241–6
    [78]
    Kazantsev R V et al 2017 Crystal-phase transitions and photocatalysis in supramolecular scaffolds J. Am. Chem. Soc. 139 6120–7
    [79]
    Weingarten A S, Dannenhoffer A J, Kazantsev R V, Sai H, Huang D and Stupp S I 2018 Chromophore dipole directs morphology and photocatalytic hydrogen generation J. Am. Chem. Soc. 140 4965–8
    [80]
    Grabicki N et al 2021 Polymorphism and optoelectronic properties in crystalline supramolecular polymers Chem. Mater. 33 706–18
    [81]
    Nam Y S, Shin T, Park H, Magyar A P, Choi K, Fantner G, Nelson K A and Belcher A M 2010 Virus-templated assembly of porphyrins into light-harvesting nanoantennae J. Am. Chem. Soc. 132 1462–3
    [82]
    Miao D, Aumaitre C and Morin J F 2019 Photochemical synthesis of π-extended ullazine derivatives as new electron donors for efficient conjugated D–A polymers J. Mater. Chem. C 7 3015–24
    [83]
    Ouyang T, Huang H H, Wang J W, Zhong D C and Lu T B 2017 A dinuclear cobalt cryptate as a homogeneous photocatalyst for highly selective and efficient visible-light driven CO2 reduction to CO in CH3CN/H2O solution Angew. Chem., Int. Ed. 56 738–43
    [84]
    Bi Q Q, Wang J W, Lv J X, Wang J, Zhang W and Lu T-B 2018 Selective photocatalytic CO2 reduction in water by electrostatic assembly of CdS nanocrystals with a dinuclear cobalt catalyst ACS Catal. 8 11815–21
    [85]
    Xie H, Li Z, Cheng L, Haidry A A, Tao J, Xu Y, Xu K and Ou J Z 2022 Recent advances in the fabrication of 2D metal oxides iScience 25 103598
    [86]
    Kazantsev R V, Dannenhoffer A J, Aytun T, Harutyunyan B, Fairfield D J, Bedzyk M J and Stupp S I 2018 Molecular control of internal crystallization and photocatalytic function in supramolecular nanostructures Chem 4 1596–608
    [87]
    Dannenhoffer A J et al 2021 Growth of extra-large chromophore supramolecular polymers for enhanced hydrogen production Nano Lett. 21 3745–52
    [88]
    Bruckner E P et al 2022 Hybrid nanocrystals of small molecules and chemically disordered polymers ACS Nano 16 8993–9003
    [89]
    Cao R, Wang G, Ren X, Duan P-C, Wang L, Li Y, Chen X, Zhu R, Jia Y and Bai F 2022 Self-assembled porphyrin nanoleaves with unique crossed transportation of photogenerated carriers to enhance photocatalytic hydrogen production Nano Lett. 22 157–63
    [90]
    Ding H, Wang Z, Kong K, Feng S, Xu L, Ye H, Wu W, Gong X and Hua J 2021 Efficient and s photocatalytic H2 evolution by self-assembly of zirconium(iv) coordination with perylene diimide supramolecules under visible light irradiation J. Mater. Chem. A 9 7675–83
    [91]
    Ikuta N, Takizawa S-Y and Murata S 2014 Photochemical reduction of CO2 with ascorbate in aqueous solution using vesicles acting as photocatalysts Photochem. Photobiol. Sci. 13 691–702
    [92]
    Yang G et al 2022 Enhanced photocatalytic CO2 reduction through hydrophobic microenvironment and binuclear cobalt synergistic effect in metallogels Angew. Chem., Int. Ed. 61 e202205585
    [93]
    Jiang W, Zhu Y, Zhu G, Zhang Z, Chen X and Yao W 2017 Three-dimensional photocatalysts with a network structure J. Mater. Chem. A 5 5661–79
    [94]
    Zhang T and Lin W 2014 Metal–organic frameworks for artificial photosynthesis and photocatalysis Chem. Soc. Rev. 43 5982–93
    [95]
    Wang H et al 2020 Covalent organic framework photocatalysts: structures and applications Chem. Soc. Rev. 49 4135–65
    [96]
    Zhang T, Xing G, Chen W and Chen L 2020 Porous organic polymers: a promising platform for efficient photocatalysis Mater. Chem. Front. 4 332–53
    [97]
    Wang T X, Liang H P, Anito D A, Ding X and Han B H 2020 Emerging applications of porous organic polymers in visible-light photocatalysis J. Mater. Chem. A 8 7003–34
    [98]
    Tian J et al 2014 Three-dimensional periodic supramolecular organic framework ion sponge in water and microcrystals Nat. Commun. 5 5574
    [99]
    Tian J, Chen L, Zhang D W, Liu Y and Li Z T 2016 Supramolecular organic frameworks: engineering periodicity in water through host–guest chemistry Chem. Commun. 52 6351–62
    [100]
    Tian J, Wang H, Zhang D W, Liu Y and Li Z T 2017 Supramolecular organic frameworks (SOFs): homogeneous regular 2D and 3D pores in water Natl Sci. Rev. 4 426–36
    [101]
    Yu S B, Qi Q, Yang B, Wang H, Zhang D W, Liu Y and Li Z T 2018 Enhancing hydrogen generation through nanoconfinement of sensitizers and catalysts in a homogeneous supramolecular organic framework Small 14 1801037
    [102]
    Yan M, Liu X B, Gao Z Z, Wu Y P, Hou J L, Wang H, Zhang D-W, Liu Y and Li Z T 2019 A pore-expanded supramolecular organic framework and its enrichment of photosensitizers and catalysts for visible-light-induced hydrogen production Inorg. Chem. Front. 6 1698–704
    [103]
    Gao Z Z et al 2020 Water-soluble 3D covalent organic framework that displays an enhanced enrichment effect of photosensitizers and catalysts for the reduction of protons to H2 ACS Appl. Mater. Interfaces 12 1404–11
    [104]
    Lei Z, Li Q, Sun J D, Wang Z K, Wang H, Li Z T and Zhang D-W 2022 A cucurbit [8] uril-stabilized 3D charge transfer supramolecular polymer with a remarkable confinement effect for enhanced photocatalytic proton reduction and thioether oxidation Inorg. Chem. Front. 9 1327–35
    [105]
    Tian J, Xu Z Y, Zhang D W, Wang H, Xie S H, Xu D W, Ren Y H, Wang H, Liu Y and Li Z T 2016 Supramolecular metal-organic frameworks that display high homogeneous and heterogeneous photocatalytic activity for H2 production Nat. Commun. 7 11580
    [106]
    Li X F, Yu S B, Yang B, Tian J, Wang H, Zhang D W, Liu Y and Li Z T 2018 A stable metal-covalent-supramolecular organic framework hybrid: enrichment of catalysts for visible light-induced hydrogen production Sci. China Chem. 61 830–5
    [107]
    Pan C et al 2022 Encapsulating semiconductor quantum dots in supramolecular metal-organic frameworks for superior photocatalytic hydrogen evolution Adv. Mater. Interfaces 9 2101678
    [108]
    Yang G, Lin C, Feng X, Wang T and Jiang J 2020 Multi-component supramolecular gels induce protonation of a porphyrin exciplex to achieve improved collective optical properties for effective photocatalytic hydrogen generation Chem. Commun. 56 527–30
    [109]
    Verma P, Singh A, Rahimi F A and Maji T K 2021 Colocalization of light harvesting and catalytic units in a ‘soft’ coordination polymer hydrogel toward visible-light driven photocatalytic hydrogen production J. Mater. Chem. A 9 13608–14
    [110]
    Jiao L and Jiang H-L 2019 Metal-organic-framework-based single-atom catalysts for energy applications Chem 5 786–804
    [111]
    Liang Z, Qu C, Guo W, Zou R and Xu Q 2018 Pristine metal–organic frameworks and their composites for energy storage and conversion Adv. Mater. 30 1702891
    [112]
    Wang S and Wang X 2015 Multifunctional metal–organic frameworks for photocatalysis Small 11 3097–112
    [113]
    Dhakshinamoorthy A, Asiri A M and García H 2016 Metal–organic framework (MOF) compounds: photocatalysts for redox reactions and solar fuel production Angew. Chem., Int. Ed. 55 5414–45
    [114]
    Dhakshinamoorthy A, Li Z and Garcia H 2018 Catalysis and photocatalysis by metal organic frameworks Chem. Soc. Rev. 47 8134–72
    [115]
    Benseghir Y et al 2020 Co-immobilization of a Rh catalyst and a Keggin polyoxometalate in the UiO-67 Zr-based metal–organic framework: in depth structural characterization and photocatalytic properties for CO2 reduction J. Am. Chem. Soc. 142 9428–38
    [116]
    Du Z Y, Xue Y N, Liu X M, Li N F, Wang J L, Mei H and Xu Y 2022 An unprecedented polyoxometalate-encapsulated organo–metallophosphate framework as a highly efficient cocatalyst for CO2 photoreduction J. Mater. Chem. A 10 3469–77
    [117]
    Du Z Y, Yu Y Z, Li N F, Xue Y S, Xu L X, Mei H and Xu Y 2021 Polyoxometalate-induced ‘cage-within-cage’ metal–organic frameworks with high efficiency towards CO2 photoreduction Sustain. Energy Fuels 5 3876–83
    [118]
    Stanley P M, Haimerl J, Thomas C, Urstoeger A, Schuster M, Shustova N B, Casini A, Rieger B, Warnan J and Fischer R A 2021 Host–guest interactions in a metal–organic framework isoreticular series for molecular photocatalytic CO2 reduction Angew. Chem., Int. Ed. 60 17854–60
    [119]
    Chen Y et al 2020 Integration of enzymes and photosensitizers in a hierarchical mesoporous metal–organic framework for light-driven CO2 reduction J. Am. Chem. Soc. 142 1768–73
  • 加载中

Catalog

    Figures(1)

    Article Metrics

    Article Views(289) PDF downloads(86)
    Article Statistics
    Related articles from

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return